1 /* 2 * linux/arch/arm/kernel/setup.c 3 * 4 * Copyright (C) 1995-2001 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/export.h> 11 #include <linux/kernel.h> 12 #include <linux/stddef.h> 13 #include <linux/ioport.h> 14 #include <linux/delay.h> 15 #include <linux/utsname.h> 16 #include <linux/initrd.h> 17 #include <linux/console.h> 18 #include <linux/bootmem.h> 19 #include <linux/seq_file.h> 20 #include <linux/screen_info.h> 21 #include <linux/of_iommu.h> 22 #include <linux/of_platform.h> 23 #include <linux/init.h> 24 #include <linux/kexec.h> 25 #include <linux/of_fdt.h> 26 #include <linux/cpu.h> 27 #include <linux/interrupt.h> 28 #include <linux/smp.h> 29 #include <linux/proc_fs.h> 30 #include <linux/memblock.h> 31 #include <linux/bug.h> 32 #include <linux/compiler.h> 33 #include <linux/sort.h> 34 35 #include <asm/unified.h> 36 #include <asm/cp15.h> 37 #include <asm/cpu.h> 38 #include <asm/cputype.h> 39 #include <asm/elf.h> 40 #include <asm/procinfo.h> 41 #include <asm/psci.h> 42 #include <asm/sections.h> 43 #include <asm/setup.h> 44 #include <asm/smp_plat.h> 45 #include <asm/mach-types.h> 46 #include <asm/cacheflush.h> 47 #include <asm/cachetype.h> 48 #include <asm/tlbflush.h> 49 #include <asm/xen/hypervisor.h> 50 51 #include <asm/prom.h> 52 #include <asm/mach/arch.h> 53 #include <asm/mach/irq.h> 54 #include <asm/mach/time.h> 55 #include <asm/system_info.h> 56 #include <asm/system_misc.h> 57 #include <asm/traps.h> 58 #include <asm/unwind.h> 59 #include <asm/memblock.h> 60 #include <asm/virt.h> 61 62 #include "atags.h" 63 64 65 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) 66 char fpe_type[8]; 67 68 static int __init fpe_setup(char *line) 69 { 70 memcpy(fpe_type, line, 8); 71 return 1; 72 } 73 74 __setup("fpe=", fpe_setup); 75 #endif 76 77 extern void init_default_cache_policy(unsigned long); 78 extern void paging_init(const struct machine_desc *desc); 79 extern void early_paging_init(const struct machine_desc *); 80 extern void sanity_check_meminfo(void); 81 extern enum reboot_mode reboot_mode; 82 extern void setup_dma_zone(const struct machine_desc *desc); 83 84 unsigned int processor_id; 85 EXPORT_SYMBOL(processor_id); 86 unsigned int __machine_arch_type __read_mostly; 87 EXPORT_SYMBOL(__machine_arch_type); 88 unsigned int cacheid __read_mostly; 89 EXPORT_SYMBOL(cacheid); 90 91 unsigned int __atags_pointer __initdata; 92 93 unsigned int system_rev; 94 EXPORT_SYMBOL(system_rev); 95 96 const char *system_serial; 97 EXPORT_SYMBOL(system_serial); 98 99 unsigned int system_serial_low; 100 EXPORT_SYMBOL(system_serial_low); 101 102 unsigned int system_serial_high; 103 EXPORT_SYMBOL(system_serial_high); 104 105 unsigned int elf_hwcap __read_mostly; 106 EXPORT_SYMBOL(elf_hwcap); 107 108 unsigned int elf_hwcap2 __read_mostly; 109 EXPORT_SYMBOL(elf_hwcap2); 110 111 112 #ifdef MULTI_CPU 113 struct processor processor __read_mostly; 114 #endif 115 #ifdef MULTI_TLB 116 struct cpu_tlb_fns cpu_tlb __read_mostly; 117 #endif 118 #ifdef MULTI_USER 119 struct cpu_user_fns cpu_user __read_mostly; 120 #endif 121 #ifdef MULTI_CACHE 122 struct cpu_cache_fns cpu_cache __read_mostly; 123 #endif 124 #ifdef CONFIG_OUTER_CACHE 125 struct outer_cache_fns outer_cache __read_mostly; 126 EXPORT_SYMBOL(outer_cache); 127 #endif 128 129 /* 130 * Cached cpu_architecture() result for use by assembler code. 131 * C code should use the cpu_architecture() function instead of accessing this 132 * variable directly. 133 */ 134 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN; 135 136 struct stack { 137 u32 irq[3]; 138 u32 abt[3]; 139 u32 und[3]; 140 u32 fiq[3]; 141 } ____cacheline_aligned; 142 143 #ifndef CONFIG_CPU_V7M 144 static struct stack stacks[NR_CPUS]; 145 #endif 146 147 char elf_platform[ELF_PLATFORM_SIZE]; 148 EXPORT_SYMBOL(elf_platform); 149 150 static const char *cpu_name; 151 static const char *machine_name; 152 static char __initdata cmd_line[COMMAND_LINE_SIZE]; 153 const struct machine_desc *machine_desc __initdata; 154 155 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; 156 #define ENDIANNESS ((char)endian_test.l) 157 158 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); 159 160 /* 161 * Standard memory resources 162 */ 163 static struct resource mem_res[] = { 164 { 165 .name = "Video RAM", 166 .start = 0, 167 .end = 0, 168 .flags = IORESOURCE_MEM 169 }, 170 { 171 .name = "Kernel code", 172 .start = 0, 173 .end = 0, 174 .flags = IORESOURCE_MEM 175 }, 176 { 177 .name = "Kernel data", 178 .start = 0, 179 .end = 0, 180 .flags = IORESOURCE_MEM 181 } 182 }; 183 184 #define video_ram mem_res[0] 185 #define kernel_code mem_res[1] 186 #define kernel_data mem_res[2] 187 188 static struct resource io_res[] = { 189 { 190 .name = "reserved", 191 .start = 0x3bc, 192 .end = 0x3be, 193 .flags = IORESOURCE_IO | IORESOURCE_BUSY 194 }, 195 { 196 .name = "reserved", 197 .start = 0x378, 198 .end = 0x37f, 199 .flags = IORESOURCE_IO | IORESOURCE_BUSY 200 }, 201 { 202 .name = "reserved", 203 .start = 0x278, 204 .end = 0x27f, 205 .flags = IORESOURCE_IO | IORESOURCE_BUSY 206 } 207 }; 208 209 #define lp0 io_res[0] 210 #define lp1 io_res[1] 211 #define lp2 io_res[2] 212 213 static const char *proc_arch[] = { 214 "undefined/unknown", 215 "3", 216 "4", 217 "4T", 218 "5", 219 "5T", 220 "5TE", 221 "5TEJ", 222 "6TEJ", 223 "7", 224 "7M", 225 "?(12)", 226 "?(13)", 227 "?(14)", 228 "?(15)", 229 "?(16)", 230 "?(17)", 231 }; 232 233 #ifdef CONFIG_CPU_V7M 234 static int __get_cpu_architecture(void) 235 { 236 return CPU_ARCH_ARMv7M; 237 } 238 #else 239 static int __get_cpu_architecture(void) 240 { 241 int cpu_arch; 242 243 if ((read_cpuid_id() & 0x0008f000) == 0) { 244 cpu_arch = CPU_ARCH_UNKNOWN; 245 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { 246 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; 247 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { 248 cpu_arch = (read_cpuid_id() >> 16) & 7; 249 if (cpu_arch) 250 cpu_arch += CPU_ARCH_ARMv3; 251 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { 252 /* Revised CPUID format. Read the Memory Model Feature 253 * Register 0 and check for VMSAv7 or PMSAv7 */ 254 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0); 255 if ((mmfr0 & 0x0000000f) >= 0x00000003 || 256 (mmfr0 & 0x000000f0) >= 0x00000030) 257 cpu_arch = CPU_ARCH_ARMv7; 258 else if ((mmfr0 & 0x0000000f) == 0x00000002 || 259 (mmfr0 & 0x000000f0) == 0x00000020) 260 cpu_arch = CPU_ARCH_ARMv6; 261 else 262 cpu_arch = CPU_ARCH_UNKNOWN; 263 } else 264 cpu_arch = CPU_ARCH_UNKNOWN; 265 266 return cpu_arch; 267 } 268 #endif 269 270 int __pure cpu_architecture(void) 271 { 272 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN); 273 274 return __cpu_architecture; 275 } 276 277 static int cpu_has_aliasing_icache(unsigned int arch) 278 { 279 int aliasing_icache; 280 unsigned int id_reg, num_sets, line_size; 281 282 /* PIPT caches never alias. */ 283 if (icache_is_pipt()) 284 return 0; 285 286 /* arch specifies the register format */ 287 switch (arch) { 288 case CPU_ARCH_ARMv7: 289 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR" 290 : /* No output operands */ 291 : "r" (1)); 292 isb(); 293 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR" 294 : "=r" (id_reg)); 295 line_size = 4 << ((id_reg & 0x7) + 2); 296 num_sets = ((id_reg >> 13) & 0x7fff) + 1; 297 aliasing_icache = (line_size * num_sets) > PAGE_SIZE; 298 break; 299 case CPU_ARCH_ARMv6: 300 aliasing_icache = read_cpuid_cachetype() & (1 << 11); 301 break; 302 default: 303 /* I-cache aliases will be handled by D-cache aliasing code */ 304 aliasing_icache = 0; 305 } 306 307 return aliasing_icache; 308 } 309 310 static void __init cacheid_init(void) 311 { 312 unsigned int arch = cpu_architecture(); 313 314 if (arch == CPU_ARCH_ARMv7M) { 315 cacheid = 0; 316 } else if (arch >= CPU_ARCH_ARMv6) { 317 unsigned int cachetype = read_cpuid_cachetype(); 318 if ((cachetype & (7 << 29)) == 4 << 29) { 319 /* ARMv7 register format */ 320 arch = CPU_ARCH_ARMv7; 321 cacheid = CACHEID_VIPT_NONALIASING; 322 switch (cachetype & (3 << 14)) { 323 case (1 << 14): 324 cacheid |= CACHEID_ASID_TAGGED; 325 break; 326 case (3 << 14): 327 cacheid |= CACHEID_PIPT; 328 break; 329 } 330 } else { 331 arch = CPU_ARCH_ARMv6; 332 if (cachetype & (1 << 23)) 333 cacheid = CACHEID_VIPT_ALIASING; 334 else 335 cacheid = CACHEID_VIPT_NONALIASING; 336 } 337 if (cpu_has_aliasing_icache(arch)) 338 cacheid |= CACHEID_VIPT_I_ALIASING; 339 } else { 340 cacheid = CACHEID_VIVT; 341 } 342 343 pr_info("CPU: %s data cache, %s instruction cache\n", 344 cache_is_vivt() ? "VIVT" : 345 cache_is_vipt_aliasing() ? "VIPT aliasing" : 346 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown", 347 cache_is_vivt() ? "VIVT" : 348 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" : 349 icache_is_vipt_aliasing() ? "VIPT aliasing" : 350 icache_is_pipt() ? "PIPT" : 351 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown"); 352 } 353 354 /* 355 * These functions re-use the assembly code in head.S, which 356 * already provide the required functionality. 357 */ 358 extern struct proc_info_list *lookup_processor_type(unsigned int); 359 360 void __init early_print(const char *str, ...) 361 { 362 extern void printascii(const char *); 363 char buf[256]; 364 va_list ap; 365 366 va_start(ap, str); 367 vsnprintf(buf, sizeof(buf), str, ap); 368 va_end(ap); 369 370 #ifdef CONFIG_DEBUG_LL 371 printascii(buf); 372 #endif 373 printk("%s", buf); 374 } 375 376 static void __init cpuid_init_hwcaps(void) 377 { 378 int block; 379 u32 isar5; 380 381 if (cpu_architecture() < CPU_ARCH_ARMv7) 382 return; 383 384 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24); 385 if (block >= 2) 386 elf_hwcap |= HWCAP_IDIVA; 387 if (block >= 1) 388 elf_hwcap |= HWCAP_IDIVT; 389 390 /* LPAE implies atomic ldrd/strd instructions */ 391 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0); 392 if (block >= 5) 393 elf_hwcap |= HWCAP_LPAE; 394 395 /* check for supported v8 Crypto instructions */ 396 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5); 397 398 block = cpuid_feature_extract_field(isar5, 4); 399 if (block >= 2) 400 elf_hwcap2 |= HWCAP2_PMULL; 401 if (block >= 1) 402 elf_hwcap2 |= HWCAP2_AES; 403 404 block = cpuid_feature_extract_field(isar5, 8); 405 if (block >= 1) 406 elf_hwcap2 |= HWCAP2_SHA1; 407 408 block = cpuid_feature_extract_field(isar5, 12); 409 if (block >= 1) 410 elf_hwcap2 |= HWCAP2_SHA2; 411 412 block = cpuid_feature_extract_field(isar5, 16); 413 if (block >= 1) 414 elf_hwcap2 |= HWCAP2_CRC32; 415 } 416 417 static void __init elf_hwcap_fixup(void) 418 { 419 unsigned id = read_cpuid_id(); 420 421 /* 422 * HWCAP_TLS is available only on 1136 r1p0 and later, 423 * see also kuser_get_tls_init. 424 */ 425 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 && 426 ((id >> 20) & 3) == 0) { 427 elf_hwcap &= ~HWCAP_TLS; 428 return; 429 } 430 431 /* Verify if CPUID scheme is implemented */ 432 if ((id & 0x000f0000) != 0x000f0000) 433 return; 434 435 /* 436 * If the CPU supports LDREX/STREX and LDREXB/STREXB, 437 * avoid advertising SWP; it may not be atomic with 438 * multiprocessing cores. 439 */ 440 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 || 441 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 && 442 cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3)) 443 elf_hwcap &= ~HWCAP_SWP; 444 } 445 446 /* 447 * cpu_init - initialise one CPU. 448 * 449 * cpu_init sets up the per-CPU stacks. 450 */ 451 void notrace cpu_init(void) 452 { 453 #ifndef CONFIG_CPU_V7M 454 unsigned int cpu = smp_processor_id(); 455 struct stack *stk = &stacks[cpu]; 456 457 if (cpu >= NR_CPUS) { 458 pr_crit("CPU%u: bad primary CPU number\n", cpu); 459 BUG(); 460 } 461 462 /* 463 * This only works on resume and secondary cores. For booting on the 464 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup. 465 */ 466 set_my_cpu_offset(per_cpu_offset(cpu)); 467 468 cpu_proc_init(); 469 470 /* 471 * Define the placement constraint for the inline asm directive below. 472 * In Thumb-2, msr with an immediate value is not allowed. 473 */ 474 #ifdef CONFIG_THUMB2_KERNEL 475 #define PLC "r" 476 #else 477 #define PLC "I" 478 #endif 479 480 /* 481 * setup stacks for re-entrant exception handlers 482 */ 483 __asm__ ( 484 "msr cpsr_c, %1\n\t" 485 "add r14, %0, %2\n\t" 486 "mov sp, r14\n\t" 487 "msr cpsr_c, %3\n\t" 488 "add r14, %0, %4\n\t" 489 "mov sp, r14\n\t" 490 "msr cpsr_c, %5\n\t" 491 "add r14, %0, %6\n\t" 492 "mov sp, r14\n\t" 493 "msr cpsr_c, %7\n\t" 494 "add r14, %0, %8\n\t" 495 "mov sp, r14\n\t" 496 "msr cpsr_c, %9" 497 : 498 : "r" (stk), 499 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), 500 "I" (offsetof(struct stack, irq[0])), 501 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE), 502 "I" (offsetof(struct stack, abt[0])), 503 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE), 504 "I" (offsetof(struct stack, und[0])), 505 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE), 506 "I" (offsetof(struct stack, fiq[0])), 507 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE) 508 : "r14"); 509 #endif 510 } 511 512 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID }; 513 514 void __init smp_setup_processor_id(void) 515 { 516 int i; 517 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0; 518 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 519 520 cpu_logical_map(0) = cpu; 521 for (i = 1; i < nr_cpu_ids; ++i) 522 cpu_logical_map(i) = i == cpu ? 0 : i; 523 524 /* 525 * clear __my_cpu_offset on boot CPU to avoid hang caused by 526 * using percpu variable early, for example, lockdep will 527 * access percpu variable inside lock_release 528 */ 529 set_my_cpu_offset(0); 530 531 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr); 532 } 533 534 struct mpidr_hash mpidr_hash; 535 #ifdef CONFIG_SMP 536 /** 537 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 538 * level in order to build a linear index from an 539 * MPIDR value. Resulting algorithm is a collision 540 * free hash carried out through shifting and ORing 541 */ 542 static void __init smp_build_mpidr_hash(void) 543 { 544 u32 i, affinity; 545 u32 fs[3], bits[3], ls, mask = 0; 546 /* 547 * Pre-scan the list of MPIDRS and filter out bits that do 548 * not contribute to affinity levels, ie they never toggle. 549 */ 550 for_each_possible_cpu(i) 551 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 552 pr_debug("mask of set bits 0x%x\n", mask); 553 /* 554 * Find and stash the last and first bit set at all affinity levels to 555 * check how many bits are required to represent them. 556 */ 557 for (i = 0; i < 3; i++) { 558 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 559 /* 560 * Find the MSB bit and LSB bits position 561 * to determine how many bits are required 562 * to express the affinity level. 563 */ 564 ls = fls(affinity); 565 fs[i] = affinity ? ffs(affinity) - 1 : 0; 566 bits[i] = ls - fs[i]; 567 } 568 /* 569 * An index can be created from the MPIDR by isolating the 570 * significant bits at each affinity level and by shifting 571 * them in order to compress the 24 bits values space to a 572 * compressed set of values. This is equivalent to hashing 573 * the MPIDR through shifting and ORing. It is a collision free 574 * hash though not minimal since some levels might contain a number 575 * of CPUs that is not an exact power of 2 and their bit 576 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}. 577 */ 578 mpidr_hash.shift_aff[0] = fs[0]; 579 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0]; 580 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] - 581 (bits[1] + bits[0]); 582 mpidr_hash.mask = mask; 583 mpidr_hash.bits = bits[2] + bits[1] + bits[0]; 584 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n", 585 mpidr_hash.shift_aff[0], 586 mpidr_hash.shift_aff[1], 587 mpidr_hash.shift_aff[2], 588 mpidr_hash.mask, 589 mpidr_hash.bits); 590 /* 591 * 4x is an arbitrary value used to warn on a hash table much bigger 592 * than expected on most systems. 593 */ 594 if (mpidr_hash_size() > 4 * num_possible_cpus()) 595 pr_warn("Large number of MPIDR hash buckets detected\n"); 596 sync_cache_w(&mpidr_hash); 597 } 598 #endif 599 600 static void __init setup_processor(void) 601 { 602 struct proc_info_list *list; 603 604 /* 605 * locate processor in the list of supported processor 606 * types. The linker builds this table for us from the 607 * entries in arch/arm/mm/proc-*.S 608 */ 609 list = lookup_processor_type(read_cpuid_id()); 610 if (!list) { 611 pr_err("CPU configuration botched (ID %08x), unable to continue.\n", 612 read_cpuid_id()); 613 while (1); 614 } 615 616 cpu_name = list->cpu_name; 617 __cpu_architecture = __get_cpu_architecture(); 618 619 #ifdef MULTI_CPU 620 processor = *list->proc; 621 #endif 622 #ifdef MULTI_TLB 623 cpu_tlb = *list->tlb; 624 #endif 625 #ifdef MULTI_USER 626 cpu_user = *list->user; 627 #endif 628 #ifdef MULTI_CACHE 629 cpu_cache = *list->cache; 630 #endif 631 632 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", 633 cpu_name, read_cpuid_id(), read_cpuid_id() & 15, 634 proc_arch[cpu_architecture()], get_cr()); 635 636 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c", 637 list->arch_name, ENDIANNESS); 638 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c", 639 list->elf_name, ENDIANNESS); 640 elf_hwcap = list->elf_hwcap; 641 642 cpuid_init_hwcaps(); 643 644 #ifndef CONFIG_ARM_THUMB 645 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT); 646 #endif 647 #ifdef CONFIG_MMU 648 init_default_cache_policy(list->__cpu_mm_mmu_flags); 649 #endif 650 erratum_a15_798181_init(); 651 652 elf_hwcap_fixup(); 653 654 cacheid_init(); 655 cpu_init(); 656 } 657 658 void __init dump_machine_table(void) 659 { 660 const struct machine_desc *p; 661 662 early_print("Available machine support:\n\nID (hex)\tNAME\n"); 663 for_each_machine_desc(p) 664 early_print("%08x\t%s\n", p->nr, p->name); 665 666 early_print("\nPlease check your kernel config and/or bootloader.\n"); 667 668 while (true) 669 /* can't use cpu_relax() here as it may require MMU setup */; 670 } 671 672 int __init arm_add_memory(u64 start, u64 size) 673 { 674 u64 aligned_start; 675 676 /* 677 * Ensure that start/size are aligned to a page boundary. 678 * Size is rounded down, start is rounded up. 679 */ 680 aligned_start = PAGE_ALIGN(start); 681 if (aligned_start > start + size) 682 size = 0; 683 else 684 size -= aligned_start - start; 685 686 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT 687 if (aligned_start > ULONG_MAX) { 688 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n", 689 (long long)start); 690 return -EINVAL; 691 } 692 693 if (aligned_start + size > ULONG_MAX) { 694 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n", 695 (long long)start); 696 /* 697 * To ensure bank->start + bank->size is representable in 698 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB. 699 * This means we lose a page after masking. 700 */ 701 size = ULONG_MAX - aligned_start; 702 } 703 #endif 704 705 if (aligned_start < PHYS_OFFSET) { 706 if (aligned_start + size <= PHYS_OFFSET) { 707 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 708 aligned_start, aligned_start + size); 709 return -EINVAL; 710 } 711 712 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 713 aligned_start, (u64)PHYS_OFFSET); 714 715 size -= PHYS_OFFSET - aligned_start; 716 aligned_start = PHYS_OFFSET; 717 } 718 719 start = aligned_start; 720 size = size & ~(phys_addr_t)(PAGE_SIZE - 1); 721 722 /* 723 * Check whether this memory region has non-zero size or 724 * invalid node number. 725 */ 726 if (size == 0) 727 return -EINVAL; 728 729 memblock_add(start, size); 730 return 0; 731 } 732 733 /* 734 * Pick out the memory size. We look for mem=size@start, 735 * where start and size are "size[KkMm]" 736 */ 737 738 static int __init early_mem(char *p) 739 { 740 static int usermem __initdata = 0; 741 u64 size; 742 u64 start; 743 char *endp; 744 745 /* 746 * If the user specifies memory size, we 747 * blow away any automatically generated 748 * size. 749 */ 750 if (usermem == 0) { 751 usermem = 1; 752 memblock_remove(memblock_start_of_DRAM(), 753 memblock_end_of_DRAM() - memblock_start_of_DRAM()); 754 } 755 756 start = PHYS_OFFSET; 757 size = memparse(p, &endp); 758 if (*endp == '@') 759 start = memparse(endp + 1, NULL); 760 761 arm_add_memory(start, size); 762 763 return 0; 764 } 765 early_param("mem", early_mem); 766 767 static void __init request_standard_resources(const struct machine_desc *mdesc) 768 { 769 struct memblock_region *region; 770 struct resource *res; 771 772 kernel_code.start = virt_to_phys(_text); 773 kernel_code.end = virt_to_phys(_etext - 1); 774 kernel_data.start = virt_to_phys(_sdata); 775 kernel_data.end = virt_to_phys(_end - 1); 776 777 for_each_memblock(memory, region) { 778 res = memblock_virt_alloc(sizeof(*res), 0); 779 res->name = "System RAM"; 780 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 781 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 782 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 783 784 request_resource(&iomem_resource, res); 785 786 if (kernel_code.start >= res->start && 787 kernel_code.end <= res->end) 788 request_resource(res, &kernel_code); 789 if (kernel_data.start >= res->start && 790 kernel_data.end <= res->end) 791 request_resource(res, &kernel_data); 792 } 793 794 if (mdesc->video_start) { 795 video_ram.start = mdesc->video_start; 796 video_ram.end = mdesc->video_end; 797 request_resource(&iomem_resource, &video_ram); 798 } 799 800 /* 801 * Some machines don't have the possibility of ever 802 * possessing lp0, lp1 or lp2 803 */ 804 if (mdesc->reserve_lp0) 805 request_resource(&ioport_resource, &lp0); 806 if (mdesc->reserve_lp1) 807 request_resource(&ioport_resource, &lp1); 808 if (mdesc->reserve_lp2) 809 request_resource(&ioport_resource, &lp2); 810 } 811 812 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) 813 struct screen_info screen_info = { 814 .orig_video_lines = 30, 815 .orig_video_cols = 80, 816 .orig_video_mode = 0, 817 .orig_video_ega_bx = 0, 818 .orig_video_isVGA = 1, 819 .orig_video_points = 8 820 }; 821 #endif 822 823 static int __init customize_machine(void) 824 { 825 /* 826 * customizes platform devices, or adds new ones 827 * On DT based machines, we fall back to populating the 828 * machine from the device tree, if no callback is provided, 829 * otherwise we would always need an init_machine callback. 830 */ 831 of_iommu_init(); 832 if (machine_desc->init_machine) 833 machine_desc->init_machine(); 834 #ifdef CONFIG_OF 835 else 836 of_platform_populate(NULL, of_default_bus_match_table, 837 NULL, NULL); 838 #endif 839 return 0; 840 } 841 arch_initcall(customize_machine); 842 843 static int __init init_machine_late(void) 844 { 845 struct device_node *root; 846 int ret; 847 848 if (machine_desc->init_late) 849 machine_desc->init_late(); 850 851 root = of_find_node_by_path("/"); 852 if (root) { 853 ret = of_property_read_string(root, "serial-number", 854 &system_serial); 855 if (ret) 856 system_serial = NULL; 857 } 858 859 if (!system_serial) 860 system_serial = kasprintf(GFP_KERNEL, "%08x%08x", 861 system_serial_high, 862 system_serial_low); 863 864 return 0; 865 } 866 late_initcall(init_machine_late); 867 868 #ifdef CONFIG_KEXEC 869 static inline unsigned long long get_total_mem(void) 870 { 871 unsigned long total; 872 873 total = max_low_pfn - min_low_pfn; 874 return total << PAGE_SHIFT; 875 } 876 877 /** 878 * reserve_crashkernel() - reserves memory are for crash kernel 879 * 880 * This function reserves memory area given in "crashkernel=" kernel command 881 * line parameter. The memory reserved is used by a dump capture kernel when 882 * primary kernel is crashing. 883 */ 884 static void __init reserve_crashkernel(void) 885 { 886 unsigned long long crash_size, crash_base; 887 unsigned long long total_mem; 888 int ret; 889 890 total_mem = get_total_mem(); 891 ret = parse_crashkernel(boot_command_line, total_mem, 892 &crash_size, &crash_base); 893 if (ret) 894 return; 895 896 ret = memblock_reserve(crash_base, crash_size); 897 if (ret < 0) { 898 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n", 899 (unsigned long)crash_base); 900 return; 901 } 902 903 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 904 (unsigned long)(crash_size >> 20), 905 (unsigned long)(crash_base >> 20), 906 (unsigned long)(total_mem >> 20)); 907 908 crashk_res.start = crash_base; 909 crashk_res.end = crash_base + crash_size - 1; 910 insert_resource(&iomem_resource, &crashk_res); 911 } 912 #else 913 static inline void reserve_crashkernel(void) {} 914 #endif /* CONFIG_KEXEC */ 915 916 void __init hyp_mode_check(void) 917 { 918 #ifdef CONFIG_ARM_VIRT_EXT 919 sync_boot_mode(); 920 921 if (is_hyp_mode_available()) { 922 pr_info("CPU: All CPU(s) started in HYP mode.\n"); 923 pr_info("CPU: Virtualization extensions available.\n"); 924 } else if (is_hyp_mode_mismatched()) { 925 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n", 926 __boot_cpu_mode & MODE_MASK); 927 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n"); 928 } else 929 pr_info("CPU: All CPU(s) started in SVC mode.\n"); 930 #endif 931 } 932 933 void __init setup_arch(char **cmdline_p) 934 { 935 const struct machine_desc *mdesc; 936 937 setup_processor(); 938 mdesc = setup_machine_fdt(__atags_pointer); 939 if (!mdesc) 940 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type); 941 machine_desc = mdesc; 942 machine_name = mdesc->name; 943 dump_stack_set_arch_desc("%s", mdesc->name); 944 945 if (mdesc->reboot_mode != REBOOT_HARD) 946 reboot_mode = mdesc->reboot_mode; 947 948 init_mm.start_code = (unsigned long) _text; 949 init_mm.end_code = (unsigned long) _etext; 950 init_mm.end_data = (unsigned long) _edata; 951 init_mm.brk = (unsigned long) _end; 952 953 /* populate cmd_line too for later use, preserving boot_command_line */ 954 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); 955 *cmdline_p = cmd_line; 956 957 parse_early_param(); 958 959 #ifdef CONFIG_MMU 960 early_paging_init(mdesc); 961 #endif 962 setup_dma_zone(mdesc); 963 sanity_check_meminfo(); 964 arm_memblock_init(mdesc); 965 966 paging_init(mdesc); 967 request_standard_resources(mdesc); 968 969 if (mdesc->restart) 970 arm_pm_restart = mdesc->restart; 971 972 unflatten_device_tree(); 973 974 arm_dt_init_cpu_maps(); 975 psci_init(); 976 xen_early_init(); 977 #ifdef CONFIG_SMP 978 if (is_smp()) { 979 if (!mdesc->smp_init || !mdesc->smp_init()) { 980 if (psci_smp_available()) 981 smp_set_ops(&psci_smp_ops); 982 else if (mdesc->smp) 983 smp_set_ops(mdesc->smp); 984 } 985 smp_init_cpus(); 986 smp_build_mpidr_hash(); 987 } 988 #endif 989 990 if (!is_smp()) 991 hyp_mode_check(); 992 993 reserve_crashkernel(); 994 995 #ifdef CONFIG_MULTI_IRQ_HANDLER 996 handle_arch_irq = mdesc->handle_irq; 997 #endif 998 999 #ifdef CONFIG_VT 1000 #if defined(CONFIG_VGA_CONSOLE) 1001 conswitchp = &vga_con; 1002 #elif defined(CONFIG_DUMMY_CONSOLE) 1003 conswitchp = &dummy_con; 1004 #endif 1005 #endif 1006 1007 if (mdesc->init_early) 1008 mdesc->init_early(); 1009 } 1010 1011 1012 static int __init topology_init(void) 1013 { 1014 int cpu; 1015 1016 for_each_possible_cpu(cpu) { 1017 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); 1018 cpuinfo->cpu.hotpluggable = 1; 1019 register_cpu(&cpuinfo->cpu, cpu); 1020 } 1021 1022 return 0; 1023 } 1024 subsys_initcall(topology_init); 1025 1026 #ifdef CONFIG_HAVE_PROC_CPU 1027 static int __init proc_cpu_init(void) 1028 { 1029 struct proc_dir_entry *res; 1030 1031 res = proc_mkdir("cpu", NULL); 1032 if (!res) 1033 return -ENOMEM; 1034 return 0; 1035 } 1036 fs_initcall(proc_cpu_init); 1037 #endif 1038 1039 static const char *hwcap_str[] = { 1040 "swp", 1041 "half", 1042 "thumb", 1043 "26bit", 1044 "fastmult", 1045 "fpa", 1046 "vfp", 1047 "edsp", 1048 "java", 1049 "iwmmxt", 1050 "crunch", 1051 "thumbee", 1052 "neon", 1053 "vfpv3", 1054 "vfpv3d16", 1055 "tls", 1056 "vfpv4", 1057 "idiva", 1058 "idivt", 1059 "vfpd32", 1060 "lpae", 1061 "evtstrm", 1062 NULL 1063 }; 1064 1065 static const char *hwcap2_str[] = { 1066 "aes", 1067 "pmull", 1068 "sha1", 1069 "sha2", 1070 "crc32", 1071 NULL 1072 }; 1073 1074 static int c_show(struct seq_file *m, void *v) 1075 { 1076 int i, j; 1077 u32 cpuid; 1078 1079 for_each_online_cpu(i) { 1080 /* 1081 * glibc reads /proc/cpuinfo to determine the number of 1082 * online processors, looking for lines beginning with 1083 * "processor". Give glibc what it expects. 1084 */ 1085 seq_printf(m, "processor\t: %d\n", i); 1086 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id(); 1087 seq_printf(m, "model name\t: %s rev %d (%s)\n", 1088 cpu_name, cpuid & 15, elf_platform); 1089 1090 #if defined(CONFIG_SMP) 1091 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 1092 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), 1093 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); 1094 #else 1095 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 1096 loops_per_jiffy / (500000/HZ), 1097 (loops_per_jiffy / (5000/HZ)) % 100); 1098 #endif 1099 /* dump out the processor features */ 1100 seq_puts(m, "Features\t: "); 1101 1102 for (j = 0; hwcap_str[j]; j++) 1103 if (elf_hwcap & (1 << j)) 1104 seq_printf(m, "%s ", hwcap_str[j]); 1105 1106 for (j = 0; hwcap2_str[j]; j++) 1107 if (elf_hwcap2 & (1 << j)) 1108 seq_printf(m, "%s ", hwcap2_str[j]); 1109 1110 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24); 1111 seq_printf(m, "CPU architecture: %s\n", 1112 proc_arch[cpu_architecture()]); 1113 1114 if ((cpuid & 0x0008f000) == 0x00000000) { 1115 /* pre-ARM7 */ 1116 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4); 1117 } else { 1118 if ((cpuid & 0x0008f000) == 0x00007000) { 1119 /* ARM7 */ 1120 seq_printf(m, "CPU variant\t: 0x%02x\n", 1121 (cpuid >> 16) & 127); 1122 } else { 1123 /* post-ARM7 */ 1124 seq_printf(m, "CPU variant\t: 0x%x\n", 1125 (cpuid >> 20) & 15); 1126 } 1127 seq_printf(m, "CPU part\t: 0x%03x\n", 1128 (cpuid >> 4) & 0xfff); 1129 } 1130 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15); 1131 } 1132 1133 seq_printf(m, "Hardware\t: %s\n", machine_name); 1134 seq_printf(m, "Revision\t: %04x\n", system_rev); 1135 seq_printf(m, "Serial\t\t: %s\n", system_serial); 1136 1137 return 0; 1138 } 1139 1140 static void *c_start(struct seq_file *m, loff_t *pos) 1141 { 1142 return *pos < 1 ? (void *)1 : NULL; 1143 } 1144 1145 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 1146 { 1147 ++*pos; 1148 return NULL; 1149 } 1150 1151 static void c_stop(struct seq_file *m, void *v) 1152 { 1153 } 1154 1155 const struct seq_operations cpuinfo_op = { 1156 .start = c_start, 1157 .next = c_next, 1158 .stop = c_stop, 1159 .show = c_show 1160 }; 1161