xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 005f3e67)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/procinfo.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
54 
55 /*
56  * as from 2.5, kernels no longer have an init_tasks structure
57  * so we need some other way of telling a new secondary core
58  * where to place its SVC stack
59  */
60 struct secondary_data secondary_data;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 	IPI_IRQ_WORK,
69 	IPI_COMPLETION,
70 	/*
71 	 * CPU_BACKTRACE is special and not included in NR_IPI
72 	 * or tracable with trace_ipi_*
73 	 */
74 	IPI_CPU_BACKTRACE,
75 	/*
76 	 * SGI8-15 can be reserved by secure firmware, and thus may
77 	 * not be usable by the kernel. Please keep the above limited
78 	 * to at most 8 entries.
79 	 */
80 };
81 
82 static DECLARE_COMPLETION(cpu_running);
83 
84 static struct smp_operations smp_ops __ro_after_init;
85 
86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88 	if (ops)
89 		smp_ops = *ops;
90 };
91 
92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95 	return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97 	return virt_to_phys(pgd);
98 #endif
99 }
100 
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104 	if (!cpu_vtable[cpu])
105 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106 
107 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109 
110 static void secondary_biglittle_init(void)
111 {
112 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117 	return 0;
118 }
119 
120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124 
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127 	int ret;
128 
129 	if (!smp_ops.smp_boot_secondary)
130 		return -ENOSYS;
131 
132 	ret = secondary_biglittle_prepare(cpu);
133 	if (ret)
134 		return ret;
135 
136 	/*
137 	 * We need to tell the secondary core where to find
138 	 * its stack and the page tables.
139 	 */
140 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
143 #endif
144 
145 #ifdef CONFIG_MMU
146 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
147 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149 	sync_cache_w(&secondary_data);
150 
151 	/*
152 	 * Now bring the CPU into our world.
153 	 */
154 	ret = smp_ops.smp_boot_secondary(cpu, idle);
155 	if (ret == 0) {
156 		/*
157 		 * CPU was successfully started, wait for it
158 		 * to come online or time out.
159 		 */
160 		wait_for_completion_timeout(&cpu_running,
161 						 msecs_to_jiffies(1000));
162 
163 		if (!cpu_online(cpu)) {
164 			pr_crit("CPU%u: failed to come online\n", cpu);
165 			ret = -EIO;
166 		}
167 	} else {
168 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169 	}
170 
171 
172 	memset(&secondary_data, 0, sizeof(secondary_data));
173 	return ret;
174 }
175 
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
178 {
179 	if (smp_ops.smp_init_cpus)
180 		smp_ops.smp_init_cpus();
181 }
182 
183 int platform_can_secondary_boot(void)
184 {
185 	return !!smp_ops.smp_boot_secondary;
186 }
187 
188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191 	if (smp_ops.cpu_kill)
192 		return 1;
193 #endif
194 
195 	return 0;
196 }
197 
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
200 {
201 	if (smp_ops.cpu_kill)
202 		return smp_ops.cpu_kill(cpu);
203 	return 1;
204 }
205 
206 static int platform_cpu_disable(unsigned int cpu)
207 {
208 	if (smp_ops.cpu_disable)
209 		return smp_ops.cpu_disable(cpu);
210 
211 	return 0;
212 }
213 
214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216 	/* cpu_die must be specified to support hotplug */
217 	if (!smp_ops.cpu_die)
218 		return 0;
219 
220 	if (smp_ops.cpu_can_disable)
221 		return smp_ops.cpu_can_disable(cpu);
222 
223 	/*
224 	 * By default, allow disabling all CPUs except the first one,
225 	 * since this is special on a lot of platforms, e.g. because
226 	 * of clock tick interrupts.
227 	 */
228 	return cpu != 0;
229 }
230 
231 /*
232  * __cpu_disable runs on the processor to be shutdown.
233  */
234 int __cpu_disable(void)
235 {
236 	unsigned int cpu = smp_processor_id();
237 	int ret;
238 
239 	ret = platform_cpu_disable(cpu);
240 	if (ret)
241 		return ret;
242 
243 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
244 	remove_cpu_topology(cpu);
245 #endif
246 
247 	/*
248 	 * Take this CPU offline.  Once we clear this, we can't return,
249 	 * and we must not schedule until we're ready to give up the cpu.
250 	 */
251 	set_cpu_online(cpu, false);
252 
253 	/*
254 	 * OK - migrate IRQs away from this CPU
255 	 */
256 	irq_migrate_all_off_this_cpu();
257 
258 	/*
259 	 * Flush user cache and TLB mappings, and then remove this CPU
260 	 * from the vm mask set of all processes.
261 	 *
262 	 * Caches are flushed to the Level of Unification Inner Shareable
263 	 * to write-back dirty lines to unified caches shared by all CPUs.
264 	 */
265 	flush_cache_louis();
266 	local_flush_tlb_all();
267 
268 	return 0;
269 }
270 
271 /*
272  * called on the thread which is asking for a CPU to be shutdown -
273  * waits until shutdown has completed, or it is timed out.
274  */
275 void __cpu_die(unsigned int cpu)
276 {
277 	if (!cpu_wait_death(cpu, 5)) {
278 		pr_err("CPU%u: cpu didn't die\n", cpu);
279 		return;
280 	}
281 	pr_debug("CPU%u: shutdown\n", cpu);
282 
283 	clear_tasks_mm_cpumask(cpu);
284 	/*
285 	 * platform_cpu_kill() is generally expected to do the powering off
286 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
287 	 * be done by the CPU which is dying in preference to supporting
288 	 * this call, but that means there is _no_ synchronisation between
289 	 * the requesting CPU and the dying CPU actually losing power.
290 	 */
291 	if (!platform_cpu_kill(cpu))
292 		pr_err("CPU%u: unable to kill\n", cpu);
293 }
294 
295 /*
296  * Called from the idle thread for the CPU which has been shutdown.
297  *
298  * Note that we disable IRQs here, but do not re-enable them
299  * before returning to the caller. This is also the behaviour
300  * of the other hotplug-cpu capable cores, so presumably coming
301  * out of idle fixes this.
302  */
303 void arch_cpu_idle_dead(void)
304 {
305 	unsigned int cpu = smp_processor_id();
306 
307 	idle_task_exit();
308 
309 	local_irq_disable();
310 
311 	/*
312 	 * Flush the data out of the L1 cache for this CPU.  This must be
313 	 * before the completion to ensure that data is safely written out
314 	 * before platform_cpu_kill() gets called - which may disable
315 	 * *this* CPU and power down its cache.
316 	 */
317 	flush_cache_louis();
318 
319 	/*
320 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
321 	 * this returns, power and/or clocks can be removed at any point
322 	 * from this CPU and its cache by platform_cpu_kill().
323 	 */
324 	(void)cpu_report_death();
325 
326 	/*
327 	 * Ensure that the cache lines associated with that completion are
328 	 * written out.  This covers the case where _this_ CPU is doing the
329 	 * powering down, to ensure that the completion is visible to the
330 	 * CPU waiting for this one.
331 	 */
332 	flush_cache_louis();
333 
334 	/*
335 	 * The actual CPU shutdown procedure is at least platform (if not
336 	 * CPU) specific.  This may remove power, or it may simply spin.
337 	 *
338 	 * Platforms are generally expected *NOT* to return from this call,
339 	 * although there are some which do because they have no way to
340 	 * power down the CPU.  These platforms are the _only_ reason we
341 	 * have a return path which uses the fragment of assembly below.
342 	 *
343 	 * The return path should not be used for platforms which can
344 	 * power off the CPU.
345 	 */
346 	if (smp_ops.cpu_die)
347 		smp_ops.cpu_die(cpu);
348 
349 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
350 		cpu);
351 
352 	/*
353 	 * Do not return to the idle loop - jump back to the secondary
354 	 * cpu initialisation.  There's some initialisation which needs
355 	 * to be repeated to undo the effects of taking the CPU offline.
356 	 */
357 	__asm__("mov	sp, %0\n"
358 	"	mov	fp, #0\n"
359 	"	b	secondary_start_kernel"
360 		:
361 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
362 }
363 #endif /* CONFIG_HOTPLUG_CPU */
364 
365 /*
366  * Called by both boot and secondaries to move global data into
367  * per-processor storage.
368  */
369 static void smp_store_cpu_info(unsigned int cpuid)
370 {
371 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
372 
373 	cpu_info->loops_per_jiffy = loops_per_jiffy;
374 	cpu_info->cpuid = read_cpuid_id();
375 
376 	store_cpu_topology(cpuid);
377 	check_cpu_icache_size(cpuid);
378 }
379 
380 /*
381  * This is the secondary CPU boot entry.  We're using this CPUs
382  * idle thread stack, but a set of temporary page tables.
383  */
384 asmlinkage void secondary_start_kernel(void)
385 {
386 	struct mm_struct *mm = &init_mm;
387 	unsigned int cpu;
388 
389 	secondary_biglittle_init();
390 
391 	/*
392 	 * The identity mapping is uncached (strongly ordered), so
393 	 * switch away from it before attempting any exclusive accesses.
394 	 */
395 	cpu_switch_mm(mm->pgd, mm);
396 	local_flush_bp_all();
397 	enter_lazy_tlb(mm, current);
398 	local_flush_tlb_all();
399 
400 	/*
401 	 * All kernel threads share the same mm context; grab a
402 	 * reference and switch to it.
403 	 */
404 	cpu = smp_processor_id();
405 	mmgrab(mm);
406 	current->active_mm = mm;
407 	cpumask_set_cpu(cpu, mm_cpumask(mm));
408 
409 	cpu_init();
410 
411 #ifndef CONFIG_MMU
412 	setup_vectors_base();
413 #endif
414 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
415 
416 	preempt_disable();
417 	trace_hardirqs_off();
418 
419 	/*
420 	 * Give the platform a chance to do its own initialisation.
421 	 */
422 	if (smp_ops.smp_secondary_init)
423 		smp_ops.smp_secondary_init(cpu);
424 
425 	notify_cpu_starting(cpu);
426 
427 	calibrate_delay();
428 
429 	smp_store_cpu_info(cpu);
430 
431 	/*
432 	 * OK, now it's safe to let the boot CPU continue.  Wait for
433 	 * the CPU migration code to notice that the CPU is online
434 	 * before we continue - which happens after __cpu_up returns.
435 	 */
436 	set_cpu_online(cpu, true);
437 
438 	check_other_bugs();
439 
440 	complete(&cpu_running);
441 
442 	local_irq_enable();
443 	local_fiq_enable();
444 	local_abt_enable();
445 
446 	/*
447 	 * OK, it's off to the idle thread for us
448 	 */
449 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
450 }
451 
452 void __init smp_cpus_done(unsigned int max_cpus)
453 {
454 	int cpu;
455 	unsigned long bogosum = 0;
456 
457 	for_each_online_cpu(cpu)
458 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
459 
460 	printk(KERN_INFO "SMP: Total of %d processors activated "
461 	       "(%lu.%02lu BogoMIPS).\n",
462 	       num_online_cpus(),
463 	       bogosum / (500000/HZ),
464 	       (bogosum / (5000/HZ)) % 100);
465 
466 	hyp_mode_check();
467 }
468 
469 void __init smp_prepare_boot_cpu(void)
470 {
471 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
472 }
473 
474 void __init smp_prepare_cpus(unsigned int max_cpus)
475 {
476 	unsigned int ncores = num_possible_cpus();
477 
478 	init_cpu_topology();
479 
480 	smp_store_cpu_info(smp_processor_id());
481 
482 	/*
483 	 * are we trying to boot more cores than exist?
484 	 */
485 	if (max_cpus > ncores)
486 		max_cpus = ncores;
487 	if (ncores > 1 && max_cpus) {
488 		/*
489 		 * Initialise the present map, which describes the set of CPUs
490 		 * actually populated at the present time. A platform should
491 		 * re-initialize the map in the platforms smp_prepare_cpus()
492 		 * if present != possible (e.g. physical hotplug).
493 		 */
494 		init_cpu_present(cpu_possible_mask);
495 
496 		/*
497 		 * Initialise the SCU if there are more than one CPU
498 		 * and let them know where to start.
499 		 */
500 		if (smp_ops.smp_prepare_cpus)
501 			smp_ops.smp_prepare_cpus(max_cpus);
502 	}
503 }
504 
505 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
506 
507 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
508 {
509 	if (!__smp_cross_call)
510 		__smp_cross_call = fn;
511 }
512 
513 static const char *ipi_types[NR_IPI] __tracepoint_string = {
514 #define S(x,s)	[x] = s
515 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
516 	S(IPI_TIMER, "Timer broadcast interrupts"),
517 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
518 	S(IPI_CALL_FUNC, "Function call interrupts"),
519 	S(IPI_CPU_STOP, "CPU stop interrupts"),
520 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
521 	S(IPI_COMPLETION, "completion interrupts"),
522 };
523 
524 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
525 {
526 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
527 	__smp_cross_call(target, ipinr);
528 }
529 
530 void show_ipi_list(struct seq_file *p, int prec)
531 {
532 	unsigned int cpu, i;
533 
534 	for (i = 0; i < NR_IPI; i++) {
535 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
536 
537 		for_each_online_cpu(cpu)
538 			seq_printf(p, "%10u ",
539 				   __get_irq_stat(cpu, ipi_irqs[i]));
540 
541 		seq_printf(p, " %s\n", ipi_types[i]);
542 	}
543 }
544 
545 u64 smp_irq_stat_cpu(unsigned int cpu)
546 {
547 	u64 sum = 0;
548 	int i;
549 
550 	for (i = 0; i < NR_IPI; i++)
551 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
552 
553 	return sum;
554 }
555 
556 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
557 {
558 	smp_cross_call(mask, IPI_CALL_FUNC);
559 }
560 
561 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
562 {
563 	smp_cross_call(mask, IPI_WAKEUP);
564 }
565 
566 void arch_send_call_function_single_ipi(int cpu)
567 {
568 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
569 }
570 
571 #ifdef CONFIG_IRQ_WORK
572 void arch_irq_work_raise(void)
573 {
574 	if (arch_irq_work_has_interrupt())
575 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
576 }
577 #endif
578 
579 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
580 void tick_broadcast(const struct cpumask *mask)
581 {
582 	smp_cross_call(mask, IPI_TIMER);
583 }
584 #endif
585 
586 static DEFINE_RAW_SPINLOCK(stop_lock);
587 
588 /*
589  * ipi_cpu_stop - handle IPI from smp_send_stop()
590  */
591 static void ipi_cpu_stop(unsigned int cpu)
592 {
593 	if (system_state <= SYSTEM_RUNNING) {
594 		raw_spin_lock(&stop_lock);
595 		pr_crit("CPU%u: stopping\n", cpu);
596 		dump_stack();
597 		raw_spin_unlock(&stop_lock);
598 	}
599 
600 	set_cpu_online(cpu, false);
601 
602 	local_fiq_disable();
603 	local_irq_disable();
604 
605 	while (1) {
606 		cpu_relax();
607 		wfe();
608 	}
609 }
610 
611 static DEFINE_PER_CPU(struct completion *, cpu_completion);
612 
613 int register_ipi_completion(struct completion *completion, int cpu)
614 {
615 	per_cpu(cpu_completion, cpu) = completion;
616 	return IPI_COMPLETION;
617 }
618 
619 static void ipi_complete(unsigned int cpu)
620 {
621 	complete(per_cpu(cpu_completion, cpu));
622 }
623 
624 /*
625  * Main handler for inter-processor interrupts
626  */
627 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
628 {
629 	handle_IPI(ipinr, regs);
630 }
631 
632 void handle_IPI(int ipinr, struct pt_regs *regs)
633 {
634 	unsigned int cpu = smp_processor_id();
635 	struct pt_regs *old_regs = set_irq_regs(regs);
636 
637 	if ((unsigned)ipinr < NR_IPI) {
638 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
639 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
640 	}
641 
642 	switch (ipinr) {
643 	case IPI_WAKEUP:
644 		break;
645 
646 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
647 	case IPI_TIMER:
648 		irq_enter();
649 		tick_receive_broadcast();
650 		irq_exit();
651 		break;
652 #endif
653 
654 	case IPI_RESCHEDULE:
655 		scheduler_ipi();
656 		break;
657 
658 	case IPI_CALL_FUNC:
659 		irq_enter();
660 		generic_smp_call_function_interrupt();
661 		irq_exit();
662 		break;
663 
664 	case IPI_CPU_STOP:
665 		irq_enter();
666 		ipi_cpu_stop(cpu);
667 		irq_exit();
668 		break;
669 
670 #ifdef CONFIG_IRQ_WORK
671 	case IPI_IRQ_WORK:
672 		irq_enter();
673 		irq_work_run();
674 		irq_exit();
675 		break;
676 #endif
677 
678 	case IPI_COMPLETION:
679 		irq_enter();
680 		ipi_complete(cpu);
681 		irq_exit();
682 		break;
683 
684 	case IPI_CPU_BACKTRACE:
685 		printk_nmi_enter();
686 		irq_enter();
687 		nmi_cpu_backtrace(regs);
688 		irq_exit();
689 		printk_nmi_exit();
690 		break;
691 
692 	default:
693 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
694 		        cpu, ipinr);
695 		break;
696 	}
697 
698 	if ((unsigned)ipinr < NR_IPI)
699 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
700 	set_irq_regs(old_regs);
701 }
702 
703 void smp_send_reschedule(int cpu)
704 {
705 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
706 }
707 
708 void smp_send_stop(void)
709 {
710 	unsigned long timeout;
711 	struct cpumask mask;
712 
713 	cpumask_copy(&mask, cpu_online_mask);
714 	cpumask_clear_cpu(smp_processor_id(), &mask);
715 	if (!cpumask_empty(&mask))
716 		smp_cross_call(&mask, IPI_CPU_STOP);
717 
718 	/* Wait up to one second for other CPUs to stop */
719 	timeout = USEC_PER_SEC;
720 	while (num_online_cpus() > 1 && timeout--)
721 		udelay(1);
722 
723 	if (num_online_cpus() > 1)
724 		pr_warn("SMP: failed to stop secondary CPUs\n");
725 }
726 
727 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
728  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
729  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
730  * kdump fails. So split out the panic_smp_self_stop() and add
731  * set_cpu_online(smp_processor_id(), false).
732  */
733 void panic_smp_self_stop(void)
734 {
735 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
736 	         smp_processor_id());
737 	set_cpu_online(smp_processor_id(), false);
738 	while (1)
739 		cpu_relax();
740 }
741 
742 /*
743  * not supported here
744  */
745 int setup_profiling_timer(unsigned int multiplier)
746 {
747 	return -EINVAL;
748 }
749 
750 #ifdef CONFIG_CPU_FREQ
751 
752 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
753 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
754 static unsigned long global_l_p_j_ref;
755 static unsigned long global_l_p_j_ref_freq;
756 
757 static int cpufreq_callback(struct notifier_block *nb,
758 					unsigned long val, void *data)
759 {
760 	struct cpufreq_freqs *freq = data;
761 	struct cpumask *cpus = freq->policy->cpus;
762 	int cpu, first = cpumask_first(cpus);
763 	unsigned int lpj;
764 
765 	if (freq->flags & CPUFREQ_CONST_LOOPS)
766 		return NOTIFY_OK;
767 
768 	if (!per_cpu(l_p_j_ref, first)) {
769 		for_each_cpu(cpu, cpus) {
770 			per_cpu(l_p_j_ref, cpu) =
771 				per_cpu(cpu_data, cpu).loops_per_jiffy;
772 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
773 		}
774 
775 		if (!global_l_p_j_ref) {
776 			global_l_p_j_ref = loops_per_jiffy;
777 			global_l_p_j_ref_freq = freq->old;
778 		}
779 	}
780 
781 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
782 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
783 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
784 						global_l_p_j_ref_freq,
785 						freq->new);
786 
787 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
788 				    per_cpu(l_p_j_ref_freq, first), freq->new);
789 		for_each_cpu(cpu, cpus)
790 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
791 	}
792 	return NOTIFY_OK;
793 }
794 
795 static struct notifier_block cpufreq_notifier = {
796 	.notifier_call  = cpufreq_callback,
797 };
798 
799 static int __init register_cpufreq_notifier(void)
800 {
801 	return cpufreq_register_notifier(&cpufreq_notifier,
802 						CPUFREQ_TRANSITION_NOTIFIER);
803 }
804 core_initcall(register_cpufreq_notifier);
805 
806 #endif
807 
808 static void raise_nmi(cpumask_t *mask)
809 {
810 	__smp_cross_call(mask, IPI_CPU_BACKTRACE);
811 }
812 
813 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
814 {
815 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
816 }
817