xref: /openbmc/linux/arch/arm/kernel/setup.c (revision e2f1cf25)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 
35 #include <asm/unified.h>
36 #include <asm/cp15.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/elf.h>
40 #include <asm/procinfo.h>
41 #include <asm/psci.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp_plat.h>
45 #include <asm/mach-types.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cachetype.h>
48 #include <asm/tlbflush.h>
49 #include <asm/xen/hypervisor.h>
50 
51 #include <asm/prom.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mach/irq.h>
54 #include <asm/mach/time.h>
55 #include <asm/system_info.h>
56 #include <asm/system_misc.h>
57 #include <asm/traps.h>
58 #include <asm/unwind.h>
59 #include <asm/memblock.h>
60 #include <asm/virt.h>
61 
62 #include "atags.h"
63 
64 
65 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
66 char fpe_type[8];
67 
68 static int __init fpe_setup(char *line)
69 {
70 	memcpy(fpe_type, line, 8);
71 	return 1;
72 }
73 
74 __setup("fpe=", fpe_setup);
75 #endif
76 
77 extern void init_default_cache_policy(unsigned long);
78 extern void paging_init(const struct machine_desc *desc);
79 extern void early_paging_init(const struct machine_desc *);
80 extern void sanity_check_meminfo(void);
81 extern enum reboot_mode reboot_mode;
82 extern void setup_dma_zone(const struct machine_desc *desc);
83 
84 unsigned int processor_id;
85 EXPORT_SYMBOL(processor_id);
86 unsigned int __machine_arch_type __read_mostly;
87 EXPORT_SYMBOL(__machine_arch_type);
88 unsigned int cacheid __read_mostly;
89 EXPORT_SYMBOL(cacheid);
90 
91 unsigned int __atags_pointer __initdata;
92 
93 unsigned int system_rev;
94 EXPORT_SYMBOL(system_rev);
95 
96 const char *system_serial;
97 EXPORT_SYMBOL(system_serial);
98 
99 unsigned int system_serial_low;
100 EXPORT_SYMBOL(system_serial_low);
101 
102 unsigned int system_serial_high;
103 EXPORT_SYMBOL(system_serial_high);
104 
105 unsigned int elf_hwcap __read_mostly;
106 EXPORT_SYMBOL(elf_hwcap);
107 
108 unsigned int elf_hwcap2 __read_mostly;
109 EXPORT_SYMBOL(elf_hwcap2);
110 
111 
112 #ifdef MULTI_CPU
113 struct processor processor __read_mostly;
114 #endif
115 #ifdef MULTI_TLB
116 struct cpu_tlb_fns cpu_tlb __read_mostly;
117 #endif
118 #ifdef MULTI_USER
119 struct cpu_user_fns cpu_user __read_mostly;
120 #endif
121 #ifdef MULTI_CACHE
122 struct cpu_cache_fns cpu_cache __read_mostly;
123 #endif
124 #ifdef CONFIG_OUTER_CACHE
125 struct outer_cache_fns outer_cache __read_mostly;
126 EXPORT_SYMBOL(outer_cache);
127 #endif
128 
129 /*
130  * Cached cpu_architecture() result for use by assembler code.
131  * C code should use the cpu_architecture() function instead of accessing this
132  * variable directly.
133  */
134 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
135 
136 struct stack {
137 	u32 irq[3];
138 	u32 abt[3];
139 	u32 und[3];
140 	u32 fiq[3];
141 } ____cacheline_aligned;
142 
143 #ifndef CONFIG_CPU_V7M
144 static struct stack stacks[NR_CPUS];
145 #endif
146 
147 char elf_platform[ELF_PLATFORM_SIZE];
148 EXPORT_SYMBOL(elf_platform);
149 
150 static const char *cpu_name;
151 static const char *machine_name;
152 static char __initdata cmd_line[COMMAND_LINE_SIZE];
153 const struct machine_desc *machine_desc __initdata;
154 
155 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
156 #define ENDIANNESS ((char)endian_test.l)
157 
158 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
159 
160 /*
161  * Standard memory resources
162  */
163 static struct resource mem_res[] = {
164 	{
165 		.name = "Video RAM",
166 		.start = 0,
167 		.end = 0,
168 		.flags = IORESOURCE_MEM
169 	},
170 	{
171 		.name = "Kernel code",
172 		.start = 0,
173 		.end = 0,
174 		.flags = IORESOURCE_MEM
175 	},
176 	{
177 		.name = "Kernel data",
178 		.start = 0,
179 		.end = 0,
180 		.flags = IORESOURCE_MEM
181 	}
182 };
183 
184 #define video_ram   mem_res[0]
185 #define kernel_code mem_res[1]
186 #define kernel_data mem_res[2]
187 
188 static struct resource io_res[] = {
189 	{
190 		.name = "reserved",
191 		.start = 0x3bc,
192 		.end = 0x3be,
193 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
194 	},
195 	{
196 		.name = "reserved",
197 		.start = 0x378,
198 		.end = 0x37f,
199 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
200 	},
201 	{
202 		.name = "reserved",
203 		.start = 0x278,
204 		.end = 0x27f,
205 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
206 	}
207 };
208 
209 #define lp0 io_res[0]
210 #define lp1 io_res[1]
211 #define lp2 io_res[2]
212 
213 static const char *proc_arch[] = {
214 	"undefined/unknown",
215 	"3",
216 	"4",
217 	"4T",
218 	"5",
219 	"5T",
220 	"5TE",
221 	"5TEJ",
222 	"6TEJ",
223 	"7",
224 	"7M",
225 	"?(12)",
226 	"?(13)",
227 	"?(14)",
228 	"?(15)",
229 	"?(16)",
230 	"?(17)",
231 };
232 
233 #ifdef CONFIG_CPU_V7M
234 static int __get_cpu_architecture(void)
235 {
236 	return CPU_ARCH_ARMv7M;
237 }
238 #else
239 static int __get_cpu_architecture(void)
240 {
241 	int cpu_arch;
242 
243 	if ((read_cpuid_id() & 0x0008f000) == 0) {
244 		cpu_arch = CPU_ARCH_UNKNOWN;
245 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
246 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
247 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
248 		cpu_arch = (read_cpuid_id() >> 16) & 7;
249 		if (cpu_arch)
250 			cpu_arch += CPU_ARCH_ARMv3;
251 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
252 		/* Revised CPUID format. Read the Memory Model Feature
253 		 * Register 0 and check for VMSAv7 or PMSAv7 */
254 		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
255 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
256 		    (mmfr0 & 0x000000f0) >= 0x00000030)
257 			cpu_arch = CPU_ARCH_ARMv7;
258 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
259 			 (mmfr0 & 0x000000f0) == 0x00000020)
260 			cpu_arch = CPU_ARCH_ARMv6;
261 		else
262 			cpu_arch = CPU_ARCH_UNKNOWN;
263 	} else
264 		cpu_arch = CPU_ARCH_UNKNOWN;
265 
266 	return cpu_arch;
267 }
268 #endif
269 
270 int __pure cpu_architecture(void)
271 {
272 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
273 
274 	return __cpu_architecture;
275 }
276 
277 static int cpu_has_aliasing_icache(unsigned int arch)
278 {
279 	int aliasing_icache;
280 	unsigned int id_reg, num_sets, line_size;
281 
282 	/* PIPT caches never alias. */
283 	if (icache_is_pipt())
284 		return 0;
285 
286 	/* arch specifies the register format */
287 	switch (arch) {
288 	case CPU_ARCH_ARMv7:
289 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
290 		    : /* No output operands */
291 		    : "r" (1));
292 		isb();
293 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
294 		    : "=r" (id_reg));
295 		line_size = 4 << ((id_reg & 0x7) + 2);
296 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
297 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
298 		break;
299 	case CPU_ARCH_ARMv6:
300 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
301 		break;
302 	default:
303 		/* I-cache aliases will be handled by D-cache aliasing code */
304 		aliasing_icache = 0;
305 	}
306 
307 	return aliasing_icache;
308 }
309 
310 static void __init cacheid_init(void)
311 {
312 	unsigned int arch = cpu_architecture();
313 
314 	if (arch == CPU_ARCH_ARMv7M) {
315 		cacheid = 0;
316 	} else if (arch >= CPU_ARCH_ARMv6) {
317 		unsigned int cachetype = read_cpuid_cachetype();
318 		if ((cachetype & (7 << 29)) == 4 << 29) {
319 			/* ARMv7 register format */
320 			arch = CPU_ARCH_ARMv7;
321 			cacheid = CACHEID_VIPT_NONALIASING;
322 			switch (cachetype & (3 << 14)) {
323 			case (1 << 14):
324 				cacheid |= CACHEID_ASID_TAGGED;
325 				break;
326 			case (3 << 14):
327 				cacheid |= CACHEID_PIPT;
328 				break;
329 			}
330 		} else {
331 			arch = CPU_ARCH_ARMv6;
332 			if (cachetype & (1 << 23))
333 				cacheid = CACHEID_VIPT_ALIASING;
334 			else
335 				cacheid = CACHEID_VIPT_NONALIASING;
336 		}
337 		if (cpu_has_aliasing_icache(arch))
338 			cacheid |= CACHEID_VIPT_I_ALIASING;
339 	} else {
340 		cacheid = CACHEID_VIVT;
341 	}
342 
343 	pr_info("CPU: %s data cache, %s instruction cache\n",
344 		cache_is_vivt() ? "VIVT" :
345 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
346 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
347 		cache_is_vivt() ? "VIVT" :
348 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
349 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
350 		icache_is_pipt() ? "PIPT" :
351 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
352 }
353 
354 /*
355  * These functions re-use the assembly code in head.S, which
356  * already provide the required functionality.
357  */
358 extern struct proc_info_list *lookup_processor_type(unsigned int);
359 
360 void __init early_print(const char *str, ...)
361 {
362 	extern void printascii(const char *);
363 	char buf[256];
364 	va_list ap;
365 
366 	va_start(ap, str);
367 	vsnprintf(buf, sizeof(buf), str, ap);
368 	va_end(ap);
369 
370 #ifdef CONFIG_DEBUG_LL
371 	printascii(buf);
372 #endif
373 	printk("%s", buf);
374 }
375 
376 static void __init cpuid_init_hwcaps(void)
377 {
378 	int block;
379 	u32 isar5;
380 
381 	if (cpu_architecture() < CPU_ARCH_ARMv7)
382 		return;
383 
384 	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
385 	if (block >= 2)
386 		elf_hwcap |= HWCAP_IDIVA;
387 	if (block >= 1)
388 		elf_hwcap |= HWCAP_IDIVT;
389 
390 	/* LPAE implies atomic ldrd/strd instructions */
391 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
392 	if (block >= 5)
393 		elf_hwcap |= HWCAP_LPAE;
394 
395 	/* check for supported v8 Crypto instructions */
396 	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
397 
398 	block = cpuid_feature_extract_field(isar5, 4);
399 	if (block >= 2)
400 		elf_hwcap2 |= HWCAP2_PMULL;
401 	if (block >= 1)
402 		elf_hwcap2 |= HWCAP2_AES;
403 
404 	block = cpuid_feature_extract_field(isar5, 8);
405 	if (block >= 1)
406 		elf_hwcap2 |= HWCAP2_SHA1;
407 
408 	block = cpuid_feature_extract_field(isar5, 12);
409 	if (block >= 1)
410 		elf_hwcap2 |= HWCAP2_SHA2;
411 
412 	block = cpuid_feature_extract_field(isar5, 16);
413 	if (block >= 1)
414 		elf_hwcap2 |= HWCAP2_CRC32;
415 }
416 
417 static void __init elf_hwcap_fixup(void)
418 {
419 	unsigned id = read_cpuid_id();
420 
421 	/*
422 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
423 	 * see also kuser_get_tls_init.
424 	 */
425 	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
426 	    ((id >> 20) & 3) == 0) {
427 		elf_hwcap &= ~HWCAP_TLS;
428 		return;
429 	}
430 
431 	/* Verify if CPUID scheme is implemented */
432 	if ((id & 0x000f0000) != 0x000f0000)
433 		return;
434 
435 	/*
436 	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
437 	 * avoid advertising SWP; it may not be atomic with
438 	 * multiprocessing cores.
439 	 */
440 	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
441 	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
442 	     cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
443 		elf_hwcap &= ~HWCAP_SWP;
444 }
445 
446 /*
447  * cpu_init - initialise one CPU.
448  *
449  * cpu_init sets up the per-CPU stacks.
450  */
451 void notrace cpu_init(void)
452 {
453 #ifndef CONFIG_CPU_V7M
454 	unsigned int cpu = smp_processor_id();
455 	struct stack *stk = &stacks[cpu];
456 
457 	if (cpu >= NR_CPUS) {
458 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
459 		BUG();
460 	}
461 
462 	/*
463 	 * This only works on resume and secondary cores. For booting on the
464 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
465 	 */
466 	set_my_cpu_offset(per_cpu_offset(cpu));
467 
468 	cpu_proc_init();
469 
470 	/*
471 	 * Define the placement constraint for the inline asm directive below.
472 	 * In Thumb-2, msr with an immediate value is not allowed.
473 	 */
474 #ifdef CONFIG_THUMB2_KERNEL
475 #define PLC	"r"
476 #else
477 #define PLC	"I"
478 #endif
479 
480 	/*
481 	 * setup stacks for re-entrant exception handlers
482 	 */
483 	__asm__ (
484 	"msr	cpsr_c, %1\n\t"
485 	"add	r14, %0, %2\n\t"
486 	"mov	sp, r14\n\t"
487 	"msr	cpsr_c, %3\n\t"
488 	"add	r14, %0, %4\n\t"
489 	"mov	sp, r14\n\t"
490 	"msr	cpsr_c, %5\n\t"
491 	"add	r14, %0, %6\n\t"
492 	"mov	sp, r14\n\t"
493 	"msr	cpsr_c, %7\n\t"
494 	"add	r14, %0, %8\n\t"
495 	"mov	sp, r14\n\t"
496 	"msr	cpsr_c, %9"
497 	    :
498 	    : "r" (stk),
499 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
500 	      "I" (offsetof(struct stack, irq[0])),
501 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
502 	      "I" (offsetof(struct stack, abt[0])),
503 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
504 	      "I" (offsetof(struct stack, und[0])),
505 	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
506 	      "I" (offsetof(struct stack, fiq[0])),
507 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
508 	    : "r14");
509 #endif
510 }
511 
512 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
513 
514 void __init smp_setup_processor_id(void)
515 {
516 	int i;
517 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
518 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
519 
520 	cpu_logical_map(0) = cpu;
521 	for (i = 1; i < nr_cpu_ids; ++i)
522 		cpu_logical_map(i) = i == cpu ? 0 : i;
523 
524 	/*
525 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
526 	 * using percpu variable early, for example, lockdep will
527 	 * access percpu variable inside lock_release
528 	 */
529 	set_my_cpu_offset(0);
530 
531 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
532 }
533 
534 struct mpidr_hash mpidr_hash;
535 #ifdef CONFIG_SMP
536 /**
537  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
538  *			  level in order to build a linear index from an
539  *			  MPIDR value. Resulting algorithm is a collision
540  *			  free hash carried out through shifting and ORing
541  */
542 static void __init smp_build_mpidr_hash(void)
543 {
544 	u32 i, affinity;
545 	u32 fs[3], bits[3], ls, mask = 0;
546 	/*
547 	 * Pre-scan the list of MPIDRS and filter out bits that do
548 	 * not contribute to affinity levels, ie they never toggle.
549 	 */
550 	for_each_possible_cpu(i)
551 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
552 	pr_debug("mask of set bits 0x%x\n", mask);
553 	/*
554 	 * Find and stash the last and first bit set at all affinity levels to
555 	 * check how many bits are required to represent them.
556 	 */
557 	for (i = 0; i < 3; i++) {
558 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
559 		/*
560 		 * Find the MSB bit and LSB bits position
561 		 * to determine how many bits are required
562 		 * to express the affinity level.
563 		 */
564 		ls = fls(affinity);
565 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
566 		bits[i] = ls - fs[i];
567 	}
568 	/*
569 	 * An index can be created from the MPIDR by isolating the
570 	 * significant bits at each affinity level and by shifting
571 	 * them in order to compress the 24 bits values space to a
572 	 * compressed set of values. This is equivalent to hashing
573 	 * the MPIDR through shifting and ORing. It is a collision free
574 	 * hash though not minimal since some levels might contain a number
575 	 * of CPUs that is not an exact power of 2 and their bit
576 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
577 	 */
578 	mpidr_hash.shift_aff[0] = fs[0];
579 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
580 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
581 						(bits[1] + bits[0]);
582 	mpidr_hash.mask = mask;
583 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
584 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
585 				mpidr_hash.shift_aff[0],
586 				mpidr_hash.shift_aff[1],
587 				mpidr_hash.shift_aff[2],
588 				mpidr_hash.mask,
589 				mpidr_hash.bits);
590 	/*
591 	 * 4x is an arbitrary value used to warn on a hash table much bigger
592 	 * than expected on most systems.
593 	 */
594 	if (mpidr_hash_size() > 4 * num_possible_cpus())
595 		pr_warn("Large number of MPIDR hash buckets detected\n");
596 	sync_cache_w(&mpidr_hash);
597 }
598 #endif
599 
600 static void __init setup_processor(void)
601 {
602 	struct proc_info_list *list;
603 
604 	/*
605 	 * locate processor in the list of supported processor
606 	 * types.  The linker builds this table for us from the
607 	 * entries in arch/arm/mm/proc-*.S
608 	 */
609 	list = lookup_processor_type(read_cpuid_id());
610 	if (!list) {
611 		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
612 		       read_cpuid_id());
613 		while (1);
614 	}
615 
616 	cpu_name = list->cpu_name;
617 	__cpu_architecture = __get_cpu_architecture();
618 
619 #ifdef MULTI_CPU
620 	processor = *list->proc;
621 #endif
622 #ifdef MULTI_TLB
623 	cpu_tlb = *list->tlb;
624 #endif
625 #ifdef MULTI_USER
626 	cpu_user = *list->user;
627 #endif
628 #ifdef MULTI_CACHE
629 	cpu_cache = *list->cache;
630 #endif
631 
632 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
633 		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
634 		proc_arch[cpu_architecture()], get_cr());
635 
636 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
637 		 list->arch_name, ENDIANNESS);
638 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
639 		 list->elf_name, ENDIANNESS);
640 	elf_hwcap = list->elf_hwcap;
641 
642 	cpuid_init_hwcaps();
643 
644 #ifndef CONFIG_ARM_THUMB
645 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
646 #endif
647 #ifdef CONFIG_MMU
648 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
649 #endif
650 	erratum_a15_798181_init();
651 
652 	elf_hwcap_fixup();
653 
654 	cacheid_init();
655 	cpu_init();
656 }
657 
658 void __init dump_machine_table(void)
659 {
660 	const struct machine_desc *p;
661 
662 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
663 	for_each_machine_desc(p)
664 		early_print("%08x\t%s\n", p->nr, p->name);
665 
666 	early_print("\nPlease check your kernel config and/or bootloader.\n");
667 
668 	while (true)
669 		/* can't use cpu_relax() here as it may require MMU setup */;
670 }
671 
672 int __init arm_add_memory(u64 start, u64 size)
673 {
674 	u64 aligned_start;
675 
676 	/*
677 	 * Ensure that start/size are aligned to a page boundary.
678 	 * Size is rounded down, start is rounded up.
679 	 */
680 	aligned_start = PAGE_ALIGN(start);
681 	if (aligned_start > start + size)
682 		size = 0;
683 	else
684 		size -= aligned_start - start;
685 
686 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
687 	if (aligned_start > ULONG_MAX) {
688 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
689 			(long long)start);
690 		return -EINVAL;
691 	}
692 
693 	if (aligned_start + size > ULONG_MAX) {
694 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
695 			(long long)start);
696 		/*
697 		 * To ensure bank->start + bank->size is representable in
698 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
699 		 * This means we lose a page after masking.
700 		 */
701 		size = ULONG_MAX - aligned_start;
702 	}
703 #endif
704 
705 	if (aligned_start < PHYS_OFFSET) {
706 		if (aligned_start + size <= PHYS_OFFSET) {
707 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
708 				aligned_start, aligned_start + size);
709 			return -EINVAL;
710 		}
711 
712 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
713 			aligned_start, (u64)PHYS_OFFSET);
714 
715 		size -= PHYS_OFFSET - aligned_start;
716 		aligned_start = PHYS_OFFSET;
717 	}
718 
719 	start = aligned_start;
720 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
721 
722 	/*
723 	 * Check whether this memory region has non-zero size or
724 	 * invalid node number.
725 	 */
726 	if (size == 0)
727 		return -EINVAL;
728 
729 	memblock_add(start, size);
730 	return 0;
731 }
732 
733 /*
734  * Pick out the memory size.  We look for mem=size@start,
735  * where start and size are "size[KkMm]"
736  */
737 
738 static int __init early_mem(char *p)
739 {
740 	static int usermem __initdata = 0;
741 	u64 size;
742 	u64 start;
743 	char *endp;
744 
745 	/*
746 	 * If the user specifies memory size, we
747 	 * blow away any automatically generated
748 	 * size.
749 	 */
750 	if (usermem == 0) {
751 		usermem = 1;
752 		memblock_remove(memblock_start_of_DRAM(),
753 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
754 	}
755 
756 	start = PHYS_OFFSET;
757 	size  = memparse(p, &endp);
758 	if (*endp == '@')
759 		start = memparse(endp + 1, NULL);
760 
761 	arm_add_memory(start, size);
762 
763 	return 0;
764 }
765 early_param("mem", early_mem);
766 
767 static void __init request_standard_resources(const struct machine_desc *mdesc)
768 {
769 	struct memblock_region *region;
770 	struct resource *res;
771 
772 	kernel_code.start   = virt_to_phys(_text);
773 	kernel_code.end     = virt_to_phys(_etext - 1);
774 	kernel_data.start   = virt_to_phys(_sdata);
775 	kernel_data.end     = virt_to_phys(_end - 1);
776 
777 	for_each_memblock(memory, region) {
778 		res = memblock_virt_alloc(sizeof(*res), 0);
779 		res->name  = "System RAM";
780 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
781 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
782 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
783 
784 		request_resource(&iomem_resource, res);
785 
786 		if (kernel_code.start >= res->start &&
787 		    kernel_code.end <= res->end)
788 			request_resource(res, &kernel_code);
789 		if (kernel_data.start >= res->start &&
790 		    kernel_data.end <= res->end)
791 			request_resource(res, &kernel_data);
792 	}
793 
794 	if (mdesc->video_start) {
795 		video_ram.start = mdesc->video_start;
796 		video_ram.end   = mdesc->video_end;
797 		request_resource(&iomem_resource, &video_ram);
798 	}
799 
800 	/*
801 	 * Some machines don't have the possibility of ever
802 	 * possessing lp0, lp1 or lp2
803 	 */
804 	if (mdesc->reserve_lp0)
805 		request_resource(&ioport_resource, &lp0);
806 	if (mdesc->reserve_lp1)
807 		request_resource(&ioport_resource, &lp1);
808 	if (mdesc->reserve_lp2)
809 		request_resource(&ioport_resource, &lp2);
810 }
811 
812 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
813 struct screen_info screen_info = {
814  .orig_video_lines	= 30,
815  .orig_video_cols	= 80,
816  .orig_video_mode	= 0,
817  .orig_video_ega_bx	= 0,
818  .orig_video_isVGA	= 1,
819  .orig_video_points	= 8
820 };
821 #endif
822 
823 static int __init customize_machine(void)
824 {
825 	/*
826 	 * customizes platform devices, or adds new ones
827 	 * On DT based machines, we fall back to populating the
828 	 * machine from the device tree, if no callback is provided,
829 	 * otherwise we would always need an init_machine callback.
830 	 */
831 	of_iommu_init();
832 	if (machine_desc->init_machine)
833 		machine_desc->init_machine();
834 #ifdef CONFIG_OF
835 	else
836 		of_platform_populate(NULL, of_default_bus_match_table,
837 					NULL, NULL);
838 #endif
839 	return 0;
840 }
841 arch_initcall(customize_machine);
842 
843 static int __init init_machine_late(void)
844 {
845 	struct device_node *root;
846 	int ret;
847 
848 	if (machine_desc->init_late)
849 		machine_desc->init_late();
850 
851 	root = of_find_node_by_path("/");
852 	if (root) {
853 		ret = of_property_read_string(root, "serial-number",
854 					      &system_serial);
855 		if (ret)
856 			system_serial = NULL;
857 	}
858 
859 	if (!system_serial)
860 		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
861 					  system_serial_high,
862 					  system_serial_low);
863 
864 	return 0;
865 }
866 late_initcall(init_machine_late);
867 
868 #ifdef CONFIG_KEXEC
869 static inline unsigned long long get_total_mem(void)
870 {
871 	unsigned long total;
872 
873 	total = max_low_pfn - min_low_pfn;
874 	return total << PAGE_SHIFT;
875 }
876 
877 /**
878  * reserve_crashkernel() - reserves memory are for crash kernel
879  *
880  * This function reserves memory area given in "crashkernel=" kernel command
881  * line parameter. The memory reserved is used by a dump capture kernel when
882  * primary kernel is crashing.
883  */
884 static void __init reserve_crashkernel(void)
885 {
886 	unsigned long long crash_size, crash_base;
887 	unsigned long long total_mem;
888 	int ret;
889 
890 	total_mem = get_total_mem();
891 	ret = parse_crashkernel(boot_command_line, total_mem,
892 				&crash_size, &crash_base);
893 	if (ret)
894 		return;
895 
896 	ret = memblock_reserve(crash_base, crash_size);
897 	if (ret < 0) {
898 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
899 			(unsigned long)crash_base);
900 		return;
901 	}
902 
903 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
904 		(unsigned long)(crash_size >> 20),
905 		(unsigned long)(crash_base >> 20),
906 		(unsigned long)(total_mem >> 20));
907 
908 	crashk_res.start = crash_base;
909 	crashk_res.end = crash_base + crash_size - 1;
910 	insert_resource(&iomem_resource, &crashk_res);
911 }
912 #else
913 static inline void reserve_crashkernel(void) {}
914 #endif /* CONFIG_KEXEC */
915 
916 void __init hyp_mode_check(void)
917 {
918 #ifdef CONFIG_ARM_VIRT_EXT
919 	sync_boot_mode();
920 
921 	if (is_hyp_mode_available()) {
922 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
923 		pr_info("CPU: Virtualization extensions available.\n");
924 	} else if (is_hyp_mode_mismatched()) {
925 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
926 			__boot_cpu_mode & MODE_MASK);
927 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
928 	} else
929 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
930 #endif
931 }
932 
933 void __init setup_arch(char **cmdline_p)
934 {
935 	const struct machine_desc *mdesc;
936 
937 	setup_processor();
938 	mdesc = setup_machine_fdt(__atags_pointer);
939 	if (!mdesc)
940 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
941 	machine_desc = mdesc;
942 	machine_name = mdesc->name;
943 	dump_stack_set_arch_desc("%s", mdesc->name);
944 
945 	if (mdesc->reboot_mode != REBOOT_HARD)
946 		reboot_mode = mdesc->reboot_mode;
947 
948 	init_mm.start_code = (unsigned long) _text;
949 	init_mm.end_code   = (unsigned long) _etext;
950 	init_mm.end_data   = (unsigned long) _edata;
951 	init_mm.brk	   = (unsigned long) _end;
952 
953 	/* populate cmd_line too for later use, preserving boot_command_line */
954 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
955 	*cmdline_p = cmd_line;
956 
957 	parse_early_param();
958 
959 #ifdef CONFIG_MMU
960 	early_paging_init(mdesc);
961 #endif
962 	setup_dma_zone(mdesc);
963 	sanity_check_meminfo();
964 	arm_memblock_init(mdesc);
965 
966 	paging_init(mdesc);
967 	request_standard_resources(mdesc);
968 
969 	if (mdesc->restart)
970 		arm_pm_restart = mdesc->restart;
971 
972 	unflatten_device_tree();
973 
974 	arm_dt_init_cpu_maps();
975 	psci_init();
976 	xen_early_init();
977 #ifdef CONFIG_SMP
978 	if (is_smp()) {
979 		if (!mdesc->smp_init || !mdesc->smp_init()) {
980 			if (psci_smp_available())
981 				smp_set_ops(&psci_smp_ops);
982 			else if (mdesc->smp)
983 				smp_set_ops(mdesc->smp);
984 		}
985 		smp_init_cpus();
986 		smp_build_mpidr_hash();
987 	}
988 #endif
989 
990 	if (!is_smp())
991 		hyp_mode_check();
992 
993 	reserve_crashkernel();
994 
995 #ifdef CONFIG_MULTI_IRQ_HANDLER
996 	handle_arch_irq = mdesc->handle_irq;
997 #endif
998 
999 #ifdef CONFIG_VT
1000 #if defined(CONFIG_VGA_CONSOLE)
1001 	conswitchp = &vga_con;
1002 #elif defined(CONFIG_DUMMY_CONSOLE)
1003 	conswitchp = &dummy_con;
1004 #endif
1005 #endif
1006 
1007 	if (mdesc->init_early)
1008 		mdesc->init_early();
1009 }
1010 
1011 
1012 static int __init topology_init(void)
1013 {
1014 	int cpu;
1015 
1016 	for_each_possible_cpu(cpu) {
1017 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1018 		cpuinfo->cpu.hotpluggable = 1;
1019 		register_cpu(&cpuinfo->cpu, cpu);
1020 	}
1021 
1022 	return 0;
1023 }
1024 subsys_initcall(topology_init);
1025 
1026 #ifdef CONFIG_HAVE_PROC_CPU
1027 static int __init proc_cpu_init(void)
1028 {
1029 	struct proc_dir_entry *res;
1030 
1031 	res = proc_mkdir("cpu", NULL);
1032 	if (!res)
1033 		return -ENOMEM;
1034 	return 0;
1035 }
1036 fs_initcall(proc_cpu_init);
1037 #endif
1038 
1039 static const char *hwcap_str[] = {
1040 	"swp",
1041 	"half",
1042 	"thumb",
1043 	"26bit",
1044 	"fastmult",
1045 	"fpa",
1046 	"vfp",
1047 	"edsp",
1048 	"java",
1049 	"iwmmxt",
1050 	"crunch",
1051 	"thumbee",
1052 	"neon",
1053 	"vfpv3",
1054 	"vfpv3d16",
1055 	"tls",
1056 	"vfpv4",
1057 	"idiva",
1058 	"idivt",
1059 	"vfpd32",
1060 	"lpae",
1061 	"evtstrm",
1062 	NULL
1063 };
1064 
1065 static const char *hwcap2_str[] = {
1066 	"aes",
1067 	"pmull",
1068 	"sha1",
1069 	"sha2",
1070 	"crc32",
1071 	NULL
1072 };
1073 
1074 static int c_show(struct seq_file *m, void *v)
1075 {
1076 	int i, j;
1077 	u32 cpuid;
1078 
1079 	for_each_online_cpu(i) {
1080 		/*
1081 		 * glibc reads /proc/cpuinfo to determine the number of
1082 		 * online processors, looking for lines beginning with
1083 		 * "processor".  Give glibc what it expects.
1084 		 */
1085 		seq_printf(m, "processor\t: %d\n", i);
1086 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1087 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1088 			   cpu_name, cpuid & 15, elf_platform);
1089 
1090 #if defined(CONFIG_SMP)
1091 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1092 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1093 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1094 #else
1095 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1096 			   loops_per_jiffy / (500000/HZ),
1097 			   (loops_per_jiffy / (5000/HZ)) % 100);
1098 #endif
1099 		/* dump out the processor features */
1100 		seq_puts(m, "Features\t: ");
1101 
1102 		for (j = 0; hwcap_str[j]; j++)
1103 			if (elf_hwcap & (1 << j))
1104 				seq_printf(m, "%s ", hwcap_str[j]);
1105 
1106 		for (j = 0; hwcap2_str[j]; j++)
1107 			if (elf_hwcap2 & (1 << j))
1108 				seq_printf(m, "%s ", hwcap2_str[j]);
1109 
1110 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1111 		seq_printf(m, "CPU architecture: %s\n",
1112 			   proc_arch[cpu_architecture()]);
1113 
1114 		if ((cpuid & 0x0008f000) == 0x00000000) {
1115 			/* pre-ARM7 */
1116 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1117 		} else {
1118 			if ((cpuid & 0x0008f000) == 0x00007000) {
1119 				/* ARM7 */
1120 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1121 					   (cpuid >> 16) & 127);
1122 			} else {
1123 				/* post-ARM7 */
1124 				seq_printf(m, "CPU variant\t: 0x%x\n",
1125 					   (cpuid >> 20) & 15);
1126 			}
1127 			seq_printf(m, "CPU part\t: 0x%03x\n",
1128 				   (cpuid >> 4) & 0xfff);
1129 		}
1130 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1131 	}
1132 
1133 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1134 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1135 	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1136 
1137 	return 0;
1138 }
1139 
1140 static void *c_start(struct seq_file *m, loff_t *pos)
1141 {
1142 	return *pos < 1 ? (void *)1 : NULL;
1143 }
1144 
1145 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1146 {
1147 	++*pos;
1148 	return NULL;
1149 }
1150 
1151 static void c_stop(struct seq_file *m, void *v)
1152 {
1153 }
1154 
1155 const struct seq_operations cpuinfo_op = {
1156 	.start	= c_start,
1157 	.next	= c_next,
1158 	.stop	= c_stop,
1159 	.show	= c_show
1160 };
1161