xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 089a49b6)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/smp_plat.h>
45 #include <asm/virt.h>
46 #include <asm/mach/arch.h>
47 #include <asm/mpu.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int pen_release = -1;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 };
70 
71 static DECLARE_COMPLETION(cpu_running);
72 
73 static struct smp_operations smp_ops;
74 
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 	if (ops)
78 		smp_ops = *ops;
79 };
80 
81 static unsigned long get_arch_pgd(pgd_t *pgd)
82 {
83 	phys_addr_t pgdir = virt_to_phys(pgd);
84 	BUG_ON(pgdir & ARCH_PGD_MASK);
85 	return pgdir >> ARCH_PGD_SHIFT;
86 }
87 
88 int __cpu_up(unsigned int cpu, struct task_struct *idle)
89 {
90 	int ret;
91 
92 	/*
93 	 * We need to tell the secondary core where to find
94 	 * its stack and the page tables.
95 	 */
96 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
97 #ifdef CONFIG_ARM_MPU
98 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
99 #endif
100 
101 #ifdef CONFIG_MMU
102 	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
103 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
104 #endif
105 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
106 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
107 
108 	/*
109 	 * Now bring the CPU into our world.
110 	 */
111 	ret = boot_secondary(cpu, idle);
112 	if (ret == 0) {
113 		/*
114 		 * CPU was successfully started, wait for it
115 		 * to come online or time out.
116 		 */
117 		wait_for_completion_timeout(&cpu_running,
118 						 msecs_to_jiffies(1000));
119 
120 		if (!cpu_online(cpu)) {
121 			pr_crit("CPU%u: failed to come online\n", cpu);
122 			ret = -EIO;
123 		}
124 	} else {
125 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
126 	}
127 
128 
129 	memset(&secondary_data, 0, sizeof(secondary_data));
130 	return ret;
131 }
132 
133 /* platform specific SMP operations */
134 void __init smp_init_cpus(void)
135 {
136 	if (smp_ops.smp_init_cpus)
137 		smp_ops.smp_init_cpus();
138 }
139 
140 int boot_secondary(unsigned int cpu, struct task_struct *idle)
141 {
142 	if (smp_ops.smp_boot_secondary)
143 		return smp_ops.smp_boot_secondary(cpu, idle);
144 	return -ENOSYS;
145 }
146 
147 int platform_can_cpu_hotplug(void)
148 {
149 #ifdef CONFIG_HOTPLUG_CPU
150 	if (smp_ops.cpu_kill)
151 		return 1;
152 #endif
153 
154 	return 0;
155 }
156 
157 #ifdef CONFIG_HOTPLUG_CPU
158 static int platform_cpu_kill(unsigned int cpu)
159 {
160 	if (smp_ops.cpu_kill)
161 		return smp_ops.cpu_kill(cpu);
162 	return 1;
163 }
164 
165 static int platform_cpu_disable(unsigned int cpu)
166 {
167 	if (smp_ops.cpu_disable)
168 		return smp_ops.cpu_disable(cpu);
169 
170 	/*
171 	 * By default, allow disabling all CPUs except the first one,
172 	 * since this is special on a lot of platforms, e.g. because
173 	 * of clock tick interrupts.
174 	 */
175 	return cpu == 0 ? -EPERM : 0;
176 }
177 /*
178  * __cpu_disable runs on the processor to be shutdown.
179  */
180 int __cpu_disable(void)
181 {
182 	unsigned int cpu = smp_processor_id();
183 	int ret;
184 
185 	ret = platform_cpu_disable(cpu);
186 	if (ret)
187 		return ret;
188 
189 	/*
190 	 * Take this CPU offline.  Once we clear this, we can't return,
191 	 * and we must not schedule until we're ready to give up the cpu.
192 	 */
193 	set_cpu_online(cpu, false);
194 
195 	/*
196 	 * OK - migrate IRQs away from this CPU
197 	 */
198 	migrate_irqs();
199 
200 	/*
201 	 * Flush user cache and TLB mappings, and then remove this CPU
202 	 * from the vm mask set of all processes.
203 	 *
204 	 * Caches are flushed to the Level of Unification Inner Shareable
205 	 * to write-back dirty lines to unified caches shared by all CPUs.
206 	 */
207 	flush_cache_louis();
208 	local_flush_tlb_all();
209 
210 	clear_tasks_mm_cpumask(cpu);
211 
212 	return 0;
213 }
214 
215 static DECLARE_COMPLETION(cpu_died);
216 
217 /*
218  * called on the thread which is asking for a CPU to be shutdown -
219  * waits until shutdown has completed, or it is timed out.
220  */
221 void __cpu_die(unsigned int cpu)
222 {
223 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
224 		pr_err("CPU%u: cpu didn't die\n", cpu);
225 		return;
226 	}
227 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
228 
229 	/*
230 	 * platform_cpu_kill() is generally expected to do the powering off
231 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
232 	 * be done by the CPU which is dying in preference to supporting
233 	 * this call, but that means there is _no_ synchronisation between
234 	 * the requesting CPU and the dying CPU actually losing power.
235 	 */
236 	if (!platform_cpu_kill(cpu))
237 		printk("CPU%u: unable to kill\n", cpu);
238 }
239 
240 /*
241  * Called from the idle thread for the CPU which has been shutdown.
242  *
243  * Note that we disable IRQs here, but do not re-enable them
244  * before returning to the caller. This is also the behaviour
245  * of the other hotplug-cpu capable cores, so presumably coming
246  * out of idle fixes this.
247  */
248 void __ref cpu_die(void)
249 {
250 	unsigned int cpu = smp_processor_id();
251 
252 	idle_task_exit();
253 
254 	local_irq_disable();
255 
256 	/*
257 	 * Flush the data out of the L1 cache for this CPU.  This must be
258 	 * before the completion to ensure that data is safely written out
259 	 * before platform_cpu_kill() gets called - which may disable
260 	 * *this* CPU and power down its cache.
261 	 */
262 	flush_cache_louis();
263 
264 	/*
265 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
266 	 * this returns, power and/or clocks can be removed at any point
267 	 * from this CPU and its cache by platform_cpu_kill().
268 	 */
269 	complete(&cpu_died);
270 
271 	/*
272 	 * Ensure that the cache lines associated with that completion are
273 	 * written out.  This covers the case where _this_ CPU is doing the
274 	 * powering down, to ensure that the completion is visible to the
275 	 * CPU waiting for this one.
276 	 */
277 	flush_cache_louis();
278 
279 	/*
280 	 * The actual CPU shutdown procedure is at least platform (if not
281 	 * CPU) specific.  This may remove power, or it may simply spin.
282 	 *
283 	 * Platforms are generally expected *NOT* to return from this call,
284 	 * although there are some which do because they have no way to
285 	 * power down the CPU.  These platforms are the _only_ reason we
286 	 * have a return path which uses the fragment of assembly below.
287 	 *
288 	 * The return path should not be used for platforms which can
289 	 * power off the CPU.
290 	 */
291 	if (smp_ops.cpu_die)
292 		smp_ops.cpu_die(cpu);
293 
294 	/*
295 	 * Do not return to the idle loop - jump back to the secondary
296 	 * cpu initialisation.  There's some initialisation which needs
297 	 * to be repeated to undo the effects of taking the CPU offline.
298 	 */
299 	__asm__("mov	sp, %0\n"
300 	"	mov	fp, #0\n"
301 	"	b	secondary_start_kernel"
302 		:
303 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
304 }
305 #endif /* CONFIG_HOTPLUG_CPU */
306 
307 /*
308  * Called by both boot and secondaries to move global data into
309  * per-processor storage.
310  */
311 static void smp_store_cpu_info(unsigned int cpuid)
312 {
313 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
314 
315 	cpu_info->loops_per_jiffy = loops_per_jiffy;
316 	cpu_info->cpuid = read_cpuid_id();
317 
318 	store_cpu_topology(cpuid);
319 }
320 
321 /*
322  * This is the secondary CPU boot entry.  We're using this CPUs
323  * idle thread stack, but a set of temporary page tables.
324  */
325 asmlinkage void secondary_start_kernel(void)
326 {
327 	struct mm_struct *mm = &init_mm;
328 	unsigned int cpu;
329 
330 	/*
331 	 * The identity mapping is uncached (strongly ordered), so
332 	 * switch away from it before attempting any exclusive accesses.
333 	 */
334 	cpu_switch_mm(mm->pgd, mm);
335 	local_flush_bp_all();
336 	enter_lazy_tlb(mm, current);
337 	local_flush_tlb_all();
338 
339 	/*
340 	 * All kernel threads share the same mm context; grab a
341 	 * reference and switch to it.
342 	 */
343 	cpu = smp_processor_id();
344 	atomic_inc(&mm->mm_count);
345 	current->active_mm = mm;
346 	cpumask_set_cpu(cpu, mm_cpumask(mm));
347 
348 	cpu_init();
349 
350 	printk("CPU%u: Booted secondary processor\n", cpu);
351 
352 	preempt_disable();
353 	trace_hardirqs_off();
354 
355 	/*
356 	 * Give the platform a chance to do its own initialisation.
357 	 */
358 	if (smp_ops.smp_secondary_init)
359 		smp_ops.smp_secondary_init(cpu);
360 
361 	notify_cpu_starting(cpu);
362 
363 	calibrate_delay();
364 
365 	smp_store_cpu_info(cpu);
366 
367 	/*
368 	 * OK, now it's safe to let the boot CPU continue.  Wait for
369 	 * the CPU migration code to notice that the CPU is online
370 	 * before we continue - which happens after __cpu_up returns.
371 	 */
372 	set_cpu_online(cpu, true);
373 	complete(&cpu_running);
374 
375 	local_irq_enable();
376 	local_fiq_enable();
377 
378 	/*
379 	 * OK, it's off to the idle thread for us
380 	 */
381 	cpu_startup_entry(CPUHP_ONLINE);
382 }
383 
384 void __init smp_cpus_done(unsigned int max_cpus)
385 {
386 	printk(KERN_INFO "SMP: Total of %d processors activated.\n",
387 	       num_online_cpus());
388 
389 	hyp_mode_check();
390 }
391 
392 void __init smp_prepare_boot_cpu(void)
393 {
394 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
395 }
396 
397 void __init smp_prepare_cpus(unsigned int max_cpus)
398 {
399 	unsigned int ncores = num_possible_cpus();
400 
401 	init_cpu_topology();
402 
403 	smp_store_cpu_info(smp_processor_id());
404 
405 	/*
406 	 * are we trying to boot more cores than exist?
407 	 */
408 	if (max_cpus > ncores)
409 		max_cpus = ncores;
410 	if (ncores > 1 && max_cpus) {
411 		/*
412 		 * Initialise the present map, which describes the set of CPUs
413 		 * actually populated at the present time. A platform should
414 		 * re-initialize the map in the platforms smp_prepare_cpus()
415 		 * if present != possible (e.g. physical hotplug).
416 		 */
417 		init_cpu_present(cpu_possible_mask);
418 
419 		/*
420 		 * Initialise the SCU if there are more than one CPU
421 		 * and let them know where to start.
422 		 */
423 		if (smp_ops.smp_prepare_cpus)
424 			smp_ops.smp_prepare_cpus(max_cpus);
425 	}
426 }
427 
428 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
429 
430 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
431 {
432 	if (!smp_cross_call)
433 		smp_cross_call = fn;
434 }
435 
436 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
437 {
438 	smp_cross_call(mask, IPI_CALL_FUNC);
439 }
440 
441 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
442 {
443 	smp_cross_call(mask, IPI_WAKEUP);
444 }
445 
446 void arch_send_call_function_single_ipi(int cpu)
447 {
448 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
449 }
450 
451 static const char *ipi_types[NR_IPI] = {
452 #define S(x,s)	[x] = s
453 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
454 	S(IPI_TIMER, "Timer broadcast interrupts"),
455 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
456 	S(IPI_CALL_FUNC, "Function call interrupts"),
457 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
458 	S(IPI_CPU_STOP, "CPU stop interrupts"),
459 };
460 
461 void show_ipi_list(struct seq_file *p, int prec)
462 {
463 	unsigned int cpu, i;
464 
465 	for (i = 0; i < NR_IPI; i++) {
466 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
467 
468 		for_each_online_cpu(cpu)
469 			seq_printf(p, "%10u ",
470 				   __get_irq_stat(cpu, ipi_irqs[i]));
471 
472 		seq_printf(p, " %s\n", ipi_types[i]);
473 	}
474 }
475 
476 u64 smp_irq_stat_cpu(unsigned int cpu)
477 {
478 	u64 sum = 0;
479 	int i;
480 
481 	for (i = 0; i < NR_IPI; i++)
482 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
483 
484 	return sum;
485 }
486 
487 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
488 void tick_broadcast(const struct cpumask *mask)
489 {
490 	smp_cross_call(mask, IPI_TIMER);
491 }
492 #endif
493 
494 static DEFINE_RAW_SPINLOCK(stop_lock);
495 
496 /*
497  * ipi_cpu_stop - handle IPI from smp_send_stop()
498  */
499 static void ipi_cpu_stop(unsigned int cpu)
500 {
501 	if (system_state == SYSTEM_BOOTING ||
502 	    system_state == SYSTEM_RUNNING) {
503 		raw_spin_lock(&stop_lock);
504 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
505 		dump_stack();
506 		raw_spin_unlock(&stop_lock);
507 	}
508 
509 	set_cpu_online(cpu, false);
510 
511 	local_fiq_disable();
512 	local_irq_disable();
513 
514 	while (1)
515 		cpu_relax();
516 }
517 
518 /*
519  * Main handler for inter-processor interrupts
520  */
521 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
522 {
523 	handle_IPI(ipinr, regs);
524 }
525 
526 void handle_IPI(int ipinr, struct pt_regs *regs)
527 {
528 	unsigned int cpu = smp_processor_id();
529 	struct pt_regs *old_regs = set_irq_regs(regs);
530 
531 	if (ipinr < NR_IPI)
532 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
533 
534 	switch (ipinr) {
535 	case IPI_WAKEUP:
536 		break;
537 
538 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
539 	case IPI_TIMER:
540 		irq_enter();
541 		tick_receive_broadcast();
542 		irq_exit();
543 		break;
544 #endif
545 
546 	case IPI_RESCHEDULE:
547 		scheduler_ipi();
548 		break;
549 
550 	case IPI_CALL_FUNC:
551 		irq_enter();
552 		generic_smp_call_function_interrupt();
553 		irq_exit();
554 		break;
555 
556 	case IPI_CALL_FUNC_SINGLE:
557 		irq_enter();
558 		generic_smp_call_function_single_interrupt();
559 		irq_exit();
560 		break;
561 
562 	case IPI_CPU_STOP:
563 		irq_enter();
564 		ipi_cpu_stop(cpu);
565 		irq_exit();
566 		break;
567 
568 	default:
569 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
570 		       cpu, ipinr);
571 		break;
572 	}
573 	set_irq_regs(old_regs);
574 }
575 
576 void smp_send_reschedule(int cpu)
577 {
578 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
579 }
580 
581 void smp_send_stop(void)
582 {
583 	unsigned long timeout;
584 	struct cpumask mask;
585 
586 	cpumask_copy(&mask, cpu_online_mask);
587 	cpumask_clear_cpu(smp_processor_id(), &mask);
588 	if (!cpumask_empty(&mask))
589 		smp_cross_call(&mask, IPI_CPU_STOP);
590 
591 	/* Wait up to one second for other CPUs to stop */
592 	timeout = USEC_PER_SEC;
593 	while (num_online_cpus() > 1 && timeout--)
594 		udelay(1);
595 
596 	if (num_online_cpus() > 1)
597 		pr_warning("SMP: failed to stop secondary CPUs\n");
598 }
599 
600 /*
601  * not supported here
602  */
603 int setup_profiling_timer(unsigned int multiplier)
604 {
605 	return -EINVAL;
606 }
607 
608 #ifdef CONFIG_CPU_FREQ
609 
610 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
611 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
612 static unsigned long global_l_p_j_ref;
613 static unsigned long global_l_p_j_ref_freq;
614 
615 static int cpufreq_callback(struct notifier_block *nb,
616 					unsigned long val, void *data)
617 {
618 	struct cpufreq_freqs *freq = data;
619 	int cpu = freq->cpu;
620 
621 	if (freq->flags & CPUFREQ_CONST_LOOPS)
622 		return NOTIFY_OK;
623 
624 	if (!per_cpu(l_p_j_ref, cpu)) {
625 		per_cpu(l_p_j_ref, cpu) =
626 			per_cpu(cpu_data, cpu).loops_per_jiffy;
627 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
628 		if (!global_l_p_j_ref) {
629 			global_l_p_j_ref = loops_per_jiffy;
630 			global_l_p_j_ref_freq = freq->old;
631 		}
632 	}
633 
634 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
635 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
636 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
637 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
638 						global_l_p_j_ref_freq,
639 						freq->new);
640 		per_cpu(cpu_data, cpu).loops_per_jiffy =
641 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
642 					per_cpu(l_p_j_ref_freq, cpu),
643 					freq->new);
644 	}
645 	return NOTIFY_OK;
646 }
647 
648 static struct notifier_block cpufreq_notifier = {
649 	.notifier_call  = cpufreq_callback,
650 };
651 
652 static int __init register_cpufreq_notifier(void)
653 {
654 	return cpufreq_register_notifier(&cpufreq_notifier,
655 						CPUFREQ_TRANSITION_NOTIFIER);
656 }
657 core_initcall(register_cpufreq_notifier);
658 
659 #endif
660