1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/exception.h> 35 #include <asm/idmap.h> 36 #include <asm/topology.h> 37 #include <asm/mmu_context.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sections.h> 42 #include <asm/tlbflush.h> 43 #include <asm/ptrace.h> 44 #include <asm/smp_plat.h> 45 #include <asm/virt.h> 46 #include <asm/mach/arch.h> 47 #include <asm/mpu.h> 48 49 /* 50 * as from 2.5, kernels no longer have an init_tasks structure 51 * so we need some other way of telling a new secondary core 52 * where to place its SVC stack 53 */ 54 struct secondary_data secondary_data; 55 56 /* 57 * control for which core is the next to come out of the secondary 58 * boot "holding pen" 59 */ 60 volatile int pen_release = -1; 61 62 enum ipi_msg_type { 63 IPI_WAKEUP, 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CALL_FUNC_SINGLE, 68 IPI_CPU_STOP, 69 }; 70 71 static DECLARE_COMPLETION(cpu_running); 72 73 static struct smp_operations smp_ops; 74 75 void __init smp_set_ops(struct smp_operations *ops) 76 { 77 if (ops) 78 smp_ops = *ops; 79 }; 80 81 static unsigned long get_arch_pgd(pgd_t *pgd) 82 { 83 phys_addr_t pgdir = virt_to_phys(pgd); 84 BUG_ON(pgdir & ARCH_PGD_MASK); 85 return pgdir >> ARCH_PGD_SHIFT; 86 } 87 88 int __cpu_up(unsigned int cpu, struct task_struct *idle) 89 { 90 int ret; 91 92 /* 93 * We need to tell the secondary core where to find 94 * its stack and the page tables. 95 */ 96 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 97 #ifdef CONFIG_ARM_MPU 98 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 99 #endif 100 101 #ifdef CONFIG_MMU 102 secondary_data.pgdir = get_arch_pgd(idmap_pgd); 103 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 104 #endif 105 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 106 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 107 108 /* 109 * Now bring the CPU into our world. 110 */ 111 ret = boot_secondary(cpu, idle); 112 if (ret == 0) { 113 /* 114 * CPU was successfully started, wait for it 115 * to come online or time out. 116 */ 117 wait_for_completion_timeout(&cpu_running, 118 msecs_to_jiffies(1000)); 119 120 if (!cpu_online(cpu)) { 121 pr_crit("CPU%u: failed to come online\n", cpu); 122 ret = -EIO; 123 } 124 } else { 125 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 126 } 127 128 129 memset(&secondary_data, 0, sizeof(secondary_data)); 130 return ret; 131 } 132 133 /* platform specific SMP operations */ 134 void __init smp_init_cpus(void) 135 { 136 if (smp_ops.smp_init_cpus) 137 smp_ops.smp_init_cpus(); 138 } 139 140 int boot_secondary(unsigned int cpu, struct task_struct *idle) 141 { 142 if (smp_ops.smp_boot_secondary) 143 return smp_ops.smp_boot_secondary(cpu, idle); 144 return -ENOSYS; 145 } 146 147 int platform_can_cpu_hotplug(void) 148 { 149 #ifdef CONFIG_HOTPLUG_CPU 150 if (smp_ops.cpu_kill) 151 return 1; 152 #endif 153 154 return 0; 155 } 156 157 #ifdef CONFIG_HOTPLUG_CPU 158 static int platform_cpu_kill(unsigned int cpu) 159 { 160 if (smp_ops.cpu_kill) 161 return smp_ops.cpu_kill(cpu); 162 return 1; 163 } 164 165 static int platform_cpu_disable(unsigned int cpu) 166 { 167 if (smp_ops.cpu_disable) 168 return smp_ops.cpu_disable(cpu); 169 170 /* 171 * By default, allow disabling all CPUs except the first one, 172 * since this is special on a lot of platforms, e.g. because 173 * of clock tick interrupts. 174 */ 175 return cpu == 0 ? -EPERM : 0; 176 } 177 /* 178 * __cpu_disable runs on the processor to be shutdown. 179 */ 180 int __cpu_disable(void) 181 { 182 unsigned int cpu = smp_processor_id(); 183 int ret; 184 185 ret = platform_cpu_disable(cpu); 186 if (ret) 187 return ret; 188 189 /* 190 * Take this CPU offline. Once we clear this, we can't return, 191 * and we must not schedule until we're ready to give up the cpu. 192 */ 193 set_cpu_online(cpu, false); 194 195 /* 196 * OK - migrate IRQs away from this CPU 197 */ 198 migrate_irqs(); 199 200 /* 201 * Flush user cache and TLB mappings, and then remove this CPU 202 * from the vm mask set of all processes. 203 * 204 * Caches are flushed to the Level of Unification Inner Shareable 205 * to write-back dirty lines to unified caches shared by all CPUs. 206 */ 207 flush_cache_louis(); 208 local_flush_tlb_all(); 209 210 clear_tasks_mm_cpumask(cpu); 211 212 return 0; 213 } 214 215 static DECLARE_COMPLETION(cpu_died); 216 217 /* 218 * called on the thread which is asking for a CPU to be shutdown - 219 * waits until shutdown has completed, or it is timed out. 220 */ 221 void __cpu_die(unsigned int cpu) 222 { 223 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 224 pr_err("CPU%u: cpu didn't die\n", cpu); 225 return; 226 } 227 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 228 229 /* 230 * platform_cpu_kill() is generally expected to do the powering off 231 * and/or cutting of clocks to the dying CPU. Optionally, this may 232 * be done by the CPU which is dying in preference to supporting 233 * this call, but that means there is _no_ synchronisation between 234 * the requesting CPU and the dying CPU actually losing power. 235 */ 236 if (!platform_cpu_kill(cpu)) 237 printk("CPU%u: unable to kill\n", cpu); 238 } 239 240 /* 241 * Called from the idle thread for the CPU which has been shutdown. 242 * 243 * Note that we disable IRQs here, but do not re-enable them 244 * before returning to the caller. This is also the behaviour 245 * of the other hotplug-cpu capable cores, so presumably coming 246 * out of idle fixes this. 247 */ 248 void __ref cpu_die(void) 249 { 250 unsigned int cpu = smp_processor_id(); 251 252 idle_task_exit(); 253 254 local_irq_disable(); 255 256 /* 257 * Flush the data out of the L1 cache for this CPU. This must be 258 * before the completion to ensure that data is safely written out 259 * before platform_cpu_kill() gets called - which may disable 260 * *this* CPU and power down its cache. 261 */ 262 flush_cache_louis(); 263 264 /* 265 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 266 * this returns, power and/or clocks can be removed at any point 267 * from this CPU and its cache by platform_cpu_kill(). 268 */ 269 complete(&cpu_died); 270 271 /* 272 * Ensure that the cache lines associated with that completion are 273 * written out. This covers the case where _this_ CPU is doing the 274 * powering down, to ensure that the completion is visible to the 275 * CPU waiting for this one. 276 */ 277 flush_cache_louis(); 278 279 /* 280 * The actual CPU shutdown procedure is at least platform (if not 281 * CPU) specific. This may remove power, or it may simply spin. 282 * 283 * Platforms are generally expected *NOT* to return from this call, 284 * although there are some which do because they have no way to 285 * power down the CPU. These platforms are the _only_ reason we 286 * have a return path which uses the fragment of assembly below. 287 * 288 * The return path should not be used for platforms which can 289 * power off the CPU. 290 */ 291 if (smp_ops.cpu_die) 292 smp_ops.cpu_die(cpu); 293 294 /* 295 * Do not return to the idle loop - jump back to the secondary 296 * cpu initialisation. There's some initialisation which needs 297 * to be repeated to undo the effects of taking the CPU offline. 298 */ 299 __asm__("mov sp, %0\n" 300 " mov fp, #0\n" 301 " b secondary_start_kernel" 302 : 303 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 304 } 305 #endif /* CONFIG_HOTPLUG_CPU */ 306 307 /* 308 * Called by both boot and secondaries to move global data into 309 * per-processor storage. 310 */ 311 static void smp_store_cpu_info(unsigned int cpuid) 312 { 313 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 314 315 cpu_info->loops_per_jiffy = loops_per_jiffy; 316 cpu_info->cpuid = read_cpuid_id(); 317 318 store_cpu_topology(cpuid); 319 } 320 321 /* 322 * This is the secondary CPU boot entry. We're using this CPUs 323 * idle thread stack, but a set of temporary page tables. 324 */ 325 asmlinkage void secondary_start_kernel(void) 326 { 327 struct mm_struct *mm = &init_mm; 328 unsigned int cpu; 329 330 /* 331 * The identity mapping is uncached (strongly ordered), so 332 * switch away from it before attempting any exclusive accesses. 333 */ 334 cpu_switch_mm(mm->pgd, mm); 335 local_flush_bp_all(); 336 enter_lazy_tlb(mm, current); 337 local_flush_tlb_all(); 338 339 /* 340 * All kernel threads share the same mm context; grab a 341 * reference and switch to it. 342 */ 343 cpu = smp_processor_id(); 344 atomic_inc(&mm->mm_count); 345 current->active_mm = mm; 346 cpumask_set_cpu(cpu, mm_cpumask(mm)); 347 348 cpu_init(); 349 350 printk("CPU%u: Booted secondary processor\n", cpu); 351 352 preempt_disable(); 353 trace_hardirqs_off(); 354 355 /* 356 * Give the platform a chance to do its own initialisation. 357 */ 358 if (smp_ops.smp_secondary_init) 359 smp_ops.smp_secondary_init(cpu); 360 361 notify_cpu_starting(cpu); 362 363 calibrate_delay(); 364 365 smp_store_cpu_info(cpu); 366 367 /* 368 * OK, now it's safe to let the boot CPU continue. Wait for 369 * the CPU migration code to notice that the CPU is online 370 * before we continue - which happens after __cpu_up returns. 371 */ 372 set_cpu_online(cpu, true); 373 complete(&cpu_running); 374 375 local_irq_enable(); 376 local_fiq_enable(); 377 378 /* 379 * OK, it's off to the idle thread for us 380 */ 381 cpu_startup_entry(CPUHP_ONLINE); 382 } 383 384 void __init smp_cpus_done(unsigned int max_cpus) 385 { 386 printk(KERN_INFO "SMP: Total of %d processors activated.\n", 387 num_online_cpus()); 388 389 hyp_mode_check(); 390 } 391 392 void __init smp_prepare_boot_cpu(void) 393 { 394 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 395 } 396 397 void __init smp_prepare_cpus(unsigned int max_cpus) 398 { 399 unsigned int ncores = num_possible_cpus(); 400 401 init_cpu_topology(); 402 403 smp_store_cpu_info(smp_processor_id()); 404 405 /* 406 * are we trying to boot more cores than exist? 407 */ 408 if (max_cpus > ncores) 409 max_cpus = ncores; 410 if (ncores > 1 && max_cpus) { 411 /* 412 * Initialise the present map, which describes the set of CPUs 413 * actually populated at the present time. A platform should 414 * re-initialize the map in the platforms smp_prepare_cpus() 415 * if present != possible (e.g. physical hotplug). 416 */ 417 init_cpu_present(cpu_possible_mask); 418 419 /* 420 * Initialise the SCU if there are more than one CPU 421 * and let them know where to start. 422 */ 423 if (smp_ops.smp_prepare_cpus) 424 smp_ops.smp_prepare_cpus(max_cpus); 425 } 426 } 427 428 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 429 430 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 431 { 432 if (!smp_cross_call) 433 smp_cross_call = fn; 434 } 435 436 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 437 { 438 smp_cross_call(mask, IPI_CALL_FUNC); 439 } 440 441 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 442 { 443 smp_cross_call(mask, IPI_WAKEUP); 444 } 445 446 void arch_send_call_function_single_ipi(int cpu) 447 { 448 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 449 } 450 451 static const char *ipi_types[NR_IPI] = { 452 #define S(x,s) [x] = s 453 S(IPI_WAKEUP, "CPU wakeup interrupts"), 454 S(IPI_TIMER, "Timer broadcast interrupts"), 455 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 456 S(IPI_CALL_FUNC, "Function call interrupts"), 457 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 458 S(IPI_CPU_STOP, "CPU stop interrupts"), 459 }; 460 461 void show_ipi_list(struct seq_file *p, int prec) 462 { 463 unsigned int cpu, i; 464 465 for (i = 0; i < NR_IPI; i++) { 466 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 467 468 for_each_online_cpu(cpu) 469 seq_printf(p, "%10u ", 470 __get_irq_stat(cpu, ipi_irqs[i])); 471 472 seq_printf(p, " %s\n", ipi_types[i]); 473 } 474 } 475 476 u64 smp_irq_stat_cpu(unsigned int cpu) 477 { 478 u64 sum = 0; 479 int i; 480 481 for (i = 0; i < NR_IPI; i++) 482 sum += __get_irq_stat(cpu, ipi_irqs[i]); 483 484 return sum; 485 } 486 487 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 488 void tick_broadcast(const struct cpumask *mask) 489 { 490 smp_cross_call(mask, IPI_TIMER); 491 } 492 #endif 493 494 static DEFINE_RAW_SPINLOCK(stop_lock); 495 496 /* 497 * ipi_cpu_stop - handle IPI from smp_send_stop() 498 */ 499 static void ipi_cpu_stop(unsigned int cpu) 500 { 501 if (system_state == SYSTEM_BOOTING || 502 system_state == SYSTEM_RUNNING) { 503 raw_spin_lock(&stop_lock); 504 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 505 dump_stack(); 506 raw_spin_unlock(&stop_lock); 507 } 508 509 set_cpu_online(cpu, false); 510 511 local_fiq_disable(); 512 local_irq_disable(); 513 514 while (1) 515 cpu_relax(); 516 } 517 518 /* 519 * Main handler for inter-processor interrupts 520 */ 521 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 522 { 523 handle_IPI(ipinr, regs); 524 } 525 526 void handle_IPI(int ipinr, struct pt_regs *regs) 527 { 528 unsigned int cpu = smp_processor_id(); 529 struct pt_regs *old_regs = set_irq_regs(regs); 530 531 if (ipinr < NR_IPI) 532 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 533 534 switch (ipinr) { 535 case IPI_WAKEUP: 536 break; 537 538 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 539 case IPI_TIMER: 540 irq_enter(); 541 tick_receive_broadcast(); 542 irq_exit(); 543 break; 544 #endif 545 546 case IPI_RESCHEDULE: 547 scheduler_ipi(); 548 break; 549 550 case IPI_CALL_FUNC: 551 irq_enter(); 552 generic_smp_call_function_interrupt(); 553 irq_exit(); 554 break; 555 556 case IPI_CALL_FUNC_SINGLE: 557 irq_enter(); 558 generic_smp_call_function_single_interrupt(); 559 irq_exit(); 560 break; 561 562 case IPI_CPU_STOP: 563 irq_enter(); 564 ipi_cpu_stop(cpu); 565 irq_exit(); 566 break; 567 568 default: 569 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 570 cpu, ipinr); 571 break; 572 } 573 set_irq_regs(old_regs); 574 } 575 576 void smp_send_reschedule(int cpu) 577 { 578 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 579 } 580 581 void smp_send_stop(void) 582 { 583 unsigned long timeout; 584 struct cpumask mask; 585 586 cpumask_copy(&mask, cpu_online_mask); 587 cpumask_clear_cpu(smp_processor_id(), &mask); 588 if (!cpumask_empty(&mask)) 589 smp_cross_call(&mask, IPI_CPU_STOP); 590 591 /* Wait up to one second for other CPUs to stop */ 592 timeout = USEC_PER_SEC; 593 while (num_online_cpus() > 1 && timeout--) 594 udelay(1); 595 596 if (num_online_cpus() > 1) 597 pr_warning("SMP: failed to stop secondary CPUs\n"); 598 } 599 600 /* 601 * not supported here 602 */ 603 int setup_profiling_timer(unsigned int multiplier) 604 { 605 return -EINVAL; 606 } 607 608 #ifdef CONFIG_CPU_FREQ 609 610 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 611 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 612 static unsigned long global_l_p_j_ref; 613 static unsigned long global_l_p_j_ref_freq; 614 615 static int cpufreq_callback(struct notifier_block *nb, 616 unsigned long val, void *data) 617 { 618 struct cpufreq_freqs *freq = data; 619 int cpu = freq->cpu; 620 621 if (freq->flags & CPUFREQ_CONST_LOOPS) 622 return NOTIFY_OK; 623 624 if (!per_cpu(l_p_j_ref, cpu)) { 625 per_cpu(l_p_j_ref, cpu) = 626 per_cpu(cpu_data, cpu).loops_per_jiffy; 627 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 628 if (!global_l_p_j_ref) { 629 global_l_p_j_ref = loops_per_jiffy; 630 global_l_p_j_ref_freq = freq->old; 631 } 632 } 633 634 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 635 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 636 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 637 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 638 global_l_p_j_ref_freq, 639 freq->new); 640 per_cpu(cpu_data, cpu).loops_per_jiffy = 641 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 642 per_cpu(l_p_j_ref_freq, cpu), 643 freq->new); 644 } 645 return NOTIFY_OK; 646 } 647 648 static struct notifier_block cpufreq_notifier = { 649 .notifier_call = cpufreq_callback, 650 }; 651 652 static int __init register_cpufreq_notifier(void) 653 { 654 return cpufreq_register_notifier(&cpufreq_notifier, 655 CPUFREQ_TRANSITION_NOTIFIER); 656 } 657 core_initcall(register_cpufreq_notifier); 658 659 #endif 660