1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/cpu.h> 21 #include <linux/smp.h> 22 #include <linux/seq_file.h> 23 24 #include <asm/atomic.h> 25 #include <asm/cacheflush.h> 26 #include <asm/cpu.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgtable.h> 29 #include <asm/pgalloc.h> 30 #include <asm/processor.h> 31 #include <asm/tlbflush.h> 32 #include <asm/ptrace.h> 33 34 /* 35 * bitmask of present and online CPUs. 36 * The present bitmask indicates that the CPU is physically present. 37 * The online bitmask indicates that the CPU is up and running. 38 */ 39 cpumask_t cpu_possible_map; 40 cpumask_t cpu_online_map; 41 42 /* 43 * as from 2.5, kernels no longer have an init_tasks structure 44 * so we need some other way of telling a new secondary core 45 * where to place its SVC stack 46 */ 47 struct secondary_data secondary_data; 48 49 /* 50 * structures for inter-processor calls 51 * - A collection of single bit ipi messages. 52 */ 53 struct ipi_data { 54 spinlock_t lock; 55 unsigned long ipi_count; 56 unsigned long bits; 57 }; 58 59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 60 .lock = SPIN_LOCK_UNLOCKED, 61 }; 62 63 enum ipi_msg_type { 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CPU_STOP, 68 }; 69 70 struct smp_call_struct { 71 void (*func)(void *info); 72 void *info; 73 int wait; 74 cpumask_t pending; 75 cpumask_t unfinished; 76 }; 77 78 static struct smp_call_struct * volatile smp_call_function_data; 79 static DEFINE_SPINLOCK(smp_call_function_lock); 80 81 int __cpuinit __cpu_up(unsigned int cpu) 82 { 83 struct task_struct *idle; 84 pgd_t *pgd; 85 pmd_t *pmd; 86 int ret; 87 88 /* 89 * Spawn a new process manually. Grab a pointer to 90 * its task struct so we can mess with it 91 */ 92 idle = fork_idle(cpu); 93 if (IS_ERR(idle)) { 94 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 95 return PTR_ERR(idle); 96 } 97 98 /* 99 * Allocate initial page tables to allow the new CPU to 100 * enable the MMU safely. This essentially means a set 101 * of our "standard" page tables, with the addition of 102 * a 1:1 mapping for the physical address of the kernel. 103 */ 104 pgd = pgd_alloc(&init_mm); 105 pmd = pmd_offset(pgd, PHYS_OFFSET); 106 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 107 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 108 109 /* 110 * We need to tell the secondary core where to find 111 * its stack and the page tables. 112 */ 113 secondary_data.stack = (void *)idle->thread_info + THREAD_START_SP; 114 secondary_data.pgdir = virt_to_phys(pgd); 115 wmb(); 116 117 /* 118 * Now bring the CPU into our world. 119 */ 120 ret = boot_secondary(cpu, idle); 121 if (ret == 0) { 122 unsigned long timeout; 123 124 /* 125 * CPU was successfully started, wait for it 126 * to come online or time out. 127 */ 128 timeout = jiffies + HZ; 129 while (time_before(jiffies, timeout)) { 130 if (cpu_online(cpu)) 131 break; 132 133 udelay(10); 134 barrier(); 135 } 136 137 if (!cpu_online(cpu)) 138 ret = -EIO; 139 } 140 141 secondary_data.stack = 0; 142 secondary_data.pgdir = 0; 143 144 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); 145 pgd_free(pgd); 146 147 if (ret) { 148 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 149 150 /* 151 * FIXME: We need to clean up the new idle thread. --rmk 152 */ 153 } 154 155 return ret; 156 } 157 158 /* 159 * This is the secondary CPU boot entry. We're using this CPUs 160 * idle thread stack, but a set of temporary page tables. 161 */ 162 asmlinkage void __cpuinit secondary_start_kernel(void) 163 { 164 struct mm_struct *mm = &init_mm; 165 unsigned int cpu = smp_processor_id(); 166 167 printk("CPU%u: Booted secondary processor\n", cpu); 168 169 /* 170 * All kernel threads share the same mm context; grab a 171 * reference and switch to it. 172 */ 173 atomic_inc(&mm->mm_users); 174 atomic_inc(&mm->mm_count); 175 current->active_mm = mm; 176 cpu_set(cpu, mm->cpu_vm_mask); 177 cpu_switch_mm(mm->pgd, mm); 178 enter_lazy_tlb(mm, current); 179 local_flush_tlb_all(); 180 181 cpu_init(); 182 183 /* 184 * Give the platform a chance to do its own initialisation. 185 */ 186 platform_secondary_init(cpu); 187 188 /* 189 * Enable local interrupts. 190 */ 191 local_irq_enable(); 192 local_fiq_enable(); 193 194 calibrate_delay(); 195 196 smp_store_cpu_info(cpu); 197 198 /* 199 * OK, now it's safe to let the boot CPU continue 200 */ 201 cpu_set(cpu, cpu_online_map); 202 203 /* 204 * OK, it's off to the idle thread for us 205 */ 206 cpu_idle(); 207 } 208 209 /* 210 * Called by both boot and secondaries to move global data into 211 * per-processor storage. 212 */ 213 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 214 { 215 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 216 217 cpu_info->loops_per_jiffy = loops_per_jiffy; 218 } 219 220 void __init smp_cpus_done(unsigned int max_cpus) 221 { 222 int cpu; 223 unsigned long bogosum = 0; 224 225 for_each_online_cpu(cpu) 226 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 227 228 printk(KERN_INFO "SMP: Total of %d processors activated " 229 "(%lu.%02lu BogoMIPS).\n", 230 num_online_cpus(), 231 bogosum / (500000/HZ), 232 (bogosum / (5000/HZ)) % 100); 233 } 234 235 void __init smp_prepare_boot_cpu(void) 236 { 237 unsigned int cpu = smp_processor_id(); 238 239 cpu_set(cpu, cpu_possible_map); 240 cpu_set(cpu, cpu_present_map); 241 cpu_set(cpu, cpu_online_map); 242 } 243 244 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 245 { 246 unsigned long flags; 247 unsigned int cpu; 248 249 local_irq_save(flags); 250 251 for_each_cpu_mask(cpu, callmap) { 252 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 253 254 spin_lock(&ipi->lock); 255 ipi->bits |= 1 << msg; 256 spin_unlock(&ipi->lock); 257 } 258 259 /* 260 * Call the platform specific cross-CPU call function. 261 */ 262 smp_cross_call(callmap); 263 264 local_irq_restore(flags); 265 } 266 267 /* 268 * You must not call this function with disabled interrupts, from a 269 * hardware interrupt handler, nor from a bottom half handler. 270 */ 271 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry, 272 int wait, cpumask_t callmap) 273 { 274 struct smp_call_struct data; 275 unsigned long timeout; 276 int ret = 0; 277 278 data.func = func; 279 data.info = info; 280 data.wait = wait; 281 282 cpu_clear(smp_processor_id(), callmap); 283 if (cpus_empty(callmap)) 284 goto out; 285 286 data.pending = callmap; 287 if (wait) 288 data.unfinished = callmap; 289 290 /* 291 * try to get the mutex on smp_call_function_data 292 */ 293 spin_lock(&smp_call_function_lock); 294 smp_call_function_data = &data; 295 296 send_ipi_message(callmap, IPI_CALL_FUNC); 297 298 timeout = jiffies + HZ; 299 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 300 barrier(); 301 302 /* 303 * did we time out? 304 */ 305 if (!cpus_empty(data.pending)) { 306 /* 307 * this may be causing our panic - report it 308 */ 309 printk(KERN_CRIT 310 "CPU%u: smp_call_function timeout for %p(%p)\n" 311 " callmap %lx pending %lx, %swait\n", 312 smp_processor_id(), func, info, callmap, data.pending, 313 wait ? "" : "no "); 314 315 /* 316 * TRACE 317 */ 318 timeout = jiffies + (5 * HZ); 319 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 320 barrier(); 321 322 if (cpus_empty(data.pending)) 323 printk(KERN_CRIT " RESOLVED\n"); 324 else 325 printk(KERN_CRIT " STILL STUCK\n"); 326 } 327 328 /* 329 * whatever happened, we're done with the data, so release it 330 */ 331 smp_call_function_data = NULL; 332 spin_unlock(&smp_call_function_lock); 333 334 if (!cpus_empty(data.pending)) { 335 ret = -ETIMEDOUT; 336 goto out; 337 } 338 339 if (wait) 340 while (!cpus_empty(data.unfinished)) 341 barrier(); 342 out: 343 344 return 0; 345 } 346 347 int smp_call_function(void (*func)(void *info), void *info, int retry, 348 int wait) 349 { 350 return smp_call_function_on_cpu(func, info, retry, wait, 351 cpu_online_map); 352 } 353 354 void show_ipi_list(struct seq_file *p) 355 { 356 unsigned int cpu; 357 358 seq_puts(p, "IPI:"); 359 360 for_each_present_cpu(cpu) 361 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 362 363 seq_putc(p, '\n'); 364 } 365 366 static void ipi_timer(struct pt_regs *regs) 367 { 368 int user = user_mode(regs); 369 370 irq_enter(); 371 profile_tick(CPU_PROFILING, regs); 372 update_process_times(user); 373 irq_exit(); 374 } 375 376 /* 377 * ipi_call_function - handle IPI from smp_call_function() 378 * 379 * Note that we copy data out of the cross-call structure and then 380 * let the caller know that we're here and have done with their data 381 */ 382 static void ipi_call_function(unsigned int cpu) 383 { 384 struct smp_call_struct *data = smp_call_function_data; 385 void (*func)(void *info) = data->func; 386 void *info = data->info; 387 int wait = data->wait; 388 389 cpu_clear(cpu, data->pending); 390 391 func(info); 392 393 if (wait) 394 cpu_clear(cpu, data->unfinished); 395 } 396 397 static DEFINE_SPINLOCK(stop_lock); 398 399 /* 400 * ipi_cpu_stop - handle IPI from smp_send_stop() 401 */ 402 static void ipi_cpu_stop(unsigned int cpu) 403 { 404 spin_lock(&stop_lock); 405 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 406 dump_stack(); 407 spin_unlock(&stop_lock); 408 409 cpu_clear(cpu, cpu_online_map); 410 411 local_fiq_disable(); 412 local_irq_disable(); 413 414 while (1) 415 cpu_relax(); 416 } 417 418 /* 419 * Main handler for inter-processor interrupts 420 * 421 * For ARM, the ipimask now only identifies a single 422 * category of IPI (Bit 1 IPIs have been replaced by a 423 * different mechanism): 424 * 425 * Bit 0 - Inter-processor function call 426 */ 427 void do_IPI(struct pt_regs *regs) 428 { 429 unsigned int cpu = smp_processor_id(); 430 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 431 432 ipi->ipi_count++; 433 434 for (;;) { 435 unsigned long msgs; 436 437 spin_lock(&ipi->lock); 438 msgs = ipi->bits; 439 ipi->bits = 0; 440 spin_unlock(&ipi->lock); 441 442 if (!msgs) 443 break; 444 445 do { 446 unsigned nextmsg; 447 448 nextmsg = msgs & -msgs; 449 msgs &= ~nextmsg; 450 nextmsg = ffz(~nextmsg); 451 452 switch (nextmsg) { 453 case IPI_TIMER: 454 ipi_timer(regs); 455 break; 456 457 case IPI_RESCHEDULE: 458 /* 459 * nothing more to do - eveything is 460 * done on the interrupt return path 461 */ 462 break; 463 464 case IPI_CALL_FUNC: 465 ipi_call_function(cpu); 466 break; 467 468 case IPI_CPU_STOP: 469 ipi_cpu_stop(cpu); 470 break; 471 472 default: 473 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 474 cpu, nextmsg); 475 break; 476 } 477 } while (msgs); 478 } 479 } 480 481 void smp_send_reschedule(int cpu) 482 { 483 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 484 } 485 486 void smp_send_timer(void) 487 { 488 cpumask_t mask = cpu_online_map; 489 cpu_clear(smp_processor_id(), mask); 490 send_ipi_message(mask, IPI_TIMER); 491 } 492 493 void smp_send_stop(void) 494 { 495 cpumask_t mask = cpu_online_map; 496 cpu_clear(smp_processor_id(), mask); 497 send_ipi_message(mask, IPI_CPU_STOP); 498 } 499 500 /* 501 * not supported here 502 */ 503 int __init setup_profiling_timer(unsigned int multiplier) 504 { 505 return -EINVAL; 506 } 507 508 static int 509 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait, 510 cpumask_t mask) 511 { 512 int ret = 0; 513 514 preempt_disable(); 515 516 ret = smp_call_function_on_cpu(func, info, retry, wait, mask); 517 if (cpu_isset(smp_processor_id(), mask)) 518 func(info); 519 520 preempt_enable(); 521 522 return ret; 523 } 524 525 /**********************************************************************/ 526 527 /* 528 * TLB operations 529 */ 530 struct tlb_args { 531 struct vm_area_struct *ta_vma; 532 unsigned long ta_start; 533 unsigned long ta_end; 534 }; 535 536 static inline void ipi_flush_tlb_all(void *ignored) 537 { 538 local_flush_tlb_all(); 539 } 540 541 static inline void ipi_flush_tlb_mm(void *arg) 542 { 543 struct mm_struct *mm = (struct mm_struct *)arg; 544 545 local_flush_tlb_mm(mm); 546 } 547 548 static inline void ipi_flush_tlb_page(void *arg) 549 { 550 struct tlb_args *ta = (struct tlb_args *)arg; 551 552 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 553 } 554 555 static inline void ipi_flush_tlb_kernel_page(void *arg) 556 { 557 struct tlb_args *ta = (struct tlb_args *)arg; 558 559 local_flush_tlb_kernel_page(ta->ta_start); 560 } 561 562 static inline void ipi_flush_tlb_range(void *arg) 563 { 564 struct tlb_args *ta = (struct tlb_args *)arg; 565 566 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 567 } 568 569 static inline void ipi_flush_tlb_kernel_range(void *arg) 570 { 571 struct tlb_args *ta = (struct tlb_args *)arg; 572 573 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 574 } 575 576 void flush_tlb_all(void) 577 { 578 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1); 579 } 580 581 void flush_tlb_mm(struct mm_struct *mm) 582 { 583 cpumask_t mask = mm->cpu_vm_mask; 584 585 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask); 586 } 587 588 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 589 { 590 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 591 struct tlb_args ta; 592 593 ta.ta_vma = vma; 594 ta.ta_start = uaddr; 595 596 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask); 597 } 598 599 void flush_tlb_kernel_page(unsigned long kaddr) 600 { 601 struct tlb_args ta; 602 603 ta.ta_start = kaddr; 604 605 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1); 606 } 607 608 void flush_tlb_range(struct vm_area_struct *vma, 609 unsigned long start, unsigned long end) 610 { 611 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 612 struct tlb_args ta; 613 614 ta.ta_vma = vma; 615 ta.ta_start = start; 616 ta.ta_end = end; 617 618 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask); 619 } 620 621 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 622 { 623 struct tlb_args ta; 624 625 ta.ta_start = start; 626 ta.ta_end = end; 627 628 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1); 629 } 630