1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 6 */ 7 #include <linux/module.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 10 #include <linux/spinlock.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/interrupt.h> 15 #include <linux/cache.h> 16 #include <linux/profile.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/cpu.h> 21 #include <linux/seq_file.h> 22 #include <linux/irq.h> 23 #include <linux/nmi.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/bugs.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/procinfo.h> 43 #include <asm/processor.h> 44 #include <asm/sections.h> 45 #include <asm/tlbflush.h> 46 #include <asm/ptrace.h> 47 #include <asm/smp_plat.h> 48 #include <asm/virt.h> 49 #include <asm/mach/arch.h> 50 #include <asm/mpu.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/ipi.h> 54 55 /* 56 * as from 2.5, kernels no longer have an init_tasks structure 57 * so we need some other way of telling a new secondary core 58 * where to place its SVC stack 59 */ 60 struct secondary_data secondary_data; 61 62 enum ipi_msg_type { 63 IPI_WAKEUP, 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CPU_STOP, 68 IPI_IRQ_WORK, 69 IPI_COMPLETION, 70 /* 71 * CPU_BACKTRACE is special and not included in NR_IPI 72 * or tracable with trace_ipi_* 73 */ 74 IPI_CPU_BACKTRACE, 75 /* 76 * SGI8-15 can be reserved by secure firmware, and thus may 77 * not be usable by the kernel. Please keep the above limited 78 * to at most 8 entries. 79 */ 80 }; 81 82 static DECLARE_COMPLETION(cpu_running); 83 84 static struct smp_operations smp_ops __ro_after_init; 85 86 void __init smp_set_ops(const struct smp_operations *ops) 87 { 88 if (ops) 89 smp_ops = *ops; 90 }; 91 92 static unsigned long get_arch_pgd(pgd_t *pgd) 93 { 94 #ifdef CONFIG_ARM_LPAE 95 return __phys_to_pfn(virt_to_phys(pgd)); 96 #else 97 return virt_to_phys(pgd); 98 #endif 99 } 100 101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 102 static int secondary_biglittle_prepare(unsigned int cpu) 103 { 104 if (!cpu_vtable[cpu]) 105 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 106 107 return cpu_vtable[cpu] ? 0 : -ENOMEM; 108 } 109 110 static void secondary_biglittle_init(void) 111 { 112 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 113 } 114 #else 115 static int secondary_biglittle_prepare(unsigned int cpu) 116 { 117 return 0; 118 } 119 120 static void secondary_biglittle_init(void) 121 { 122 } 123 #endif 124 125 int __cpu_up(unsigned int cpu, struct task_struct *idle) 126 { 127 int ret; 128 129 if (!smp_ops.smp_boot_secondary) 130 return -ENOSYS; 131 132 ret = secondary_biglittle_prepare(cpu); 133 if (ret) 134 return ret; 135 136 /* 137 * We need to tell the secondary core where to find 138 * its stack and the page tables. 139 */ 140 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 141 #ifdef CONFIG_ARM_MPU 142 secondary_data.mpu_rgn_info = &mpu_rgn_info; 143 #endif 144 145 #ifdef CONFIG_MMU 146 secondary_data.pgdir = virt_to_phys(idmap_pgd); 147 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 148 #endif 149 sync_cache_w(&secondary_data); 150 151 /* 152 * Now bring the CPU into our world. 153 */ 154 ret = smp_ops.smp_boot_secondary(cpu, idle); 155 if (ret == 0) { 156 /* 157 * CPU was successfully started, wait for it 158 * to come online or time out. 159 */ 160 wait_for_completion_timeout(&cpu_running, 161 msecs_to_jiffies(1000)); 162 163 if (!cpu_online(cpu)) { 164 pr_crit("CPU%u: failed to come online\n", cpu); 165 ret = -EIO; 166 } 167 } else { 168 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 169 } 170 171 172 memset(&secondary_data, 0, sizeof(secondary_data)); 173 return ret; 174 } 175 176 /* platform specific SMP operations */ 177 void __init smp_init_cpus(void) 178 { 179 if (smp_ops.smp_init_cpus) 180 smp_ops.smp_init_cpus(); 181 } 182 183 int platform_can_secondary_boot(void) 184 { 185 return !!smp_ops.smp_boot_secondary; 186 } 187 188 int platform_can_cpu_hotplug(void) 189 { 190 #ifdef CONFIG_HOTPLUG_CPU 191 if (smp_ops.cpu_kill) 192 return 1; 193 #endif 194 195 return 0; 196 } 197 198 #ifdef CONFIG_HOTPLUG_CPU 199 static int platform_cpu_kill(unsigned int cpu) 200 { 201 if (smp_ops.cpu_kill) 202 return smp_ops.cpu_kill(cpu); 203 return 1; 204 } 205 206 static int platform_cpu_disable(unsigned int cpu) 207 { 208 if (smp_ops.cpu_disable) 209 return smp_ops.cpu_disable(cpu); 210 211 return 0; 212 } 213 214 int platform_can_hotplug_cpu(unsigned int cpu) 215 { 216 /* cpu_die must be specified to support hotplug */ 217 if (!smp_ops.cpu_die) 218 return 0; 219 220 if (smp_ops.cpu_can_disable) 221 return smp_ops.cpu_can_disable(cpu); 222 223 /* 224 * By default, allow disabling all CPUs except the first one, 225 * since this is special on a lot of platforms, e.g. because 226 * of clock tick interrupts. 227 */ 228 return cpu != 0; 229 } 230 231 /* 232 * __cpu_disable runs on the processor to be shutdown. 233 */ 234 int __cpu_disable(void) 235 { 236 unsigned int cpu = smp_processor_id(); 237 int ret; 238 239 ret = platform_cpu_disable(cpu); 240 if (ret) 241 return ret; 242 243 /* 244 * Take this CPU offline. Once we clear this, we can't return, 245 * and we must not schedule until we're ready to give up the cpu. 246 */ 247 set_cpu_online(cpu, false); 248 249 /* 250 * OK - migrate IRQs away from this CPU 251 */ 252 irq_migrate_all_off_this_cpu(); 253 254 /* 255 * Flush user cache and TLB mappings, and then remove this CPU 256 * from the vm mask set of all processes. 257 * 258 * Caches are flushed to the Level of Unification Inner Shareable 259 * to write-back dirty lines to unified caches shared by all CPUs. 260 */ 261 flush_cache_louis(); 262 local_flush_tlb_all(); 263 264 return 0; 265 } 266 267 static DECLARE_COMPLETION(cpu_died); 268 269 /* 270 * called on the thread which is asking for a CPU to be shutdown - 271 * waits until shutdown has completed, or it is timed out. 272 */ 273 void __cpu_die(unsigned int cpu) 274 { 275 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 276 pr_err("CPU%u: cpu didn't die\n", cpu); 277 return; 278 } 279 pr_debug("CPU%u: shutdown\n", cpu); 280 281 clear_tasks_mm_cpumask(cpu); 282 /* 283 * platform_cpu_kill() is generally expected to do the powering off 284 * and/or cutting of clocks to the dying CPU. Optionally, this may 285 * be done by the CPU which is dying in preference to supporting 286 * this call, but that means there is _no_ synchronisation between 287 * the requesting CPU and the dying CPU actually losing power. 288 */ 289 if (!platform_cpu_kill(cpu)) 290 pr_err("CPU%u: unable to kill\n", cpu); 291 } 292 293 /* 294 * Called from the idle thread for the CPU which has been shutdown. 295 * 296 * Note that we disable IRQs here, but do not re-enable them 297 * before returning to the caller. This is also the behaviour 298 * of the other hotplug-cpu capable cores, so presumably coming 299 * out of idle fixes this. 300 */ 301 void arch_cpu_idle_dead(void) 302 { 303 unsigned int cpu = smp_processor_id(); 304 305 idle_task_exit(); 306 307 local_irq_disable(); 308 309 /* 310 * Flush the data out of the L1 cache for this CPU. This must be 311 * before the completion to ensure that data is safely written out 312 * before platform_cpu_kill() gets called - which may disable 313 * *this* CPU and power down its cache. 314 */ 315 flush_cache_louis(); 316 317 /* 318 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 319 * this returns, power and/or clocks can be removed at any point 320 * from this CPU and its cache by platform_cpu_kill(). 321 */ 322 complete(&cpu_died); 323 324 /* 325 * Ensure that the cache lines associated with that completion are 326 * written out. This covers the case where _this_ CPU is doing the 327 * powering down, to ensure that the completion is visible to the 328 * CPU waiting for this one. 329 */ 330 flush_cache_louis(); 331 332 /* 333 * The actual CPU shutdown procedure is at least platform (if not 334 * CPU) specific. This may remove power, or it may simply spin. 335 * 336 * Platforms are generally expected *NOT* to return from this call, 337 * although there are some which do because they have no way to 338 * power down the CPU. These platforms are the _only_ reason we 339 * have a return path which uses the fragment of assembly below. 340 * 341 * The return path should not be used for platforms which can 342 * power off the CPU. 343 */ 344 if (smp_ops.cpu_die) 345 smp_ops.cpu_die(cpu); 346 347 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 348 cpu); 349 350 /* 351 * Do not return to the idle loop - jump back to the secondary 352 * cpu initialisation. There's some initialisation which needs 353 * to be repeated to undo the effects of taking the CPU offline. 354 */ 355 __asm__("mov sp, %0\n" 356 " mov fp, #0\n" 357 " b secondary_start_kernel" 358 : 359 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 360 } 361 #endif /* CONFIG_HOTPLUG_CPU */ 362 363 /* 364 * Called by both boot and secondaries to move global data into 365 * per-processor storage. 366 */ 367 static void smp_store_cpu_info(unsigned int cpuid) 368 { 369 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 370 371 cpu_info->loops_per_jiffy = loops_per_jiffy; 372 cpu_info->cpuid = read_cpuid_id(); 373 374 store_cpu_topology(cpuid); 375 } 376 377 /* 378 * This is the secondary CPU boot entry. We're using this CPUs 379 * idle thread stack, but a set of temporary page tables. 380 */ 381 asmlinkage void secondary_start_kernel(void) 382 { 383 struct mm_struct *mm = &init_mm; 384 unsigned int cpu; 385 386 secondary_biglittle_init(); 387 388 /* 389 * The identity mapping is uncached (strongly ordered), so 390 * switch away from it before attempting any exclusive accesses. 391 */ 392 cpu_switch_mm(mm->pgd, mm); 393 local_flush_bp_all(); 394 enter_lazy_tlb(mm, current); 395 local_flush_tlb_all(); 396 397 /* 398 * All kernel threads share the same mm context; grab a 399 * reference and switch to it. 400 */ 401 cpu = smp_processor_id(); 402 mmgrab(mm); 403 current->active_mm = mm; 404 cpumask_set_cpu(cpu, mm_cpumask(mm)); 405 406 cpu_init(); 407 408 #ifndef CONFIG_MMU 409 setup_vectors_base(); 410 #endif 411 pr_debug("CPU%u: Booted secondary processor\n", cpu); 412 413 preempt_disable(); 414 trace_hardirqs_off(); 415 416 /* 417 * Give the platform a chance to do its own initialisation. 418 */ 419 if (smp_ops.smp_secondary_init) 420 smp_ops.smp_secondary_init(cpu); 421 422 notify_cpu_starting(cpu); 423 424 calibrate_delay(); 425 426 smp_store_cpu_info(cpu); 427 428 /* 429 * OK, now it's safe to let the boot CPU continue. Wait for 430 * the CPU migration code to notice that the CPU is online 431 * before we continue - which happens after __cpu_up returns. 432 */ 433 set_cpu_online(cpu, true); 434 435 check_other_bugs(); 436 437 complete(&cpu_running); 438 439 local_irq_enable(); 440 local_fiq_enable(); 441 local_abt_enable(); 442 443 /* 444 * OK, it's off to the idle thread for us 445 */ 446 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 447 } 448 449 void __init smp_cpus_done(unsigned int max_cpus) 450 { 451 int cpu; 452 unsigned long bogosum = 0; 453 454 for_each_online_cpu(cpu) 455 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 456 457 printk(KERN_INFO "SMP: Total of %d processors activated " 458 "(%lu.%02lu BogoMIPS).\n", 459 num_online_cpus(), 460 bogosum / (500000/HZ), 461 (bogosum / (5000/HZ)) % 100); 462 463 hyp_mode_check(); 464 } 465 466 void __init smp_prepare_boot_cpu(void) 467 { 468 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 469 } 470 471 void __init smp_prepare_cpus(unsigned int max_cpus) 472 { 473 unsigned int ncores = num_possible_cpus(); 474 475 init_cpu_topology(); 476 477 smp_store_cpu_info(smp_processor_id()); 478 479 /* 480 * are we trying to boot more cores than exist? 481 */ 482 if (max_cpus > ncores) 483 max_cpus = ncores; 484 if (ncores > 1 && max_cpus) { 485 /* 486 * Initialise the present map, which describes the set of CPUs 487 * actually populated at the present time. A platform should 488 * re-initialize the map in the platforms smp_prepare_cpus() 489 * if present != possible (e.g. physical hotplug). 490 */ 491 init_cpu_present(cpu_possible_mask); 492 493 /* 494 * Initialise the SCU if there are more than one CPU 495 * and let them know where to start. 496 */ 497 if (smp_ops.smp_prepare_cpus) 498 smp_ops.smp_prepare_cpus(max_cpus); 499 } 500 } 501 502 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 503 504 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 505 { 506 if (!__smp_cross_call) 507 __smp_cross_call = fn; 508 } 509 510 static const char *ipi_types[NR_IPI] __tracepoint_string = { 511 #define S(x,s) [x] = s 512 S(IPI_WAKEUP, "CPU wakeup interrupts"), 513 S(IPI_TIMER, "Timer broadcast interrupts"), 514 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 515 S(IPI_CALL_FUNC, "Function call interrupts"), 516 S(IPI_CPU_STOP, "CPU stop interrupts"), 517 S(IPI_IRQ_WORK, "IRQ work interrupts"), 518 S(IPI_COMPLETION, "completion interrupts"), 519 }; 520 521 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 522 { 523 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 524 __smp_cross_call(target, ipinr); 525 } 526 527 void show_ipi_list(struct seq_file *p, int prec) 528 { 529 unsigned int cpu, i; 530 531 for (i = 0; i < NR_IPI; i++) { 532 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 533 534 for_each_online_cpu(cpu) 535 seq_printf(p, "%10u ", 536 __get_irq_stat(cpu, ipi_irqs[i])); 537 538 seq_printf(p, " %s\n", ipi_types[i]); 539 } 540 } 541 542 u64 smp_irq_stat_cpu(unsigned int cpu) 543 { 544 u64 sum = 0; 545 int i; 546 547 for (i = 0; i < NR_IPI; i++) 548 sum += __get_irq_stat(cpu, ipi_irqs[i]); 549 550 return sum; 551 } 552 553 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 554 { 555 smp_cross_call(mask, IPI_CALL_FUNC); 556 } 557 558 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 559 { 560 smp_cross_call(mask, IPI_WAKEUP); 561 } 562 563 void arch_send_call_function_single_ipi(int cpu) 564 { 565 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 566 } 567 568 #ifdef CONFIG_IRQ_WORK 569 void arch_irq_work_raise(void) 570 { 571 if (arch_irq_work_has_interrupt()) 572 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 573 } 574 #endif 575 576 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 577 void tick_broadcast(const struct cpumask *mask) 578 { 579 smp_cross_call(mask, IPI_TIMER); 580 } 581 #endif 582 583 static DEFINE_RAW_SPINLOCK(stop_lock); 584 585 /* 586 * ipi_cpu_stop - handle IPI from smp_send_stop() 587 */ 588 static void ipi_cpu_stop(unsigned int cpu) 589 { 590 if (system_state <= SYSTEM_RUNNING) { 591 raw_spin_lock(&stop_lock); 592 pr_crit("CPU%u: stopping\n", cpu); 593 dump_stack(); 594 raw_spin_unlock(&stop_lock); 595 } 596 597 set_cpu_online(cpu, false); 598 599 local_fiq_disable(); 600 local_irq_disable(); 601 602 while (1) { 603 cpu_relax(); 604 wfe(); 605 } 606 } 607 608 static DEFINE_PER_CPU(struct completion *, cpu_completion); 609 610 int register_ipi_completion(struct completion *completion, int cpu) 611 { 612 per_cpu(cpu_completion, cpu) = completion; 613 return IPI_COMPLETION; 614 } 615 616 static void ipi_complete(unsigned int cpu) 617 { 618 complete(per_cpu(cpu_completion, cpu)); 619 } 620 621 /* 622 * Main handler for inter-processor interrupts 623 */ 624 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 625 { 626 handle_IPI(ipinr, regs); 627 } 628 629 void handle_IPI(int ipinr, struct pt_regs *regs) 630 { 631 unsigned int cpu = smp_processor_id(); 632 struct pt_regs *old_regs = set_irq_regs(regs); 633 634 if ((unsigned)ipinr < NR_IPI) { 635 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 636 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 637 } 638 639 switch (ipinr) { 640 case IPI_WAKEUP: 641 break; 642 643 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 644 case IPI_TIMER: 645 irq_enter(); 646 tick_receive_broadcast(); 647 irq_exit(); 648 break; 649 #endif 650 651 case IPI_RESCHEDULE: 652 scheduler_ipi(); 653 break; 654 655 case IPI_CALL_FUNC: 656 irq_enter(); 657 generic_smp_call_function_interrupt(); 658 irq_exit(); 659 break; 660 661 case IPI_CPU_STOP: 662 irq_enter(); 663 ipi_cpu_stop(cpu); 664 irq_exit(); 665 break; 666 667 #ifdef CONFIG_IRQ_WORK 668 case IPI_IRQ_WORK: 669 irq_enter(); 670 irq_work_run(); 671 irq_exit(); 672 break; 673 #endif 674 675 case IPI_COMPLETION: 676 irq_enter(); 677 ipi_complete(cpu); 678 irq_exit(); 679 break; 680 681 case IPI_CPU_BACKTRACE: 682 printk_nmi_enter(); 683 irq_enter(); 684 nmi_cpu_backtrace(regs); 685 irq_exit(); 686 printk_nmi_exit(); 687 break; 688 689 default: 690 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 691 cpu, ipinr); 692 break; 693 } 694 695 if ((unsigned)ipinr < NR_IPI) 696 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 697 set_irq_regs(old_regs); 698 } 699 700 void smp_send_reschedule(int cpu) 701 { 702 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 703 } 704 705 void smp_send_stop(void) 706 { 707 unsigned long timeout; 708 struct cpumask mask; 709 710 cpumask_copy(&mask, cpu_online_mask); 711 cpumask_clear_cpu(smp_processor_id(), &mask); 712 if (!cpumask_empty(&mask)) 713 smp_cross_call(&mask, IPI_CPU_STOP); 714 715 /* Wait up to one second for other CPUs to stop */ 716 timeout = USEC_PER_SEC; 717 while (num_online_cpus() > 1 && timeout--) 718 udelay(1); 719 720 if (num_online_cpus() > 1) 721 pr_warn("SMP: failed to stop secondary CPUs\n"); 722 } 723 724 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 725 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 726 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 727 * kdump fails. So split out the panic_smp_self_stop() and add 728 * set_cpu_online(smp_processor_id(), false). 729 */ 730 void panic_smp_self_stop(void) 731 { 732 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 733 smp_processor_id()); 734 set_cpu_online(smp_processor_id(), false); 735 while (1) 736 cpu_relax(); 737 } 738 739 /* 740 * not supported here 741 */ 742 int setup_profiling_timer(unsigned int multiplier) 743 { 744 return -EINVAL; 745 } 746 747 #ifdef CONFIG_CPU_FREQ 748 749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 750 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 751 static unsigned long global_l_p_j_ref; 752 static unsigned long global_l_p_j_ref_freq; 753 754 static int cpufreq_callback(struct notifier_block *nb, 755 unsigned long val, void *data) 756 { 757 struct cpufreq_freqs *freq = data; 758 struct cpumask *cpus = freq->policy->cpus; 759 int cpu, first = cpumask_first(cpus); 760 unsigned int lpj; 761 762 if (freq->flags & CPUFREQ_CONST_LOOPS) 763 return NOTIFY_OK; 764 765 if (!per_cpu(l_p_j_ref, first)) { 766 for_each_cpu(cpu, cpus) { 767 per_cpu(l_p_j_ref, cpu) = 768 per_cpu(cpu_data, cpu).loops_per_jiffy; 769 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 770 } 771 772 if (!global_l_p_j_ref) { 773 global_l_p_j_ref = loops_per_jiffy; 774 global_l_p_j_ref_freq = freq->old; 775 } 776 } 777 778 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 779 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 780 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 781 global_l_p_j_ref_freq, 782 freq->new); 783 784 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 785 per_cpu(l_p_j_ref_freq, first), freq->new); 786 for_each_cpu(cpu, cpus) 787 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 788 } 789 return NOTIFY_OK; 790 } 791 792 static struct notifier_block cpufreq_notifier = { 793 .notifier_call = cpufreq_callback, 794 }; 795 796 static int __init register_cpufreq_notifier(void) 797 { 798 return cpufreq_register_notifier(&cpufreq_notifier, 799 CPUFREQ_TRANSITION_NOTIFIER); 800 } 801 core_initcall(register_cpufreq_notifier); 802 803 #endif 804 805 static void raise_nmi(cpumask_t *mask) 806 { 807 __smp_cross_call(mask, IPI_CPU_BACKTRACE); 808 } 809 810 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 811 { 812 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 813 } 814