xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 27ac801a2e513708e2da648722326349514976d5)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23 
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
33 
34 /*
35  * bitmask of present and online CPUs.
36  * The present bitmask indicates that the CPU is physically present.
37  * The online bitmask indicates that the CPU is up and running.
38  */
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
41 
42 /*
43  * as from 2.5, kernels no longer have an init_tasks structure
44  * so we need some other way of telling a new secondary core
45  * where to place its SVC stack
46  */
47 struct secondary_data secondary_data;
48 
49 /*
50  * structures for inter-processor calls
51  * - A collection of single bit ipi messages.
52  */
53 struct ipi_data {
54 	spinlock_t lock;
55 	unsigned long ipi_count;
56 	unsigned long bits;
57 };
58 
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 	.lock	= SPIN_LOCK_UNLOCKED,
61 };
62 
63 enum ipi_msg_type {
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 };
69 
70 struct smp_call_struct {
71 	void (*func)(void *info);
72 	void *info;
73 	int wait;
74 	cpumask_t pending;
75 	cpumask_t unfinished;
76 };
77 
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
80 
81 int __cpuinit __cpu_up(unsigned int cpu)
82 {
83 	struct task_struct *idle;
84 	pgd_t *pgd;
85 	pmd_t *pmd;
86 	int ret;
87 
88 	/*
89 	 * Spawn a new process manually.  Grab a pointer to
90 	 * its task struct so we can mess with it
91 	 */
92 	idle = fork_idle(cpu);
93 	if (IS_ERR(idle)) {
94 		printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
95 		return PTR_ERR(idle);
96 	}
97 
98 	/*
99 	 * Allocate initial page tables to allow the new CPU to
100 	 * enable the MMU safely.  This essentially means a set
101 	 * of our "standard" page tables, with the addition of
102 	 * a 1:1 mapping for the physical address of the kernel.
103 	 */
104 	pgd = pgd_alloc(&init_mm);
105 	pmd = pmd_offset(pgd, PHYS_OFFSET);
106 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
107 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
108 
109 	/*
110 	 * We need to tell the secondary core where to find
111 	 * its stack and the page tables.
112 	 */
113 	secondary_data.stack = (void *)idle->thread_info + THREAD_START_SP;
114 	secondary_data.pgdir = virt_to_phys(pgd);
115 	wmb();
116 
117 	/*
118 	 * Now bring the CPU into our world.
119 	 */
120 	ret = boot_secondary(cpu, idle);
121 	if (ret == 0) {
122 		unsigned long timeout;
123 
124 		/*
125 		 * CPU was successfully started, wait for it
126 		 * to come online or time out.
127 		 */
128 		timeout = jiffies + HZ;
129 		while (time_before(jiffies, timeout)) {
130 			if (cpu_online(cpu))
131 				break;
132 
133 			udelay(10);
134 			barrier();
135 		}
136 
137 		if (!cpu_online(cpu))
138 			ret = -EIO;
139 	}
140 
141 	secondary_data.stack = 0;
142 	secondary_data.pgdir = 0;
143 
144 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
145 	pgd_free(pgd);
146 
147 	if (ret) {
148 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
149 
150 		/*
151 		 * FIXME: We need to clean up the new idle thread. --rmk
152 		 */
153 	}
154 
155 	return ret;
156 }
157 
158 /*
159  * This is the secondary CPU boot entry.  We're using this CPUs
160  * idle thread stack, but a set of temporary page tables.
161  */
162 asmlinkage void __cpuinit secondary_start_kernel(void)
163 {
164 	struct mm_struct *mm = &init_mm;
165 	unsigned int cpu = smp_processor_id();
166 
167 	printk("CPU%u: Booted secondary processor\n", cpu);
168 
169 	/*
170 	 * All kernel threads share the same mm context; grab a
171 	 * reference and switch to it.
172 	 */
173 	atomic_inc(&mm->mm_users);
174 	atomic_inc(&mm->mm_count);
175 	current->active_mm = mm;
176 	cpu_set(cpu, mm->cpu_vm_mask);
177 	cpu_switch_mm(mm->pgd, mm);
178 	enter_lazy_tlb(mm, current);
179 	local_flush_tlb_all();
180 
181 	cpu_init();
182 
183 	/*
184 	 * Give the platform a chance to do its own initialisation.
185 	 */
186 	platform_secondary_init(cpu);
187 
188 	/*
189 	 * Enable local interrupts.
190 	 */
191 	local_irq_enable();
192 	local_fiq_enable();
193 
194 	calibrate_delay();
195 
196 	smp_store_cpu_info(cpu);
197 
198 	/*
199 	 * OK, now it's safe to let the boot CPU continue
200 	 */
201 	cpu_set(cpu, cpu_online_map);
202 
203 	/*
204 	 * OK, it's off to the idle thread for us
205 	 */
206 	cpu_idle();
207 }
208 
209 /*
210  * Called by both boot and secondaries to move global data into
211  * per-processor storage.
212  */
213 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
214 {
215 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
216 
217 	cpu_info->loops_per_jiffy = loops_per_jiffy;
218 }
219 
220 void __init smp_cpus_done(unsigned int max_cpus)
221 {
222 	int cpu;
223 	unsigned long bogosum = 0;
224 
225 	for_each_online_cpu(cpu)
226 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
227 
228 	printk(KERN_INFO "SMP: Total of %d processors activated "
229 	       "(%lu.%02lu BogoMIPS).\n",
230 	       num_online_cpus(),
231 	       bogosum / (500000/HZ),
232 	       (bogosum / (5000/HZ)) % 100);
233 }
234 
235 void __init smp_prepare_boot_cpu(void)
236 {
237 	unsigned int cpu = smp_processor_id();
238 
239 	cpu_set(cpu, cpu_possible_map);
240 	cpu_set(cpu, cpu_present_map);
241 	cpu_set(cpu, cpu_online_map);
242 }
243 
244 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
245 {
246 	unsigned long flags;
247 	unsigned int cpu;
248 
249 	local_irq_save(flags);
250 
251 	for_each_cpu_mask(cpu, callmap) {
252 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
253 
254 		spin_lock(&ipi->lock);
255 		ipi->bits |= 1 << msg;
256 		spin_unlock(&ipi->lock);
257 	}
258 
259 	/*
260 	 * Call the platform specific cross-CPU call function.
261 	 */
262 	smp_cross_call(callmap);
263 
264 	local_irq_restore(flags);
265 }
266 
267 /*
268  * You must not call this function with disabled interrupts, from a
269  * hardware interrupt handler, nor from a bottom half handler.
270  */
271 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
272                              int wait, cpumask_t callmap)
273 {
274 	struct smp_call_struct data;
275 	unsigned long timeout;
276 	int ret = 0;
277 
278 	data.func = func;
279 	data.info = info;
280 	data.wait = wait;
281 
282 	cpu_clear(smp_processor_id(), callmap);
283 	if (cpus_empty(callmap))
284 		goto out;
285 
286 	data.pending = callmap;
287 	if (wait)
288 		data.unfinished = callmap;
289 
290 	/*
291 	 * try to get the mutex on smp_call_function_data
292 	 */
293 	spin_lock(&smp_call_function_lock);
294 	smp_call_function_data = &data;
295 
296 	send_ipi_message(callmap, IPI_CALL_FUNC);
297 
298 	timeout = jiffies + HZ;
299 	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
300 		barrier();
301 
302 	/*
303 	 * did we time out?
304 	 */
305 	if (!cpus_empty(data.pending)) {
306 		/*
307 		 * this may be causing our panic - report it
308 		 */
309 		printk(KERN_CRIT
310 		       "CPU%u: smp_call_function timeout for %p(%p)\n"
311 		       "      callmap %lx pending %lx, %swait\n",
312 		       smp_processor_id(), func, info, callmap, data.pending,
313 		       wait ? "" : "no ");
314 
315 		/*
316 		 * TRACE
317 		 */
318 		timeout = jiffies + (5 * HZ);
319 		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
320 			barrier();
321 
322 		if (cpus_empty(data.pending))
323 			printk(KERN_CRIT "     RESOLVED\n");
324 		else
325 			printk(KERN_CRIT "     STILL STUCK\n");
326 	}
327 
328 	/*
329 	 * whatever happened, we're done with the data, so release it
330 	 */
331 	smp_call_function_data = NULL;
332 	spin_unlock(&smp_call_function_lock);
333 
334 	if (!cpus_empty(data.pending)) {
335 		ret = -ETIMEDOUT;
336 		goto out;
337 	}
338 
339 	if (wait)
340 		while (!cpus_empty(data.unfinished))
341 			barrier();
342  out:
343 
344 	return 0;
345 }
346 
347 int smp_call_function(void (*func)(void *info), void *info, int retry,
348                       int wait)
349 {
350 	return smp_call_function_on_cpu(func, info, retry, wait,
351 					cpu_online_map);
352 }
353 
354 void show_ipi_list(struct seq_file *p)
355 {
356 	unsigned int cpu;
357 
358 	seq_puts(p, "IPI:");
359 
360 	for_each_present_cpu(cpu)
361 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
362 
363 	seq_putc(p, '\n');
364 }
365 
366 static void ipi_timer(struct pt_regs *regs)
367 {
368 	int user = user_mode(regs);
369 
370 	irq_enter();
371 	profile_tick(CPU_PROFILING, regs);
372 	update_process_times(user);
373 	irq_exit();
374 }
375 
376 /*
377  * ipi_call_function - handle IPI from smp_call_function()
378  *
379  * Note that we copy data out of the cross-call structure and then
380  * let the caller know that we're here and have done with their data
381  */
382 static void ipi_call_function(unsigned int cpu)
383 {
384 	struct smp_call_struct *data = smp_call_function_data;
385 	void (*func)(void *info) = data->func;
386 	void *info = data->info;
387 	int wait = data->wait;
388 
389 	cpu_clear(cpu, data->pending);
390 
391 	func(info);
392 
393 	if (wait)
394 		cpu_clear(cpu, data->unfinished);
395 }
396 
397 static DEFINE_SPINLOCK(stop_lock);
398 
399 /*
400  * ipi_cpu_stop - handle IPI from smp_send_stop()
401  */
402 static void ipi_cpu_stop(unsigned int cpu)
403 {
404 	spin_lock(&stop_lock);
405 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
406 	dump_stack();
407 	spin_unlock(&stop_lock);
408 
409 	cpu_clear(cpu, cpu_online_map);
410 
411 	local_fiq_disable();
412 	local_irq_disable();
413 
414 	while (1)
415 		cpu_relax();
416 }
417 
418 /*
419  * Main handler for inter-processor interrupts
420  *
421  * For ARM, the ipimask now only identifies a single
422  * category of IPI (Bit 1 IPIs have been replaced by a
423  * different mechanism):
424  *
425  *  Bit 0 - Inter-processor function call
426  */
427 void do_IPI(struct pt_regs *regs)
428 {
429 	unsigned int cpu = smp_processor_id();
430 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
431 
432 	ipi->ipi_count++;
433 
434 	for (;;) {
435 		unsigned long msgs;
436 
437 		spin_lock(&ipi->lock);
438 		msgs = ipi->bits;
439 		ipi->bits = 0;
440 		spin_unlock(&ipi->lock);
441 
442 		if (!msgs)
443 			break;
444 
445 		do {
446 			unsigned nextmsg;
447 
448 			nextmsg = msgs & -msgs;
449 			msgs &= ~nextmsg;
450 			nextmsg = ffz(~nextmsg);
451 
452 			switch (nextmsg) {
453 			case IPI_TIMER:
454 				ipi_timer(regs);
455 				break;
456 
457 			case IPI_RESCHEDULE:
458 				/*
459 				 * nothing more to do - eveything is
460 				 * done on the interrupt return path
461 				 */
462 				break;
463 
464 			case IPI_CALL_FUNC:
465 				ipi_call_function(cpu);
466 				break;
467 
468 			case IPI_CPU_STOP:
469 				ipi_cpu_stop(cpu);
470 				break;
471 
472 			default:
473 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
474 				       cpu, nextmsg);
475 				break;
476 			}
477 		} while (msgs);
478 	}
479 }
480 
481 void smp_send_reschedule(int cpu)
482 {
483 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
484 }
485 
486 void smp_send_timer(void)
487 {
488 	cpumask_t mask = cpu_online_map;
489 	cpu_clear(smp_processor_id(), mask);
490 	send_ipi_message(mask, IPI_TIMER);
491 }
492 
493 void smp_send_stop(void)
494 {
495 	cpumask_t mask = cpu_online_map;
496 	cpu_clear(smp_processor_id(), mask);
497 	send_ipi_message(mask, IPI_CPU_STOP);
498 }
499 
500 /*
501  * not supported here
502  */
503 int __init setup_profiling_timer(unsigned int multiplier)
504 {
505 	return -EINVAL;
506 }
507 
508 static int
509 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
510 		 cpumask_t mask)
511 {
512 	int ret = 0;
513 
514 	preempt_disable();
515 
516 	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
517 	if (cpu_isset(smp_processor_id(), mask))
518 		func(info);
519 
520 	preempt_enable();
521 
522 	return ret;
523 }
524 
525 /**********************************************************************/
526 
527 /*
528  * TLB operations
529  */
530 struct tlb_args {
531 	struct vm_area_struct *ta_vma;
532 	unsigned long ta_start;
533 	unsigned long ta_end;
534 };
535 
536 static inline void ipi_flush_tlb_all(void *ignored)
537 {
538 	local_flush_tlb_all();
539 }
540 
541 static inline void ipi_flush_tlb_mm(void *arg)
542 {
543 	struct mm_struct *mm = (struct mm_struct *)arg;
544 
545 	local_flush_tlb_mm(mm);
546 }
547 
548 static inline void ipi_flush_tlb_page(void *arg)
549 {
550 	struct tlb_args *ta = (struct tlb_args *)arg;
551 
552 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
553 }
554 
555 static inline void ipi_flush_tlb_kernel_page(void *arg)
556 {
557 	struct tlb_args *ta = (struct tlb_args *)arg;
558 
559 	local_flush_tlb_kernel_page(ta->ta_start);
560 }
561 
562 static inline void ipi_flush_tlb_range(void *arg)
563 {
564 	struct tlb_args *ta = (struct tlb_args *)arg;
565 
566 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
567 }
568 
569 static inline void ipi_flush_tlb_kernel_range(void *arg)
570 {
571 	struct tlb_args *ta = (struct tlb_args *)arg;
572 
573 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
574 }
575 
576 void flush_tlb_all(void)
577 {
578 	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
579 }
580 
581 void flush_tlb_mm(struct mm_struct *mm)
582 {
583 	cpumask_t mask = mm->cpu_vm_mask;
584 
585 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
586 }
587 
588 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
589 {
590 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
591 	struct tlb_args ta;
592 
593 	ta.ta_vma = vma;
594 	ta.ta_start = uaddr;
595 
596 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
597 }
598 
599 void flush_tlb_kernel_page(unsigned long kaddr)
600 {
601 	struct tlb_args ta;
602 
603 	ta.ta_start = kaddr;
604 
605 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
606 }
607 
608 void flush_tlb_range(struct vm_area_struct *vma,
609                      unsigned long start, unsigned long end)
610 {
611 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
612 	struct tlb_args ta;
613 
614 	ta.ta_vma = vma;
615 	ta.ta_start = start;
616 	ta.ta_end = end;
617 
618 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
619 }
620 
621 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
622 {
623 	struct tlb_args ta;
624 
625 	ta.ta_start = start;
626 	ta.ta_end = end;
627 
628 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
629 }
630