xref: /openbmc/linux/arch/arm/kernel/setup.c (revision d7a3d85e)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 
35 #include <asm/unified.h>
36 #include <asm/cp15.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/elf.h>
40 #include <asm/procinfo.h>
41 #include <asm/psci.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp_plat.h>
45 #include <asm/mach-types.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cachetype.h>
48 #include <asm/tlbflush.h>
49 
50 #include <asm/prom.h>
51 #include <asm/mach/arch.h>
52 #include <asm/mach/irq.h>
53 #include <asm/mach/time.h>
54 #include <asm/system_info.h>
55 #include <asm/system_misc.h>
56 #include <asm/traps.h>
57 #include <asm/unwind.h>
58 #include <asm/memblock.h>
59 #include <asm/virt.h>
60 
61 #include "atags.h"
62 
63 
64 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
65 char fpe_type[8];
66 
67 static int __init fpe_setup(char *line)
68 {
69 	memcpy(fpe_type, line, 8);
70 	return 1;
71 }
72 
73 __setup("fpe=", fpe_setup);
74 #endif
75 
76 extern void init_default_cache_policy(unsigned long);
77 extern void paging_init(const struct machine_desc *desc);
78 extern void early_paging_init(const struct machine_desc *,
79 			      struct proc_info_list *);
80 extern void sanity_check_meminfo(void);
81 extern enum reboot_mode reboot_mode;
82 extern void setup_dma_zone(const struct machine_desc *desc);
83 
84 unsigned int processor_id;
85 EXPORT_SYMBOL(processor_id);
86 unsigned int __machine_arch_type __read_mostly;
87 EXPORT_SYMBOL(__machine_arch_type);
88 unsigned int cacheid __read_mostly;
89 EXPORT_SYMBOL(cacheid);
90 
91 unsigned int __atags_pointer __initdata;
92 
93 unsigned int system_rev;
94 EXPORT_SYMBOL(system_rev);
95 
96 unsigned int system_serial_low;
97 EXPORT_SYMBOL(system_serial_low);
98 
99 unsigned int system_serial_high;
100 EXPORT_SYMBOL(system_serial_high);
101 
102 unsigned int elf_hwcap __read_mostly;
103 EXPORT_SYMBOL(elf_hwcap);
104 
105 unsigned int elf_hwcap2 __read_mostly;
106 EXPORT_SYMBOL(elf_hwcap2);
107 
108 
109 #ifdef MULTI_CPU
110 struct processor processor __read_mostly;
111 #endif
112 #ifdef MULTI_TLB
113 struct cpu_tlb_fns cpu_tlb __read_mostly;
114 #endif
115 #ifdef MULTI_USER
116 struct cpu_user_fns cpu_user __read_mostly;
117 #endif
118 #ifdef MULTI_CACHE
119 struct cpu_cache_fns cpu_cache __read_mostly;
120 #endif
121 #ifdef CONFIG_OUTER_CACHE
122 struct outer_cache_fns outer_cache __read_mostly;
123 EXPORT_SYMBOL(outer_cache);
124 #endif
125 
126 /*
127  * Cached cpu_architecture() result for use by assembler code.
128  * C code should use the cpu_architecture() function instead of accessing this
129  * variable directly.
130  */
131 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
132 
133 struct stack {
134 	u32 irq[3];
135 	u32 abt[3];
136 	u32 und[3];
137 	u32 fiq[3];
138 } ____cacheline_aligned;
139 
140 #ifndef CONFIG_CPU_V7M
141 static struct stack stacks[NR_CPUS];
142 #endif
143 
144 char elf_platform[ELF_PLATFORM_SIZE];
145 EXPORT_SYMBOL(elf_platform);
146 
147 static const char *cpu_name;
148 static const char *machine_name;
149 static char __initdata cmd_line[COMMAND_LINE_SIZE];
150 const struct machine_desc *machine_desc __initdata;
151 
152 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
153 #define ENDIANNESS ((char)endian_test.l)
154 
155 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
156 
157 /*
158  * Standard memory resources
159  */
160 static struct resource mem_res[] = {
161 	{
162 		.name = "Video RAM",
163 		.start = 0,
164 		.end = 0,
165 		.flags = IORESOURCE_MEM
166 	},
167 	{
168 		.name = "Kernel code",
169 		.start = 0,
170 		.end = 0,
171 		.flags = IORESOURCE_MEM
172 	},
173 	{
174 		.name = "Kernel data",
175 		.start = 0,
176 		.end = 0,
177 		.flags = IORESOURCE_MEM
178 	}
179 };
180 
181 #define video_ram   mem_res[0]
182 #define kernel_code mem_res[1]
183 #define kernel_data mem_res[2]
184 
185 static struct resource io_res[] = {
186 	{
187 		.name = "reserved",
188 		.start = 0x3bc,
189 		.end = 0x3be,
190 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
191 	},
192 	{
193 		.name = "reserved",
194 		.start = 0x378,
195 		.end = 0x37f,
196 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
197 	},
198 	{
199 		.name = "reserved",
200 		.start = 0x278,
201 		.end = 0x27f,
202 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
203 	}
204 };
205 
206 #define lp0 io_res[0]
207 #define lp1 io_res[1]
208 #define lp2 io_res[2]
209 
210 static const char *proc_arch[] = {
211 	"undefined/unknown",
212 	"3",
213 	"4",
214 	"4T",
215 	"5",
216 	"5T",
217 	"5TE",
218 	"5TEJ",
219 	"6TEJ",
220 	"7",
221 	"7M",
222 	"?(12)",
223 	"?(13)",
224 	"?(14)",
225 	"?(15)",
226 	"?(16)",
227 	"?(17)",
228 };
229 
230 #ifdef CONFIG_CPU_V7M
231 static int __get_cpu_architecture(void)
232 {
233 	return CPU_ARCH_ARMv7M;
234 }
235 #else
236 static int __get_cpu_architecture(void)
237 {
238 	int cpu_arch;
239 
240 	if ((read_cpuid_id() & 0x0008f000) == 0) {
241 		cpu_arch = CPU_ARCH_UNKNOWN;
242 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
243 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
244 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
245 		cpu_arch = (read_cpuid_id() >> 16) & 7;
246 		if (cpu_arch)
247 			cpu_arch += CPU_ARCH_ARMv3;
248 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
249 		/* Revised CPUID format. Read the Memory Model Feature
250 		 * Register 0 and check for VMSAv7 or PMSAv7 */
251 		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
252 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
253 		    (mmfr0 & 0x000000f0) >= 0x00000030)
254 			cpu_arch = CPU_ARCH_ARMv7;
255 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
256 			 (mmfr0 & 0x000000f0) == 0x00000020)
257 			cpu_arch = CPU_ARCH_ARMv6;
258 		else
259 			cpu_arch = CPU_ARCH_UNKNOWN;
260 	} else
261 		cpu_arch = CPU_ARCH_UNKNOWN;
262 
263 	return cpu_arch;
264 }
265 #endif
266 
267 int __pure cpu_architecture(void)
268 {
269 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
270 
271 	return __cpu_architecture;
272 }
273 
274 static int cpu_has_aliasing_icache(unsigned int arch)
275 {
276 	int aliasing_icache;
277 	unsigned int id_reg, num_sets, line_size;
278 
279 	/* PIPT caches never alias. */
280 	if (icache_is_pipt())
281 		return 0;
282 
283 	/* arch specifies the register format */
284 	switch (arch) {
285 	case CPU_ARCH_ARMv7:
286 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
287 		    : /* No output operands */
288 		    : "r" (1));
289 		isb();
290 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
291 		    : "=r" (id_reg));
292 		line_size = 4 << ((id_reg & 0x7) + 2);
293 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
294 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
295 		break;
296 	case CPU_ARCH_ARMv6:
297 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
298 		break;
299 	default:
300 		/* I-cache aliases will be handled by D-cache aliasing code */
301 		aliasing_icache = 0;
302 	}
303 
304 	return aliasing_icache;
305 }
306 
307 static void __init cacheid_init(void)
308 {
309 	unsigned int arch = cpu_architecture();
310 
311 	if (arch == CPU_ARCH_ARMv7M) {
312 		cacheid = 0;
313 	} else if (arch >= CPU_ARCH_ARMv6) {
314 		unsigned int cachetype = read_cpuid_cachetype();
315 		if ((cachetype & (7 << 29)) == 4 << 29) {
316 			/* ARMv7 register format */
317 			arch = CPU_ARCH_ARMv7;
318 			cacheid = CACHEID_VIPT_NONALIASING;
319 			switch (cachetype & (3 << 14)) {
320 			case (1 << 14):
321 				cacheid |= CACHEID_ASID_TAGGED;
322 				break;
323 			case (3 << 14):
324 				cacheid |= CACHEID_PIPT;
325 				break;
326 			}
327 		} else {
328 			arch = CPU_ARCH_ARMv6;
329 			if (cachetype & (1 << 23))
330 				cacheid = CACHEID_VIPT_ALIASING;
331 			else
332 				cacheid = CACHEID_VIPT_NONALIASING;
333 		}
334 		if (cpu_has_aliasing_icache(arch))
335 			cacheid |= CACHEID_VIPT_I_ALIASING;
336 	} else {
337 		cacheid = CACHEID_VIVT;
338 	}
339 
340 	pr_info("CPU: %s data cache, %s instruction cache\n",
341 		cache_is_vivt() ? "VIVT" :
342 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
343 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
344 		cache_is_vivt() ? "VIVT" :
345 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
346 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
347 		icache_is_pipt() ? "PIPT" :
348 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
349 }
350 
351 /*
352  * These functions re-use the assembly code in head.S, which
353  * already provide the required functionality.
354  */
355 extern struct proc_info_list *lookup_processor_type(unsigned int);
356 
357 void __init early_print(const char *str, ...)
358 {
359 	extern void printascii(const char *);
360 	char buf[256];
361 	va_list ap;
362 
363 	va_start(ap, str);
364 	vsnprintf(buf, sizeof(buf), str, ap);
365 	va_end(ap);
366 
367 #ifdef CONFIG_DEBUG_LL
368 	printascii(buf);
369 #endif
370 	printk("%s", buf);
371 }
372 
373 static void __init cpuid_init_hwcaps(void)
374 {
375 	int block;
376 	u32 isar5;
377 
378 	if (cpu_architecture() < CPU_ARCH_ARMv7)
379 		return;
380 
381 	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
382 	if (block >= 2)
383 		elf_hwcap |= HWCAP_IDIVA;
384 	if (block >= 1)
385 		elf_hwcap |= HWCAP_IDIVT;
386 
387 	/* LPAE implies atomic ldrd/strd instructions */
388 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
389 	if (block >= 5)
390 		elf_hwcap |= HWCAP_LPAE;
391 
392 	/* check for supported v8 Crypto instructions */
393 	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
394 
395 	block = cpuid_feature_extract_field(isar5, 4);
396 	if (block >= 2)
397 		elf_hwcap2 |= HWCAP2_PMULL;
398 	if (block >= 1)
399 		elf_hwcap2 |= HWCAP2_AES;
400 
401 	block = cpuid_feature_extract_field(isar5, 8);
402 	if (block >= 1)
403 		elf_hwcap2 |= HWCAP2_SHA1;
404 
405 	block = cpuid_feature_extract_field(isar5, 12);
406 	if (block >= 1)
407 		elf_hwcap2 |= HWCAP2_SHA2;
408 
409 	block = cpuid_feature_extract_field(isar5, 16);
410 	if (block >= 1)
411 		elf_hwcap2 |= HWCAP2_CRC32;
412 }
413 
414 static void __init elf_hwcap_fixup(void)
415 {
416 	unsigned id = read_cpuid_id();
417 
418 	/*
419 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
420 	 * see also kuser_get_tls_init.
421 	 */
422 	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
423 	    ((id >> 20) & 3) == 0) {
424 		elf_hwcap &= ~HWCAP_TLS;
425 		return;
426 	}
427 
428 	/* Verify if CPUID scheme is implemented */
429 	if ((id & 0x000f0000) != 0x000f0000)
430 		return;
431 
432 	/*
433 	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
434 	 * avoid advertising SWP; it may not be atomic with
435 	 * multiprocessing cores.
436 	 */
437 	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
438 	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
439 	     cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
440 		elf_hwcap &= ~HWCAP_SWP;
441 }
442 
443 /*
444  * cpu_init - initialise one CPU.
445  *
446  * cpu_init sets up the per-CPU stacks.
447  */
448 void notrace cpu_init(void)
449 {
450 #ifndef CONFIG_CPU_V7M
451 	unsigned int cpu = smp_processor_id();
452 	struct stack *stk = &stacks[cpu];
453 
454 	if (cpu >= NR_CPUS) {
455 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
456 		BUG();
457 	}
458 
459 	/*
460 	 * This only works on resume and secondary cores. For booting on the
461 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
462 	 */
463 	set_my_cpu_offset(per_cpu_offset(cpu));
464 
465 	cpu_proc_init();
466 
467 	/*
468 	 * Define the placement constraint for the inline asm directive below.
469 	 * In Thumb-2, msr with an immediate value is not allowed.
470 	 */
471 #ifdef CONFIG_THUMB2_KERNEL
472 #define PLC	"r"
473 #else
474 #define PLC	"I"
475 #endif
476 
477 	/*
478 	 * setup stacks for re-entrant exception handlers
479 	 */
480 	__asm__ (
481 	"msr	cpsr_c, %1\n\t"
482 	"add	r14, %0, %2\n\t"
483 	"mov	sp, r14\n\t"
484 	"msr	cpsr_c, %3\n\t"
485 	"add	r14, %0, %4\n\t"
486 	"mov	sp, r14\n\t"
487 	"msr	cpsr_c, %5\n\t"
488 	"add	r14, %0, %6\n\t"
489 	"mov	sp, r14\n\t"
490 	"msr	cpsr_c, %7\n\t"
491 	"add	r14, %0, %8\n\t"
492 	"mov	sp, r14\n\t"
493 	"msr	cpsr_c, %9"
494 	    :
495 	    : "r" (stk),
496 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
497 	      "I" (offsetof(struct stack, irq[0])),
498 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
499 	      "I" (offsetof(struct stack, abt[0])),
500 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
501 	      "I" (offsetof(struct stack, und[0])),
502 	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
503 	      "I" (offsetof(struct stack, fiq[0])),
504 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
505 	    : "r14");
506 #endif
507 }
508 
509 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
510 
511 void __init smp_setup_processor_id(void)
512 {
513 	int i;
514 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
515 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
516 
517 	cpu_logical_map(0) = cpu;
518 	for (i = 1; i < nr_cpu_ids; ++i)
519 		cpu_logical_map(i) = i == cpu ? 0 : i;
520 
521 	/*
522 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
523 	 * using percpu variable early, for example, lockdep will
524 	 * access percpu variable inside lock_release
525 	 */
526 	set_my_cpu_offset(0);
527 
528 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
529 }
530 
531 struct mpidr_hash mpidr_hash;
532 #ifdef CONFIG_SMP
533 /**
534  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
535  *			  level in order to build a linear index from an
536  *			  MPIDR value. Resulting algorithm is a collision
537  *			  free hash carried out through shifting and ORing
538  */
539 static void __init smp_build_mpidr_hash(void)
540 {
541 	u32 i, affinity;
542 	u32 fs[3], bits[3], ls, mask = 0;
543 	/*
544 	 * Pre-scan the list of MPIDRS and filter out bits that do
545 	 * not contribute to affinity levels, ie they never toggle.
546 	 */
547 	for_each_possible_cpu(i)
548 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
549 	pr_debug("mask of set bits 0x%x\n", mask);
550 	/*
551 	 * Find and stash the last and first bit set at all affinity levels to
552 	 * check how many bits are required to represent them.
553 	 */
554 	for (i = 0; i < 3; i++) {
555 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
556 		/*
557 		 * Find the MSB bit and LSB bits position
558 		 * to determine how many bits are required
559 		 * to express the affinity level.
560 		 */
561 		ls = fls(affinity);
562 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
563 		bits[i] = ls - fs[i];
564 	}
565 	/*
566 	 * An index can be created from the MPIDR by isolating the
567 	 * significant bits at each affinity level and by shifting
568 	 * them in order to compress the 24 bits values space to a
569 	 * compressed set of values. This is equivalent to hashing
570 	 * the MPIDR through shifting and ORing. It is a collision free
571 	 * hash though not minimal since some levels might contain a number
572 	 * of CPUs that is not an exact power of 2 and their bit
573 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
574 	 */
575 	mpidr_hash.shift_aff[0] = fs[0];
576 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
577 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
578 						(bits[1] + bits[0]);
579 	mpidr_hash.mask = mask;
580 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
581 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
582 				mpidr_hash.shift_aff[0],
583 				mpidr_hash.shift_aff[1],
584 				mpidr_hash.shift_aff[2],
585 				mpidr_hash.mask,
586 				mpidr_hash.bits);
587 	/*
588 	 * 4x is an arbitrary value used to warn on a hash table much bigger
589 	 * than expected on most systems.
590 	 */
591 	if (mpidr_hash_size() > 4 * num_possible_cpus())
592 		pr_warn("Large number of MPIDR hash buckets detected\n");
593 	sync_cache_w(&mpidr_hash);
594 }
595 #endif
596 
597 static void __init setup_processor(void)
598 {
599 	struct proc_info_list *list;
600 
601 	/*
602 	 * locate processor in the list of supported processor
603 	 * types.  The linker builds this table for us from the
604 	 * entries in arch/arm/mm/proc-*.S
605 	 */
606 	list = lookup_processor_type(read_cpuid_id());
607 	if (!list) {
608 		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
609 		       read_cpuid_id());
610 		while (1);
611 	}
612 
613 	cpu_name = list->cpu_name;
614 	__cpu_architecture = __get_cpu_architecture();
615 
616 #ifdef MULTI_CPU
617 	processor = *list->proc;
618 #endif
619 #ifdef MULTI_TLB
620 	cpu_tlb = *list->tlb;
621 #endif
622 #ifdef MULTI_USER
623 	cpu_user = *list->user;
624 #endif
625 #ifdef MULTI_CACHE
626 	cpu_cache = *list->cache;
627 #endif
628 
629 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
630 		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
631 		proc_arch[cpu_architecture()], get_cr());
632 
633 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
634 		 list->arch_name, ENDIANNESS);
635 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
636 		 list->elf_name, ENDIANNESS);
637 	elf_hwcap = list->elf_hwcap;
638 
639 	cpuid_init_hwcaps();
640 
641 #ifndef CONFIG_ARM_THUMB
642 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
643 #endif
644 #ifdef CONFIG_MMU
645 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
646 #endif
647 	erratum_a15_798181_init();
648 
649 	elf_hwcap_fixup();
650 
651 	cacheid_init();
652 	cpu_init();
653 }
654 
655 void __init dump_machine_table(void)
656 {
657 	const struct machine_desc *p;
658 
659 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
660 	for_each_machine_desc(p)
661 		early_print("%08x\t%s\n", p->nr, p->name);
662 
663 	early_print("\nPlease check your kernel config and/or bootloader.\n");
664 
665 	while (true)
666 		/* can't use cpu_relax() here as it may require MMU setup */;
667 }
668 
669 int __init arm_add_memory(u64 start, u64 size)
670 {
671 	u64 aligned_start;
672 
673 	/*
674 	 * Ensure that start/size are aligned to a page boundary.
675 	 * Size is rounded down, start is rounded up.
676 	 */
677 	aligned_start = PAGE_ALIGN(start);
678 	if (aligned_start > start + size)
679 		size = 0;
680 	else
681 		size -= aligned_start - start;
682 
683 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
684 	if (aligned_start > ULONG_MAX) {
685 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
686 			(long long)start);
687 		return -EINVAL;
688 	}
689 
690 	if (aligned_start + size > ULONG_MAX) {
691 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
692 			(long long)start);
693 		/*
694 		 * To ensure bank->start + bank->size is representable in
695 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
696 		 * This means we lose a page after masking.
697 		 */
698 		size = ULONG_MAX - aligned_start;
699 	}
700 #endif
701 
702 	if (aligned_start < PHYS_OFFSET) {
703 		if (aligned_start + size <= PHYS_OFFSET) {
704 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
705 				aligned_start, aligned_start + size);
706 			return -EINVAL;
707 		}
708 
709 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
710 			aligned_start, (u64)PHYS_OFFSET);
711 
712 		size -= PHYS_OFFSET - aligned_start;
713 		aligned_start = PHYS_OFFSET;
714 	}
715 
716 	start = aligned_start;
717 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
718 
719 	/*
720 	 * Check whether this memory region has non-zero size or
721 	 * invalid node number.
722 	 */
723 	if (size == 0)
724 		return -EINVAL;
725 
726 	memblock_add(start, size);
727 	return 0;
728 }
729 
730 /*
731  * Pick out the memory size.  We look for mem=size@start,
732  * where start and size are "size[KkMm]"
733  */
734 
735 static int __init early_mem(char *p)
736 {
737 	static int usermem __initdata = 0;
738 	u64 size;
739 	u64 start;
740 	char *endp;
741 
742 	/*
743 	 * If the user specifies memory size, we
744 	 * blow away any automatically generated
745 	 * size.
746 	 */
747 	if (usermem == 0) {
748 		usermem = 1;
749 		memblock_remove(memblock_start_of_DRAM(),
750 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
751 	}
752 
753 	start = PHYS_OFFSET;
754 	size  = memparse(p, &endp);
755 	if (*endp == '@')
756 		start = memparse(endp + 1, NULL);
757 
758 	arm_add_memory(start, size);
759 
760 	return 0;
761 }
762 early_param("mem", early_mem);
763 
764 static void __init request_standard_resources(const struct machine_desc *mdesc)
765 {
766 	struct memblock_region *region;
767 	struct resource *res;
768 
769 	kernel_code.start   = virt_to_phys(_text);
770 	kernel_code.end     = virt_to_phys(_etext - 1);
771 	kernel_data.start   = virt_to_phys(_sdata);
772 	kernel_data.end     = virt_to_phys(_end - 1);
773 
774 	for_each_memblock(memory, region) {
775 		res = memblock_virt_alloc(sizeof(*res), 0);
776 		res->name  = "System RAM";
777 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
778 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
779 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
780 
781 		request_resource(&iomem_resource, res);
782 
783 		if (kernel_code.start >= res->start &&
784 		    kernel_code.end <= res->end)
785 			request_resource(res, &kernel_code);
786 		if (kernel_data.start >= res->start &&
787 		    kernel_data.end <= res->end)
788 			request_resource(res, &kernel_data);
789 	}
790 
791 	if (mdesc->video_start) {
792 		video_ram.start = mdesc->video_start;
793 		video_ram.end   = mdesc->video_end;
794 		request_resource(&iomem_resource, &video_ram);
795 	}
796 
797 	/*
798 	 * Some machines don't have the possibility of ever
799 	 * possessing lp0, lp1 or lp2
800 	 */
801 	if (mdesc->reserve_lp0)
802 		request_resource(&ioport_resource, &lp0);
803 	if (mdesc->reserve_lp1)
804 		request_resource(&ioport_resource, &lp1);
805 	if (mdesc->reserve_lp2)
806 		request_resource(&ioport_resource, &lp2);
807 }
808 
809 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
810 struct screen_info screen_info = {
811  .orig_video_lines	= 30,
812  .orig_video_cols	= 80,
813  .orig_video_mode	= 0,
814  .orig_video_ega_bx	= 0,
815  .orig_video_isVGA	= 1,
816  .orig_video_points	= 8
817 };
818 #endif
819 
820 static int __init customize_machine(void)
821 {
822 	/*
823 	 * customizes platform devices, or adds new ones
824 	 * On DT based machines, we fall back to populating the
825 	 * machine from the device tree, if no callback is provided,
826 	 * otherwise we would always need an init_machine callback.
827 	 */
828 	of_iommu_init();
829 	if (machine_desc->init_machine)
830 		machine_desc->init_machine();
831 #ifdef CONFIG_OF
832 	else
833 		of_platform_populate(NULL, of_default_bus_match_table,
834 					NULL, NULL);
835 #endif
836 	return 0;
837 }
838 arch_initcall(customize_machine);
839 
840 static int __init init_machine_late(void)
841 {
842 	if (machine_desc->init_late)
843 		machine_desc->init_late();
844 	return 0;
845 }
846 late_initcall(init_machine_late);
847 
848 #ifdef CONFIG_KEXEC
849 static inline unsigned long long get_total_mem(void)
850 {
851 	unsigned long total;
852 
853 	total = max_low_pfn - min_low_pfn;
854 	return total << PAGE_SHIFT;
855 }
856 
857 /**
858  * reserve_crashkernel() - reserves memory are for crash kernel
859  *
860  * This function reserves memory area given in "crashkernel=" kernel command
861  * line parameter. The memory reserved is used by a dump capture kernel when
862  * primary kernel is crashing.
863  */
864 static void __init reserve_crashkernel(void)
865 {
866 	unsigned long long crash_size, crash_base;
867 	unsigned long long total_mem;
868 	int ret;
869 
870 	total_mem = get_total_mem();
871 	ret = parse_crashkernel(boot_command_line, total_mem,
872 				&crash_size, &crash_base);
873 	if (ret)
874 		return;
875 
876 	ret = memblock_reserve(crash_base, crash_size);
877 	if (ret < 0) {
878 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
879 			(unsigned long)crash_base);
880 		return;
881 	}
882 
883 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
884 		(unsigned long)(crash_size >> 20),
885 		(unsigned long)(crash_base >> 20),
886 		(unsigned long)(total_mem >> 20));
887 
888 	crashk_res.start = crash_base;
889 	crashk_res.end = crash_base + crash_size - 1;
890 	insert_resource(&iomem_resource, &crashk_res);
891 }
892 #else
893 static inline void reserve_crashkernel(void) {}
894 #endif /* CONFIG_KEXEC */
895 
896 void __init hyp_mode_check(void)
897 {
898 #ifdef CONFIG_ARM_VIRT_EXT
899 	sync_boot_mode();
900 
901 	if (is_hyp_mode_available()) {
902 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
903 		pr_info("CPU: Virtualization extensions available.\n");
904 	} else if (is_hyp_mode_mismatched()) {
905 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
906 			__boot_cpu_mode & MODE_MASK);
907 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
908 	} else
909 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
910 #endif
911 }
912 
913 void __init setup_arch(char **cmdline_p)
914 {
915 	const struct machine_desc *mdesc;
916 
917 	setup_processor();
918 	mdesc = setup_machine_fdt(__atags_pointer);
919 	if (!mdesc)
920 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
921 	machine_desc = mdesc;
922 	machine_name = mdesc->name;
923 	dump_stack_set_arch_desc("%s", mdesc->name);
924 
925 	if (mdesc->reboot_mode != REBOOT_HARD)
926 		reboot_mode = mdesc->reboot_mode;
927 
928 	init_mm.start_code = (unsigned long) _text;
929 	init_mm.end_code   = (unsigned long) _etext;
930 	init_mm.end_data   = (unsigned long) _edata;
931 	init_mm.brk	   = (unsigned long) _end;
932 
933 	/* populate cmd_line too for later use, preserving boot_command_line */
934 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
935 	*cmdline_p = cmd_line;
936 
937 	parse_early_param();
938 
939 	early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
940 	setup_dma_zone(mdesc);
941 	sanity_check_meminfo();
942 	arm_memblock_init(mdesc);
943 
944 	paging_init(mdesc);
945 	request_standard_resources(mdesc);
946 
947 	if (mdesc->restart)
948 		arm_pm_restart = mdesc->restart;
949 
950 	unflatten_device_tree();
951 
952 	arm_dt_init_cpu_maps();
953 	psci_init();
954 #ifdef CONFIG_SMP
955 	if (is_smp()) {
956 		if (!mdesc->smp_init || !mdesc->smp_init()) {
957 			if (psci_smp_available())
958 				smp_set_ops(&psci_smp_ops);
959 			else if (mdesc->smp)
960 				smp_set_ops(mdesc->smp);
961 		}
962 		smp_init_cpus();
963 		smp_build_mpidr_hash();
964 	}
965 #endif
966 
967 	if (!is_smp())
968 		hyp_mode_check();
969 
970 	reserve_crashkernel();
971 
972 #ifdef CONFIG_MULTI_IRQ_HANDLER
973 	handle_arch_irq = mdesc->handle_irq;
974 #endif
975 
976 #ifdef CONFIG_VT
977 #if defined(CONFIG_VGA_CONSOLE)
978 	conswitchp = &vga_con;
979 #elif defined(CONFIG_DUMMY_CONSOLE)
980 	conswitchp = &dummy_con;
981 #endif
982 #endif
983 
984 	if (mdesc->init_early)
985 		mdesc->init_early();
986 }
987 
988 
989 static int __init topology_init(void)
990 {
991 	int cpu;
992 
993 	for_each_possible_cpu(cpu) {
994 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
995 		cpuinfo->cpu.hotpluggable = 1;
996 		register_cpu(&cpuinfo->cpu, cpu);
997 	}
998 
999 	return 0;
1000 }
1001 subsys_initcall(topology_init);
1002 
1003 #ifdef CONFIG_HAVE_PROC_CPU
1004 static int __init proc_cpu_init(void)
1005 {
1006 	struct proc_dir_entry *res;
1007 
1008 	res = proc_mkdir("cpu", NULL);
1009 	if (!res)
1010 		return -ENOMEM;
1011 	return 0;
1012 }
1013 fs_initcall(proc_cpu_init);
1014 #endif
1015 
1016 static const char *hwcap_str[] = {
1017 	"swp",
1018 	"half",
1019 	"thumb",
1020 	"26bit",
1021 	"fastmult",
1022 	"fpa",
1023 	"vfp",
1024 	"edsp",
1025 	"java",
1026 	"iwmmxt",
1027 	"crunch",
1028 	"thumbee",
1029 	"neon",
1030 	"vfpv3",
1031 	"vfpv3d16",
1032 	"tls",
1033 	"vfpv4",
1034 	"idiva",
1035 	"idivt",
1036 	"vfpd32",
1037 	"lpae",
1038 	"evtstrm",
1039 	NULL
1040 };
1041 
1042 static const char *hwcap2_str[] = {
1043 	"aes",
1044 	"pmull",
1045 	"sha1",
1046 	"sha2",
1047 	"crc32",
1048 	NULL
1049 };
1050 
1051 static int c_show(struct seq_file *m, void *v)
1052 {
1053 	int i, j;
1054 	u32 cpuid;
1055 
1056 	for_each_online_cpu(i) {
1057 		/*
1058 		 * glibc reads /proc/cpuinfo to determine the number of
1059 		 * online processors, looking for lines beginning with
1060 		 * "processor".  Give glibc what it expects.
1061 		 */
1062 		seq_printf(m, "processor\t: %d\n", i);
1063 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1064 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1065 			   cpu_name, cpuid & 15, elf_platform);
1066 
1067 #if defined(CONFIG_SMP)
1068 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1069 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1070 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1071 #else
1072 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1073 			   loops_per_jiffy / (500000/HZ),
1074 			   (loops_per_jiffy / (5000/HZ)) % 100);
1075 #endif
1076 		/* dump out the processor features */
1077 		seq_puts(m, "Features\t: ");
1078 
1079 		for (j = 0; hwcap_str[j]; j++)
1080 			if (elf_hwcap & (1 << j))
1081 				seq_printf(m, "%s ", hwcap_str[j]);
1082 
1083 		for (j = 0; hwcap2_str[j]; j++)
1084 			if (elf_hwcap2 & (1 << j))
1085 				seq_printf(m, "%s ", hwcap2_str[j]);
1086 
1087 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1088 		seq_printf(m, "CPU architecture: %s\n",
1089 			   proc_arch[cpu_architecture()]);
1090 
1091 		if ((cpuid & 0x0008f000) == 0x00000000) {
1092 			/* pre-ARM7 */
1093 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1094 		} else {
1095 			if ((cpuid & 0x0008f000) == 0x00007000) {
1096 				/* ARM7 */
1097 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1098 					   (cpuid >> 16) & 127);
1099 			} else {
1100 				/* post-ARM7 */
1101 				seq_printf(m, "CPU variant\t: 0x%x\n",
1102 					   (cpuid >> 20) & 15);
1103 			}
1104 			seq_printf(m, "CPU part\t: 0x%03x\n",
1105 				   (cpuid >> 4) & 0xfff);
1106 		}
1107 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1108 	}
1109 
1110 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1111 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1112 	seq_printf(m, "Serial\t\t: %08x%08x\n",
1113 		   system_serial_high, system_serial_low);
1114 
1115 	return 0;
1116 }
1117 
1118 static void *c_start(struct seq_file *m, loff_t *pos)
1119 {
1120 	return *pos < 1 ? (void *)1 : NULL;
1121 }
1122 
1123 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1124 {
1125 	++*pos;
1126 	return NULL;
1127 }
1128 
1129 static void c_stop(struct seq_file *m, void *v)
1130 {
1131 }
1132 
1133 const struct seq_operations cpuinfo_op = {
1134 	.start	= c_start,
1135 	.next	= c_next,
1136 	.stop	= c_stop,
1137 	.show	= c_show
1138 };
1139