1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/smp.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpu.h> 34 #include <asm/cputype.h> 35 #include <asm/exception.h> 36 #include <asm/idmap.h> 37 #include <asm/topology.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/processor.h> 42 #include <asm/sections.h> 43 #include <asm/tlbflush.h> 44 #include <asm/ptrace.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ipi.h> 52 53 /* 54 * as from 2.5, kernels no longer have an init_tasks structure 55 * so we need some other way of telling a new secondary core 56 * where to place its SVC stack 57 */ 58 struct secondary_data secondary_data; 59 60 /* 61 * control for which core is the next to come out of the secondary 62 * boot "holding pen" 63 */ 64 volatile int pen_release = -1; 65 66 enum ipi_msg_type { 67 IPI_WAKEUP, 68 IPI_TIMER, 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CALL_FUNC_SINGLE, 72 IPI_CPU_STOP, 73 IPI_IRQ_WORK, 74 IPI_COMPLETION, 75 }; 76 77 static DECLARE_COMPLETION(cpu_running); 78 79 static struct smp_operations smp_ops; 80 81 void __init smp_set_ops(struct smp_operations *ops) 82 { 83 if (ops) 84 smp_ops = *ops; 85 }; 86 87 static unsigned long get_arch_pgd(pgd_t *pgd) 88 { 89 phys_addr_t pgdir = virt_to_idmap(pgd); 90 BUG_ON(pgdir & ARCH_PGD_MASK); 91 return pgdir >> ARCH_PGD_SHIFT; 92 } 93 94 int __cpu_up(unsigned int cpu, struct task_struct *idle) 95 { 96 int ret; 97 98 /* 99 * We need to tell the secondary core where to find 100 * its stack and the page tables. 101 */ 102 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 103 #ifdef CONFIG_ARM_MPU 104 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 105 #endif 106 107 #ifdef CONFIG_MMU 108 secondary_data.pgdir = get_arch_pgd(idmap_pgd); 109 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 110 #endif 111 sync_cache_w(&secondary_data); 112 113 /* 114 * Now bring the CPU into our world. 115 */ 116 ret = boot_secondary(cpu, idle); 117 if (ret == 0) { 118 /* 119 * CPU was successfully started, wait for it 120 * to come online or time out. 121 */ 122 wait_for_completion_timeout(&cpu_running, 123 msecs_to_jiffies(1000)); 124 125 if (!cpu_online(cpu)) { 126 pr_crit("CPU%u: failed to come online\n", cpu); 127 ret = -EIO; 128 } 129 } else { 130 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 131 } 132 133 134 memset(&secondary_data, 0, sizeof(secondary_data)); 135 return ret; 136 } 137 138 /* platform specific SMP operations */ 139 void __init smp_init_cpus(void) 140 { 141 if (smp_ops.smp_init_cpus) 142 smp_ops.smp_init_cpus(); 143 } 144 145 int boot_secondary(unsigned int cpu, struct task_struct *idle) 146 { 147 if (smp_ops.smp_boot_secondary) 148 return smp_ops.smp_boot_secondary(cpu, idle); 149 return -ENOSYS; 150 } 151 152 int platform_can_cpu_hotplug(void) 153 { 154 #ifdef CONFIG_HOTPLUG_CPU 155 if (smp_ops.cpu_kill) 156 return 1; 157 #endif 158 159 return 0; 160 } 161 162 #ifdef CONFIG_HOTPLUG_CPU 163 static int platform_cpu_kill(unsigned int cpu) 164 { 165 if (smp_ops.cpu_kill) 166 return smp_ops.cpu_kill(cpu); 167 return 1; 168 } 169 170 static int platform_cpu_disable(unsigned int cpu) 171 { 172 if (smp_ops.cpu_disable) 173 return smp_ops.cpu_disable(cpu); 174 175 /* 176 * By default, allow disabling all CPUs except the first one, 177 * since this is special on a lot of platforms, e.g. because 178 * of clock tick interrupts. 179 */ 180 return cpu == 0 ? -EPERM : 0; 181 } 182 /* 183 * __cpu_disable runs on the processor to be shutdown. 184 */ 185 int __cpu_disable(void) 186 { 187 unsigned int cpu = smp_processor_id(); 188 int ret; 189 190 ret = platform_cpu_disable(cpu); 191 if (ret) 192 return ret; 193 194 /* 195 * Take this CPU offline. Once we clear this, we can't return, 196 * and we must not schedule until we're ready to give up the cpu. 197 */ 198 set_cpu_online(cpu, false); 199 200 /* 201 * OK - migrate IRQs away from this CPU 202 */ 203 migrate_irqs(); 204 205 /* 206 * Flush user cache and TLB mappings, and then remove this CPU 207 * from the vm mask set of all processes. 208 * 209 * Caches are flushed to the Level of Unification Inner Shareable 210 * to write-back dirty lines to unified caches shared by all CPUs. 211 */ 212 flush_cache_louis(); 213 local_flush_tlb_all(); 214 215 clear_tasks_mm_cpumask(cpu); 216 217 return 0; 218 } 219 220 static DECLARE_COMPLETION(cpu_died); 221 222 /* 223 * called on the thread which is asking for a CPU to be shutdown - 224 * waits until shutdown has completed, or it is timed out. 225 */ 226 void __cpu_die(unsigned int cpu) 227 { 228 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 229 pr_err("CPU%u: cpu didn't die\n", cpu); 230 return; 231 } 232 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 233 234 /* 235 * platform_cpu_kill() is generally expected to do the powering off 236 * and/or cutting of clocks to the dying CPU. Optionally, this may 237 * be done by the CPU which is dying in preference to supporting 238 * this call, but that means there is _no_ synchronisation between 239 * the requesting CPU and the dying CPU actually losing power. 240 */ 241 if (!platform_cpu_kill(cpu)) 242 printk("CPU%u: unable to kill\n", cpu); 243 } 244 245 /* 246 * Called from the idle thread for the CPU which has been shutdown. 247 * 248 * Note that we disable IRQs here, but do not re-enable them 249 * before returning to the caller. This is also the behaviour 250 * of the other hotplug-cpu capable cores, so presumably coming 251 * out of idle fixes this. 252 */ 253 void __ref cpu_die(void) 254 { 255 unsigned int cpu = smp_processor_id(); 256 257 idle_task_exit(); 258 259 local_irq_disable(); 260 261 /* 262 * Flush the data out of the L1 cache for this CPU. This must be 263 * before the completion to ensure that data is safely written out 264 * before platform_cpu_kill() gets called - which may disable 265 * *this* CPU and power down its cache. 266 */ 267 flush_cache_louis(); 268 269 /* 270 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 271 * this returns, power and/or clocks can be removed at any point 272 * from this CPU and its cache by platform_cpu_kill(). 273 */ 274 complete(&cpu_died); 275 276 /* 277 * Ensure that the cache lines associated with that completion are 278 * written out. This covers the case where _this_ CPU is doing the 279 * powering down, to ensure that the completion is visible to the 280 * CPU waiting for this one. 281 */ 282 flush_cache_louis(); 283 284 /* 285 * The actual CPU shutdown procedure is at least platform (if not 286 * CPU) specific. This may remove power, or it may simply spin. 287 * 288 * Platforms are generally expected *NOT* to return from this call, 289 * although there are some which do because they have no way to 290 * power down the CPU. These platforms are the _only_ reason we 291 * have a return path which uses the fragment of assembly below. 292 * 293 * The return path should not be used for platforms which can 294 * power off the CPU. 295 */ 296 if (smp_ops.cpu_die) 297 smp_ops.cpu_die(cpu); 298 299 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 300 cpu); 301 302 /* 303 * Do not return to the idle loop - jump back to the secondary 304 * cpu initialisation. There's some initialisation which needs 305 * to be repeated to undo the effects of taking the CPU offline. 306 */ 307 __asm__("mov sp, %0\n" 308 " mov fp, #0\n" 309 " b secondary_start_kernel" 310 : 311 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 312 } 313 #endif /* CONFIG_HOTPLUG_CPU */ 314 315 /* 316 * Called by both boot and secondaries to move global data into 317 * per-processor storage. 318 */ 319 static void smp_store_cpu_info(unsigned int cpuid) 320 { 321 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 322 323 cpu_info->loops_per_jiffy = loops_per_jiffy; 324 cpu_info->cpuid = read_cpuid_id(); 325 326 store_cpu_topology(cpuid); 327 } 328 329 /* 330 * This is the secondary CPU boot entry. We're using this CPUs 331 * idle thread stack, but a set of temporary page tables. 332 */ 333 asmlinkage void secondary_start_kernel(void) 334 { 335 struct mm_struct *mm = &init_mm; 336 unsigned int cpu; 337 338 /* 339 * The identity mapping is uncached (strongly ordered), so 340 * switch away from it before attempting any exclusive accesses. 341 */ 342 cpu_switch_mm(mm->pgd, mm); 343 local_flush_bp_all(); 344 enter_lazy_tlb(mm, current); 345 local_flush_tlb_all(); 346 347 /* 348 * All kernel threads share the same mm context; grab a 349 * reference and switch to it. 350 */ 351 cpu = smp_processor_id(); 352 atomic_inc(&mm->mm_count); 353 current->active_mm = mm; 354 cpumask_set_cpu(cpu, mm_cpumask(mm)); 355 356 cpu_init(); 357 358 printk("CPU%u: Booted secondary processor\n", cpu); 359 360 preempt_disable(); 361 trace_hardirqs_off(); 362 363 /* 364 * Give the platform a chance to do its own initialisation. 365 */ 366 if (smp_ops.smp_secondary_init) 367 smp_ops.smp_secondary_init(cpu); 368 369 notify_cpu_starting(cpu); 370 371 calibrate_delay(); 372 373 smp_store_cpu_info(cpu); 374 375 /* 376 * OK, now it's safe to let the boot CPU continue. Wait for 377 * the CPU migration code to notice that the CPU is online 378 * before we continue - which happens after __cpu_up returns. 379 */ 380 set_cpu_online(cpu, true); 381 complete(&cpu_running); 382 383 local_irq_enable(); 384 local_fiq_enable(); 385 386 /* 387 * OK, it's off to the idle thread for us 388 */ 389 cpu_startup_entry(CPUHP_ONLINE); 390 } 391 392 void __init smp_cpus_done(unsigned int max_cpus) 393 { 394 printk(KERN_INFO "SMP: Total of %d processors activated.\n", 395 num_online_cpus()); 396 397 hyp_mode_check(); 398 } 399 400 void __init smp_prepare_boot_cpu(void) 401 { 402 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 403 } 404 405 void __init smp_prepare_cpus(unsigned int max_cpus) 406 { 407 unsigned int ncores = num_possible_cpus(); 408 409 init_cpu_topology(); 410 411 smp_store_cpu_info(smp_processor_id()); 412 413 /* 414 * are we trying to boot more cores than exist? 415 */ 416 if (max_cpus > ncores) 417 max_cpus = ncores; 418 if (ncores > 1 && max_cpus) { 419 /* 420 * Initialise the present map, which describes the set of CPUs 421 * actually populated at the present time. A platform should 422 * re-initialize the map in the platforms smp_prepare_cpus() 423 * if present != possible (e.g. physical hotplug). 424 */ 425 init_cpu_present(cpu_possible_mask); 426 427 /* 428 * Initialise the SCU if there are more than one CPU 429 * and let them know where to start. 430 */ 431 if (smp_ops.smp_prepare_cpus) 432 smp_ops.smp_prepare_cpus(max_cpus); 433 } 434 } 435 436 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 437 438 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 439 { 440 if (!__smp_cross_call) 441 __smp_cross_call = fn; 442 } 443 444 static const char *ipi_types[NR_IPI] __tracepoint_string = { 445 #define S(x,s) [x] = s 446 S(IPI_WAKEUP, "CPU wakeup interrupts"), 447 S(IPI_TIMER, "Timer broadcast interrupts"), 448 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 449 S(IPI_CALL_FUNC, "Function call interrupts"), 450 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 451 S(IPI_CPU_STOP, "CPU stop interrupts"), 452 S(IPI_IRQ_WORK, "IRQ work interrupts"), 453 S(IPI_COMPLETION, "completion interrupts"), 454 }; 455 456 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 457 { 458 trace_ipi_raise(target, ipi_types[ipinr]); 459 __smp_cross_call(target, ipinr); 460 } 461 462 void show_ipi_list(struct seq_file *p, int prec) 463 { 464 unsigned int cpu, i; 465 466 for (i = 0; i < NR_IPI; i++) { 467 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 468 469 for_each_online_cpu(cpu) 470 seq_printf(p, "%10u ", 471 __get_irq_stat(cpu, ipi_irqs[i])); 472 473 seq_printf(p, " %s\n", ipi_types[i]); 474 } 475 } 476 477 u64 smp_irq_stat_cpu(unsigned int cpu) 478 { 479 u64 sum = 0; 480 int i; 481 482 for (i = 0; i < NR_IPI; i++) 483 sum += __get_irq_stat(cpu, ipi_irqs[i]); 484 485 return sum; 486 } 487 488 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 489 { 490 smp_cross_call(mask, IPI_CALL_FUNC); 491 } 492 493 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 494 { 495 smp_cross_call(mask, IPI_WAKEUP); 496 } 497 498 void arch_send_call_function_single_ipi(int cpu) 499 { 500 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 501 } 502 503 #ifdef CONFIG_IRQ_WORK 504 void arch_irq_work_raise(void) 505 { 506 if (is_smp()) 507 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 508 } 509 #endif 510 511 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 512 void tick_broadcast(const struct cpumask *mask) 513 { 514 smp_cross_call(mask, IPI_TIMER); 515 } 516 #endif 517 518 static DEFINE_RAW_SPINLOCK(stop_lock); 519 520 /* 521 * ipi_cpu_stop - handle IPI from smp_send_stop() 522 */ 523 static void ipi_cpu_stop(unsigned int cpu) 524 { 525 if (system_state == SYSTEM_BOOTING || 526 system_state == SYSTEM_RUNNING) { 527 raw_spin_lock(&stop_lock); 528 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 529 dump_stack(); 530 raw_spin_unlock(&stop_lock); 531 } 532 533 set_cpu_online(cpu, false); 534 535 local_fiq_disable(); 536 local_irq_disable(); 537 538 while (1) 539 cpu_relax(); 540 } 541 542 static DEFINE_PER_CPU(struct completion *, cpu_completion); 543 544 int register_ipi_completion(struct completion *completion, int cpu) 545 { 546 per_cpu(cpu_completion, cpu) = completion; 547 return IPI_COMPLETION; 548 } 549 550 static void ipi_complete(unsigned int cpu) 551 { 552 complete(per_cpu(cpu_completion, cpu)); 553 } 554 555 /* 556 * Main handler for inter-processor interrupts 557 */ 558 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 559 { 560 handle_IPI(ipinr, regs); 561 } 562 563 void handle_IPI(int ipinr, struct pt_regs *regs) 564 { 565 unsigned int cpu = smp_processor_id(); 566 struct pt_regs *old_regs = set_irq_regs(regs); 567 568 if ((unsigned)ipinr < NR_IPI) { 569 trace_ipi_entry(ipi_types[ipinr]); 570 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 571 } 572 573 switch (ipinr) { 574 case IPI_WAKEUP: 575 break; 576 577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 578 case IPI_TIMER: 579 irq_enter(); 580 tick_receive_broadcast(); 581 irq_exit(); 582 break; 583 #endif 584 585 case IPI_RESCHEDULE: 586 scheduler_ipi(); 587 break; 588 589 case IPI_CALL_FUNC: 590 irq_enter(); 591 generic_smp_call_function_interrupt(); 592 irq_exit(); 593 break; 594 595 case IPI_CALL_FUNC_SINGLE: 596 irq_enter(); 597 generic_smp_call_function_single_interrupt(); 598 irq_exit(); 599 break; 600 601 case IPI_CPU_STOP: 602 irq_enter(); 603 ipi_cpu_stop(cpu); 604 irq_exit(); 605 break; 606 607 #ifdef CONFIG_IRQ_WORK 608 case IPI_IRQ_WORK: 609 irq_enter(); 610 irq_work_run(); 611 irq_exit(); 612 break; 613 #endif 614 615 case IPI_COMPLETION: 616 irq_enter(); 617 ipi_complete(cpu); 618 irq_exit(); 619 break; 620 621 default: 622 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 623 cpu, ipinr); 624 break; 625 } 626 627 if ((unsigned)ipinr < NR_IPI) 628 trace_ipi_exit(ipi_types[ipinr]); 629 set_irq_regs(old_regs); 630 } 631 632 void smp_send_reschedule(int cpu) 633 { 634 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 635 } 636 637 void smp_send_stop(void) 638 { 639 unsigned long timeout; 640 struct cpumask mask; 641 642 cpumask_copy(&mask, cpu_online_mask); 643 cpumask_clear_cpu(smp_processor_id(), &mask); 644 if (!cpumask_empty(&mask)) 645 smp_cross_call(&mask, IPI_CPU_STOP); 646 647 /* Wait up to one second for other CPUs to stop */ 648 timeout = USEC_PER_SEC; 649 while (num_online_cpus() > 1 && timeout--) 650 udelay(1); 651 652 if (num_online_cpus() > 1) 653 pr_warning("SMP: failed to stop secondary CPUs\n"); 654 } 655 656 /* 657 * not supported here 658 */ 659 int setup_profiling_timer(unsigned int multiplier) 660 { 661 return -EINVAL; 662 } 663 664 #ifdef CONFIG_CPU_FREQ 665 666 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 667 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 668 static unsigned long global_l_p_j_ref; 669 static unsigned long global_l_p_j_ref_freq; 670 671 static int cpufreq_callback(struct notifier_block *nb, 672 unsigned long val, void *data) 673 { 674 struct cpufreq_freqs *freq = data; 675 int cpu = freq->cpu; 676 677 if (freq->flags & CPUFREQ_CONST_LOOPS) 678 return NOTIFY_OK; 679 680 if (!per_cpu(l_p_j_ref, cpu)) { 681 per_cpu(l_p_j_ref, cpu) = 682 per_cpu(cpu_data, cpu).loops_per_jiffy; 683 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 684 if (!global_l_p_j_ref) { 685 global_l_p_j_ref = loops_per_jiffy; 686 global_l_p_j_ref_freq = freq->old; 687 } 688 } 689 690 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 691 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 692 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 693 global_l_p_j_ref_freq, 694 freq->new); 695 per_cpu(cpu_data, cpu).loops_per_jiffy = 696 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 697 per_cpu(l_p_j_ref_freq, cpu), 698 freq->new); 699 } 700 return NOTIFY_OK; 701 } 702 703 static struct notifier_block cpufreq_notifier = { 704 .notifier_call = cpufreq_callback, 705 }; 706 707 static int __init register_cpufreq_notifier(void) 708 { 709 return cpufreq_register_notifier(&cpufreq_notifier, 710 CPUFREQ_TRANSITION_NOTIFIER); 711 } 712 core_initcall(register_cpufreq_notifier); 713 714 #endif 715