xref: /openbmc/linux/arch/arm/kernel/setup.c (revision c819e2cf)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 
35 #include <asm/unified.h>
36 #include <asm/cp15.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/elf.h>
40 #include <asm/procinfo.h>
41 #include <asm/psci.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp_plat.h>
45 #include <asm/mach-types.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cachetype.h>
48 #include <asm/tlbflush.h>
49 
50 #include <asm/prom.h>
51 #include <asm/mach/arch.h>
52 #include <asm/mach/irq.h>
53 #include <asm/mach/time.h>
54 #include <asm/system_info.h>
55 #include <asm/system_misc.h>
56 #include <asm/traps.h>
57 #include <asm/unwind.h>
58 #include <asm/memblock.h>
59 #include <asm/virt.h>
60 
61 #include "atags.h"
62 
63 
64 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
65 char fpe_type[8];
66 
67 static int __init fpe_setup(char *line)
68 {
69 	memcpy(fpe_type, line, 8);
70 	return 1;
71 }
72 
73 __setup("fpe=", fpe_setup);
74 #endif
75 
76 extern void init_default_cache_policy(unsigned long);
77 extern void paging_init(const struct machine_desc *desc);
78 extern void early_paging_init(const struct machine_desc *,
79 			      struct proc_info_list *);
80 extern void sanity_check_meminfo(void);
81 extern enum reboot_mode reboot_mode;
82 extern void setup_dma_zone(const struct machine_desc *desc);
83 
84 unsigned int processor_id;
85 EXPORT_SYMBOL(processor_id);
86 unsigned int __machine_arch_type __read_mostly;
87 EXPORT_SYMBOL(__machine_arch_type);
88 unsigned int cacheid __read_mostly;
89 EXPORT_SYMBOL(cacheid);
90 
91 unsigned int __atags_pointer __initdata;
92 
93 unsigned int system_rev;
94 EXPORT_SYMBOL(system_rev);
95 
96 unsigned int system_serial_low;
97 EXPORT_SYMBOL(system_serial_low);
98 
99 unsigned int system_serial_high;
100 EXPORT_SYMBOL(system_serial_high);
101 
102 unsigned int elf_hwcap __read_mostly;
103 EXPORT_SYMBOL(elf_hwcap);
104 
105 unsigned int elf_hwcap2 __read_mostly;
106 EXPORT_SYMBOL(elf_hwcap2);
107 
108 
109 #ifdef MULTI_CPU
110 struct processor processor __read_mostly;
111 #endif
112 #ifdef MULTI_TLB
113 struct cpu_tlb_fns cpu_tlb __read_mostly;
114 #endif
115 #ifdef MULTI_USER
116 struct cpu_user_fns cpu_user __read_mostly;
117 #endif
118 #ifdef MULTI_CACHE
119 struct cpu_cache_fns cpu_cache __read_mostly;
120 #endif
121 #ifdef CONFIG_OUTER_CACHE
122 struct outer_cache_fns outer_cache __read_mostly;
123 EXPORT_SYMBOL(outer_cache);
124 #endif
125 
126 /*
127  * Cached cpu_architecture() result for use by assembler code.
128  * C code should use the cpu_architecture() function instead of accessing this
129  * variable directly.
130  */
131 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
132 
133 struct stack {
134 	u32 irq[3];
135 	u32 abt[3];
136 	u32 und[3];
137 	u32 fiq[3];
138 } ____cacheline_aligned;
139 
140 #ifndef CONFIG_CPU_V7M
141 static struct stack stacks[NR_CPUS];
142 #endif
143 
144 char elf_platform[ELF_PLATFORM_SIZE];
145 EXPORT_SYMBOL(elf_platform);
146 
147 static const char *cpu_name;
148 static const char *machine_name;
149 static char __initdata cmd_line[COMMAND_LINE_SIZE];
150 const struct machine_desc *machine_desc __initdata;
151 
152 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
153 #define ENDIANNESS ((char)endian_test.l)
154 
155 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
156 
157 /*
158  * Standard memory resources
159  */
160 static struct resource mem_res[] = {
161 	{
162 		.name = "Video RAM",
163 		.start = 0,
164 		.end = 0,
165 		.flags = IORESOURCE_MEM
166 	},
167 	{
168 		.name = "Kernel code",
169 		.start = 0,
170 		.end = 0,
171 		.flags = IORESOURCE_MEM
172 	},
173 	{
174 		.name = "Kernel data",
175 		.start = 0,
176 		.end = 0,
177 		.flags = IORESOURCE_MEM
178 	}
179 };
180 
181 #define video_ram   mem_res[0]
182 #define kernel_code mem_res[1]
183 #define kernel_data mem_res[2]
184 
185 static struct resource io_res[] = {
186 	{
187 		.name = "reserved",
188 		.start = 0x3bc,
189 		.end = 0x3be,
190 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
191 	},
192 	{
193 		.name = "reserved",
194 		.start = 0x378,
195 		.end = 0x37f,
196 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
197 	},
198 	{
199 		.name = "reserved",
200 		.start = 0x278,
201 		.end = 0x27f,
202 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
203 	}
204 };
205 
206 #define lp0 io_res[0]
207 #define lp1 io_res[1]
208 #define lp2 io_res[2]
209 
210 static const char *proc_arch[] = {
211 	"undefined/unknown",
212 	"3",
213 	"4",
214 	"4T",
215 	"5",
216 	"5T",
217 	"5TE",
218 	"5TEJ",
219 	"6TEJ",
220 	"7",
221 	"7M",
222 	"?(12)",
223 	"?(13)",
224 	"?(14)",
225 	"?(15)",
226 	"?(16)",
227 	"?(17)",
228 };
229 
230 #ifdef CONFIG_CPU_V7M
231 static int __get_cpu_architecture(void)
232 {
233 	return CPU_ARCH_ARMv7M;
234 }
235 #else
236 static int __get_cpu_architecture(void)
237 {
238 	int cpu_arch;
239 
240 	if ((read_cpuid_id() & 0x0008f000) == 0) {
241 		cpu_arch = CPU_ARCH_UNKNOWN;
242 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
243 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
244 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
245 		cpu_arch = (read_cpuid_id() >> 16) & 7;
246 		if (cpu_arch)
247 			cpu_arch += CPU_ARCH_ARMv3;
248 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
249 		unsigned int mmfr0;
250 
251 		/* Revised CPUID format. Read the Memory Model Feature
252 		 * Register 0 and check for VMSAv7 or PMSAv7 */
253 		asm("mrc	p15, 0, %0, c0, c1, 4"
254 		    : "=r" (mmfr0));
255 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
256 		    (mmfr0 & 0x000000f0) >= 0x00000030)
257 			cpu_arch = CPU_ARCH_ARMv7;
258 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
259 			 (mmfr0 & 0x000000f0) == 0x00000020)
260 			cpu_arch = CPU_ARCH_ARMv6;
261 		else
262 			cpu_arch = CPU_ARCH_UNKNOWN;
263 	} else
264 		cpu_arch = CPU_ARCH_UNKNOWN;
265 
266 	return cpu_arch;
267 }
268 #endif
269 
270 int __pure cpu_architecture(void)
271 {
272 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
273 
274 	return __cpu_architecture;
275 }
276 
277 static int cpu_has_aliasing_icache(unsigned int arch)
278 {
279 	int aliasing_icache;
280 	unsigned int id_reg, num_sets, line_size;
281 
282 	/* PIPT caches never alias. */
283 	if (icache_is_pipt())
284 		return 0;
285 
286 	/* arch specifies the register format */
287 	switch (arch) {
288 	case CPU_ARCH_ARMv7:
289 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
290 		    : /* No output operands */
291 		    : "r" (1));
292 		isb();
293 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
294 		    : "=r" (id_reg));
295 		line_size = 4 << ((id_reg & 0x7) + 2);
296 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
297 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
298 		break;
299 	case CPU_ARCH_ARMv6:
300 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
301 		break;
302 	default:
303 		/* I-cache aliases will be handled by D-cache aliasing code */
304 		aliasing_icache = 0;
305 	}
306 
307 	return aliasing_icache;
308 }
309 
310 static void __init cacheid_init(void)
311 {
312 	unsigned int arch = cpu_architecture();
313 
314 	if (arch == CPU_ARCH_ARMv7M) {
315 		cacheid = 0;
316 	} else if (arch >= CPU_ARCH_ARMv6) {
317 		unsigned int cachetype = read_cpuid_cachetype();
318 		if ((cachetype & (7 << 29)) == 4 << 29) {
319 			/* ARMv7 register format */
320 			arch = CPU_ARCH_ARMv7;
321 			cacheid = CACHEID_VIPT_NONALIASING;
322 			switch (cachetype & (3 << 14)) {
323 			case (1 << 14):
324 				cacheid |= CACHEID_ASID_TAGGED;
325 				break;
326 			case (3 << 14):
327 				cacheid |= CACHEID_PIPT;
328 				break;
329 			}
330 		} else {
331 			arch = CPU_ARCH_ARMv6;
332 			if (cachetype & (1 << 23))
333 				cacheid = CACHEID_VIPT_ALIASING;
334 			else
335 				cacheid = CACHEID_VIPT_NONALIASING;
336 		}
337 		if (cpu_has_aliasing_icache(arch))
338 			cacheid |= CACHEID_VIPT_I_ALIASING;
339 	} else {
340 		cacheid = CACHEID_VIVT;
341 	}
342 
343 	pr_info("CPU: %s data cache, %s instruction cache\n",
344 		cache_is_vivt() ? "VIVT" :
345 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
346 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
347 		cache_is_vivt() ? "VIVT" :
348 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
349 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
350 		icache_is_pipt() ? "PIPT" :
351 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
352 }
353 
354 /*
355  * These functions re-use the assembly code in head.S, which
356  * already provide the required functionality.
357  */
358 extern struct proc_info_list *lookup_processor_type(unsigned int);
359 
360 void __init early_print(const char *str, ...)
361 {
362 	extern void printascii(const char *);
363 	char buf[256];
364 	va_list ap;
365 
366 	va_start(ap, str);
367 	vsnprintf(buf, sizeof(buf), str, ap);
368 	va_end(ap);
369 
370 #ifdef CONFIG_DEBUG_LL
371 	printascii(buf);
372 #endif
373 	printk("%s", buf);
374 }
375 
376 static void __init cpuid_init_hwcaps(void)
377 {
378 	unsigned int divide_instrs, vmsa;
379 
380 	if (cpu_architecture() < CPU_ARCH_ARMv7)
381 		return;
382 
383 	divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
384 
385 	switch (divide_instrs) {
386 	case 2:
387 		elf_hwcap |= HWCAP_IDIVA;
388 	case 1:
389 		elf_hwcap |= HWCAP_IDIVT;
390 	}
391 
392 	/* LPAE implies atomic ldrd/strd instructions */
393 	vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
394 	if (vmsa >= 5)
395 		elf_hwcap |= HWCAP_LPAE;
396 }
397 
398 static void __init elf_hwcap_fixup(void)
399 {
400 	unsigned id = read_cpuid_id();
401 	unsigned sync_prim;
402 
403 	/*
404 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
405 	 * see also kuser_get_tls_init.
406 	 */
407 	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
408 	    ((id >> 20) & 3) == 0) {
409 		elf_hwcap &= ~HWCAP_TLS;
410 		return;
411 	}
412 
413 	/* Verify if CPUID scheme is implemented */
414 	if ((id & 0x000f0000) != 0x000f0000)
415 		return;
416 
417 	/*
418 	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
419 	 * avoid advertising SWP; it may not be atomic with
420 	 * multiprocessing cores.
421 	 */
422 	sync_prim = ((read_cpuid_ext(CPUID_EXT_ISAR3) >> 8) & 0xf0) |
423 		    ((read_cpuid_ext(CPUID_EXT_ISAR4) >> 20) & 0x0f);
424 	if (sync_prim >= 0x13)
425 		elf_hwcap &= ~HWCAP_SWP;
426 }
427 
428 /*
429  * cpu_init - initialise one CPU.
430  *
431  * cpu_init sets up the per-CPU stacks.
432  */
433 void notrace cpu_init(void)
434 {
435 #ifndef CONFIG_CPU_V7M
436 	unsigned int cpu = smp_processor_id();
437 	struct stack *stk = &stacks[cpu];
438 
439 	if (cpu >= NR_CPUS) {
440 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
441 		BUG();
442 	}
443 
444 	/*
445 	 * This only works on resume and secondary cores. For booting on the
446 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
447 	 */
448 	set_my_cpu_offset(per_cpu_offset(cpu));
449 
450 	cpu_proc_init();
451 
452 	/*
453 	 * Define the placement constraint for the inline asm directive below.
454 	 * In Thumb-2, msr with an immediate value is not allowed.
455 	 */
456 #ifdef CONFIG_THUMB2_KERNEL
457 #define PLC	"r"
458 #else
459 #define PLC	"I"
460 #endif
461 
462 	/*
463 	 * setup stacks for re-entrant exception handlers
464 	 */
465 	__asm__ (
466 	"msr	cpsr_c, %1\n\t"
467 	"add	r14, %0, %2\n\t"
468 	"mov	sp, r14\n\t"
469 	"msr	cpsr_c, %3\n\t"
470 	"add	r14, %0, %4\n\t"
471 	"mov	sp, r14\n\t"
472 	"msr	cpsr_c, %5\n\t"
473 	"add	r14, %0, %6\n\t"
474 	"mov	sp, r14\n\t"
475 	"msr	cpsr_c, %7\n\t"
476 	"add	r14, %0, %8\n\t"
477 	"mov	sp, r14\n\t"
478 	"msr	cpsr_c, %9"
479 	    :
480 	    : "r" (stk),
481 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
482 	      "I" (offsetof(struct stack, irq[0])),
483 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
484 	      "I" (offsetof(struct stack, abt[0])),
485 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
486 	      "I" (offsetof(struct stack, und[0])),
487 	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
488 	      "I" (offsetof(struct stack, fiq[0])),
489 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
490 	    : "r14");
491 #endif
492 }
493 
494 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
495 
496 void __init smp_setup_processor_id(void)
497 {
498 	int i;
499 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
500 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
501 
502 	cpu_logical_map(0) = cpu;
503 	for (i = 1; i < nr_cpu_ids; ++i)
504 		cpu_logical_map(i) = i == cpu ? 0 : i;
505 
506 	/*
507 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
508 	 * using percpu variable early, for example, lockdep will
509 	 * access percpu variable inside lock_release
510 	 */
511 	set_my_cpu_offset(0);
512 
513 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
514 }
515 
516 struct mpidr_hash mpidr_hash;
517 #ifdef CONFIG_SMP
518 /**
519  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
520  *			  level in order to build a linear index from an
521  *			  MPIDR value. Resulting algorithm is a collision
522  *			  free hash carried out through shifting and ORing
523  */
524 static void __init smp_build_mpidr_hash(void)
525 {
526 	u32 i, affinity;
527 	u32 fs[3], bits[3], ls, mask = 0;
528 	/*
529 	 * Pre-scan the list of MPIDRS and filter out bits that do
530 	 * not contribute to affinity levels, ie they never toggle.
531 	 */
532 	for_each_possible_cpu(i)
533 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
534 	pr_debug("mask of set bits 0x%x\n", mask);
535 	/*
536 	 * Find and stash the last and first bit set at all affinity levels to
537 	 * check how many bits are required to represent them.
538 	 */
539 	for (i = 0; i < 3; i++) {
540 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
541 		/*
542 		 * Find the MSB bit and LSB bits position
543 		 * to determine how many bits are required
544 		 * to express the affinity level.
545 		 */
546 		ls = fls(affinity);
547 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
548 		bits[i] = ls - fs[i];
549 	}
550 	/*
551 	 * An index can be created from the MPIDR by isolating the
552 	 * significant bits at each affinity level and by shifting
553 	 * them in order to compress the 24 bits values space to a
554 	 * compressed set of values. This is equivalent to hashing
555 	 * the MPIDR through shifting and ORing. It is a collision free
556 	 * hash though not minimal since some levels might contain a number
557 	 * of CPUs that is not an exact power of 2 and their bit
558 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
559 	 */
560 	mpidr_hash.shift_aff[0] = fs[0];
561 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
562 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
563 						(bits[1] + bits[0]);
564 	mpidr_hash.mask = mask;
565 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
566 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
567 				mpidr_hash.shift_aff[0],
568 				mpidr_hash.shift_aff[1],
569 				mpidr_hash.shift_aff[2],
570 				mpidr_hash.mask,
571 				mpidr_hash.bits);
572 	/*
573 	 * 4x is an arbitrary value used to warn on a hash table much bigger
574 	 * than expected on most systems.
575 	 */
576 	if (mpidr_hash_size() > 4 * num_possible_cpus())
577 		pr_warn("Large number of MPIDR hash buckets detected\n");
578 	sync_cache_w(&mpidr_hash);
579 }
580 #endif
581 
582 static void __init setup_processor(void)
583 {
584 	struct proc_info_list *list;
585 
586 	/*
587 	 * locate processor in the list of supported processor
588 	 * types.  The linker builds this table for us from the
589 	 * entries in arch/arm/mm/proc-*.S
590 	 */
591 	list = lookup_processor_type(read_cpuid_id());
592 	if (!list) {
593 		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
594 		       read_cpuid_id());
595 		while (1);
596 	}
597 
598 	cpu_name = list->cpu_name;
599 	__cpu_architecture = __get_cpu_architecture();
600 
601 #ifdef MULTI_CPU
602 	processor = *list->proc;
603 #endif
604 #ifdef MULTI_TLB
605 	cpu_tlb = *list->tlb;
606 #endif
607 #ifdef MULTI_USER
608 	cpu_user = *list->user;
609 #endif
610 #ifdef MULTI_CACHE
611 	cpu_cache = *list->cache;
612 #endif
613 
614 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
615 		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
616 		proc_arch[cpu_architecture()], get_cr());
617 
618 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
619 		 list->arch_name, ENDIANNESS);
620 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
621 		 list->elf_name, ENDIANNESS);
622 	elf_hwcap = list->elf_hwcap;
623 
624 	cpuid_init_hwcaps();
625 
626 #ifndef CONFIG_ARM_THUMB
627 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
628 #endif
629 #ifdef CONFIG_MMU
630 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
631 #endif
632 	erratum_a15_798181_init();
633 
634 	elf_hwcap_fixup();
635 
636 	cacheid_init();
637 	cpu_init();
638 }
639 
640 void __init dump_machine_table(void)
641 {
642 	const struct machine_desc *p;
643 
644 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
645 	for_each_machine_desc(p)
646 		early_print("%08x\t%s\n", p->nr, p->name);
647 
648 	early_print("\nPlease check your kernel config and/or bootloader.\n");
649 
650 	while (true)
651 		/* can't use cpu_relax() here as it may require MMU setup */;
652 }
653 
654 int __init arm_add_memory(u64 start, u64 size)
655 {
656 	u64 aligned_start;
657 
658 	/*
659 	 * Ensure that start/size are aligned to a page boundary.
660 	 * Size is rounded down, start is rounded up.
661 	 */
662 	aligned_start = PAGE_ALIGN(start);
663 	if (aligned_start > start + size)
664 		size = 0;
665 	else
666 		size -= aligned_start - start;
667 
668 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
669 	if (aligned_start > ULONG_MAX) {
670 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
671 			(long long)start);
672 		return -EINVAL;
673 	}
674 
675 	if (aligned_start + size > ULONG_MAX) {
676 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
677 			(long long)start);
678 		/*
679 		 * To ensure bank->start + bank->size is representable in
680 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
681 		 * This means we lose a page after masking.
682 		 */
683 		size = ULONG_MAX - aligned_start;
684 	}
685 #endif
686 
687 	if (aligned_start < PHYS_OFFSET) {
688 		if (aligned_start + size <= PHYS_OFFSET) {
689 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
690 				aligned_start, aligned_start + size);
691 			return -EINVAL;
692 		}
693 
694 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
695 			aligned_start, (u64)PHYS_OFFSET);
696 
697 		size -= PHYS_OFFSET - aligned_start;
698 		aligned_start = PHYS_OFFSET;
699 	}
700 
701 	start = aligned_start;
702 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
703 
704 	/*
705 	 * Check whether this memory region has non-zero size or
706 	 * invalid node number.
707 	 */
708 	if (size == 0)
709 		return -EINVAL;
710 
711 	memblock_add(start, size);
712 	return 0;
713 }
714 
715 /*
716  * Pick out the memory size.  We look for mem=size@start,
717  * where start and size are "size[KkMm]"
718  */
719 
720 static int __init early_mem(char *p)
721 {
722 	static int usermem __initdata = 0;
723 	u64 size;
724 	u64 start;
725 	char *endp;
726 
727 	/*
728 	 * If the user specifies memory size, we
729 	 * blow away any automatically generated
730 	 * size.
731 	 */
732 	if (usermem == 0) {
733 		usermem = 1;
734 		memblock_remove(memblock_start_of_DRAM(),
735 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
736 	}
737 
738 	start = PHYS_OFFSET;
739 	size  = memparse(p, &endp);
740 	if (*endp == '@')
741 		start = memparse(endp + 1, NULL);
742 
743 	arm_add_memory(start, size);
744 
745 	return 0;
746 }
747 early_param("mem", early_mem);
748 
749 static void __init request_standard_resources(const struct machine_desc *mdesc)
750 {
751 	struct memblock_region *region;
752 	struct resource *res;
753 
754 	kernel_code.start   = virt_to_phys(_text);
755 	kernel_code.end     = virt_to_phys(_etext - 1);
756 	kernel_data.start   = virt_to_phys(_sdata);
757 	kernel_data.end     = virt_to_phys(_end - 1);
758 
759 	for_each_memblock(memory, region) {
760 		res = memblock_virt_alloc(sizeof(*res), 0);
761 		res->name  = "System RAM";
762 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
763 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
764 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
765 
766 		request_resource(&iomem_resource, res);
767 
768 		if (kernel_code.start >= res->start &&
769 		    kernel_code.end <= res->end)
770 			request_resource(res, &kernel_code);
771 		if (kernel_data.start >= res->start &&
772 		    kernel_data.end <= res->end)
773 			request_resource(res, &kernel_data);
774 	}
775 
776 	if (mdesc->video_start) {
777 		video_ram.start = mdesc->video_start;
778 		video_ram.end   = mdesc->video_end;
779 		request_resource(&iomem_resource, &video_ram);
780 	}
781 
782 	/*
783 	 * Some machines don't have the possibility of ever
784 	 * possessing lp0, lp1 or lp2
785 	 */
786 	if (mdesc->reserve_lp0)
787 		request_resource(&ioport_resource, &lp0);
788 	if (mdesc->reserve_lp1)
789 		request_resource(&ioport_resource, &lp1);
790 	if (mdesc->reserve_lp2)
791 		request_resource(&ioport_resource, &lp2);
792 }
793 
794 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
795 struct screen_info screen_info = {
796  .orig_video_lines	= 30,
797  .orig_video_cols	= 80,
798  .orig_video_mode	= 0,
799  .orig_video_ega_bx	= 0,
800  .orig_video_isVGA	= 1,
801  .orig_video_points	= 8
802 };
803 #endif
804 
805 static int __init customize_machine(void)
806 {
807 	/*
808 	 * customizes platform devices, or adds new ones
809 	 * On DT based machines, we fall back to populating the
810 	 * machine from the device tree, if no callback is provided,
811 	 * otherwise we would always need an init_machine callback.
812 	 */
813 	of_iommu_init();
814 	if (machine_desc->init_machine)
815 		machine_desc->init_machine();
816 #ifdef CONFIG_OF
817 	else
818 		of_platform_populate(NULL, of_default_bus_match_table,
819 					NULL, NULL);
820 #endif
821 	return 0;
822 }
823 arch_initcall(customize_machine);
824 
825 static int __init init_machine_late(void)
826 {
827 	if (machine_desc->init_late)
828 		machine_desc->init_late();
829 	return 0;
830 }
831 late_initcall(init_machine_late);
832 
833 #ifdef CONFIG_KEXEC
834 static inline unsigned long long get_total_mem(void)
835 {
836 	unsigned long total;
837 
838 	total = max_low_pfn - min_low_pfn;
839 	return total << PAGE_SHIFT;
840 }
841 
842 /**
843  * reserve_crashkernel() - reserves memory are for crash kernel
844  *
845  * This function reserves memory area given in "crashkernel=" kernel command
846  * line parameter. The memory reserved is used by a dump capture kernel when
847  * primary kernel is crashing.
848  */
849 static void __init reserve_crashkernel(void)
850 {
851 	unsigned long long crash_size, crash_base;
852 	unsigned long long total_mem;
853 	int ret;
854 
855 	total_mem = get_total_mem();
856 	ret = parse_crashkernel(boot_command_line, total_mem,
857 				&crash_size, &crash_base);
858 	if (ret)
859 		return;
860 
861 	ret = memblock_reserve(crash_base, crash_size);
862 	if (ret < 0) {
863 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
864 			(unsigned long)crash_base);
865 		return;
866 	}
867 
868 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
869 		(unsigned long)(crash_size >> 20),
870 		(unsigned long)(crash_base >> 20),
871 		(unsigned long)(total_mem >> 20));
872 
873 	crashk_res.start = crash_base;
874 	crashk_res.end = crash_base + crash_size - 1;
875 	insert_resource(&iomem_resource, &crashk_res);
876 }
877 #else
878 static inline void reserve_crashkernel(void) {}
879 #endif /* CONFIG_KEXEC */
880 
881 void __init hyp_mode_check(void)
882 {
883 #ifdef CONFIG_ARM_VIRT_EXT
884 	sync_boot_mode();
885 
886 	if (is_hyp_mode_available()) {
887 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
888 		pr_info("CPU: Virtualization extensions available.\n");
889 	} else if (is_hyp_mode_mismatched()) {
890 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
891 			__boot_cpu_mode & MODE_MASK);
892 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
893 	} else
894 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
895 #endif
896 }
897 
898 void __init setup_arch(char **cmdline_p)
899 {
900 	const struct machine_desc *mdesc;
901 
902 	setup_processor();
903 	mdesc = setup_machine_fdt(__atags_pointer);
904 	if (!mdesc)
905 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
906 	machine_desc = mdesc;
907 	machine_name = mdesc->name;
908 	dump_stack_set_arch_desc("%s", mdesc->name);
909 
910 	if (mdesc->reboot_mode != REBOOT_HARD)
911 		reboot_mode = mdesc->reboot_mode;
912 
913 	init_mm.start_code = (unsigned long) _text;
914 	init_mm.end_code   = (unsigned long) _etext;
915 	init_mm.end_data   = (unsigned long) _edata;
916 	init_mm.brk	   = (unsigned long) _end;
917 
918 	/* populate cmd_line too for later use, preserving boot_command_line */
919 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
920 	*cmdline_p = cmd_line;
921 
922 	parse_early_param();
923 
924 	early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
925 	setup_dma_zone(mdesc);
926 	sanity_check_meminfo();
927 	arm_memblock_init(mdesc);
928 
929 	paging_init(mdesc);
930 	request_standard_resources(mdesc);
931 
932 	if (mdesc->restart)
933 		arm_pm_restart = mdesc->restart;
934 
935 	unflatten_device_tree();
936 
937 	arm_dt_init_cpu_maps();
938 	psci_init();
939 #ifdef CONFIG_SMP
940 	if (is_smp()) {
941 		if (!mdesc->smp_init || !mdesc->smp_init()) {
942 			if (psci_smp_available())
943 				smp_set_ops(&psci_smp_ops);
944 			else if (mdesc->smp)
945 				smp_set_ops(mdesc->smp);
946 		}
947 		smp_init_cpus();
948 		smp_build_mpidr_hash();
949 	}
950 #endif
951 
952 	if (!is_smp())
953 		hyp_mode_check();
954 
955 	reserve_crashkernel();
956 
957 #ifdef CONFIG_MULTI_IRQ_HANDLER
958 	handle_arch_irq = mdesc->handle_irq;
959 #endif
960 
961 #ifdef CONFIG_VT
962 #if defined(CONFIG_VGA_CONSOLE)
963 	conswitchp = &vga_con;
964 #elif defined(CONFIG_DUMMY_CONSOLE)
965 	conswitchp = &dummy_con;
966 #endif
967 #endif
968 
969 	if (mdesc->init_early)
970 		mdesc->init_early();
971 }
972 
973 
974 static int __init topology_init(void)
975 {
976 	int cpu;
977 
978 	for_each_possible_cpu(cpu) {
979 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
980 		cpuinfo->cpu.hotpluggable = 1;
981 		register_cpu(&cpuinfo->cpu, cpu);
982 	}
983 
984 	return 0;
985 }
986 subsys_initcall(topology_init);
987 
988 #ifdef CONFIG_HAVE_PROC_CPU
989 static int __init proc_cpu_init(void)
990 {
991 	struct proc_dir_entry *res;
992 
993 	res = proc_mkdir("cpu", NULL);
994 	if (!res)
995 		return -ENOMEM;
996 	return 0;
997 }
998 fs_initcall(proc_cpu_init);
999 #endif
1000 
1001 static const char *hwcap_str[] = {
1002 	"swp",
1003 	"half",
1004 	"thumb",
1005 	"26bit",
1006 	"fastmult",
1007 	"fpa",
1008 	"vfp",
1009 	"edsp",
1010 	"java",
1011 	"iwmmxt",
1012 	"crunch",
1013 	"thumbee",
1014 	"neon",
1015 	"vfpv3",
1016 	"vfpv3d16",
1017 	"tls",
1018 	"vfpv4",
1019 	"idiva",
1020 	"idivt",
1021 	"vfpd32",
1022 	"lpae",
1023 	"evtstrm",
1024 	NULL
1025 };
1026 
1027 static const char *hwcap2_str[] = {
1028 	"aes",
1029 	"pmull",
1030 	"sha1",
1031 	"sha2",
1032 	"crc32",
1033 	NULL
1034 };
1035 
1036 static int c_show(struct seq_file *m, void *v)
1037 {
1038 	int i, j;
1039 	u32 cpuid;
1040 
1041 	for_each_online_cpu(i) {
1042 		/*
1043 		 * glibc reads /proc/cpuinfo to determine the number of
1044 		 * online processors, looking for lines beginning with
1045 		 * "processor".  Give glibc what it expects.
1046 		 */
1047 		seq_printf(m, "processor\t: %d\n", i);
1048 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1049 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1050 			   cpu_name, cpuid & 15, elf_platform);
1051 
1052 #if defined(CONFIG_SMP)
1053 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1054 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1055 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1056 #else
1057 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1058 			   loops_per_jiffy / (500000/HZ),
1059 			   (loops_per_jiffy / (5000/HZ)) % 100);
1060 #endif
1061 		/* dump out the processor features */
1062 		seq_puts(m, "Features\t: ");
1063 
1064 		for (j = 0; hwcap_str[j]; j++)
1065 			if (elf_hwcap & (1 << j))
1066 				seq_printf(m, "%s ", hwcap_str[j]);
1067 
1068 		for (j = 0; hwcap2_str[j]; j++)
1069 			if (elf_hwcap2 & (1 << j))
1070 				seq_printf(m, "%s ", hwcap2_str[j]);
1071 
1072 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1073 		seq_printf(m, "CPU architecture: %s\n",
1074 			   proc_arch[cpu_architecture()]);
1075 
1076 		if ((cpuid & 0x0008f000) == 0x00000000) {
1077 			/* pre-ARM7 */
1078 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1079 		} else {
1080 			if ((cpuid & 0x0008f000) == 0x00007000) {
1081 				/* ARM7 */
1082 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1083 					   (cpuid >> 16) & 127);
1084 			} else {
1085 				/* post-ARM7 */
1086 				seq_printf(m, "CPU variant\t: 0x%x\n",
1087 					   (cpuid >> 20) & 15);
1088 			}
1089 			seq_printf(m, "CPU part\t: 0x%03x\n",
1090 				   (cpuid >> 4) & 0xfff);
1091 		}
1092 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1093 	}
1094 
1095 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1096 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1097 	seq_printf(m, "Serial\t\t: %08x%08x\n",
1098 		   system_serial_high, system_serial_low);
1099 
1100 	return 0;
1101 }
1102 
1103 static void *c_start(struct seq_file *m, loff_t *pos)
1104 {
1105 	return *pos < 1 ? (void *)1 : NULL;
1106 }
1107 
1108 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1109 {
1110 	++*pos;
1111 	return NULL;
1112 }
1113 
1114 static void c_stop(struct seq_file *m, void *v)
1115 {
1116 }
1117 
1118 const struct seq_operations cpuinfo_op = {
1119 	.start	= c_start,
1120 	.next	= c_next,
1121 	.stop	= c_stop,
1122 	.show	= c_show
1123 };
1124