xref: /openbmc/linux/arch/arm/kernel/setup.c (revision a8a28aff)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
33 
34 #include <asm/unified.h>
35 #include <asm/cp15.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/elf.h>
39 #include <asm/procinfo.h>
40 #include <asm/psci.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <asm/smp_plat.h>
44 #include <asm/mach-types.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cachetype.h>
47 #include <asm/tlbflush.h>
48 
49 #include <asm/prom.h>
50 #include <asm/mach/arch.h>
51 #include <asm/mach/irq.h>
52 #include <asm/mach/time.h>
53 #include <asm/system_info.h>
54 #include <asm/system_misc.h>
55 #include <asm/traps.h>
56 #include <asm/unwind.h>
57 #include <asm/memblock.h>
58 #include <asm/virt.h>
59 
60 #include "atags.h"
61 
62 
63 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
64 char fpe_type[8];
65 
66 static int __init fpe_setup(char *line)
67 {
68 	memcpy(fpe_type, line, 8);
69 	return 1;
70 }
71 
72 __setup("fpe=", fpe_setup);
73 #endif
74 
75 extern void init_default_cache_policy(unsigned long);
76 extern void paging_init(const struct machine_desc *desc);
77 extern void early_paging_init(const struct machine_desc *,
78 			      struct proc_info_list *);
79 extern void sanity_check_meminfo(void);
80 extern enum reboot_mode reboot_mode;
81 extern void setup_dma_zone(const struct machine_desc *desc);
82 
83 unsigned int processor_id;
84 EXPORT_SYMBOL(processor_id);
85 unsigned int __machine_arch_type __read_mostly;
86 EXPORT_SYMBOL(__machine_arch_type);
87 unsigned int cacheid __read_mostly;
88 EXPORT_SYMBOL(cacheid);
89 
90 unsigned int __atags_pointer __initdata;
91 
92 unsigned int system_rev;
93 EXPORT_SYMBOL(system_rev);
94 
95 unsigned int system_serial_low;
96 EXPORT_SYMBOL(system_serial_low);
97 
98 unsigned int system_serial_high;
99 EXPORT_SYMBOL(system_serial_high);
100 
101 unsigned int elf_hwcap __read_mostly;
102 EXPORT_SYMBOL(elf_hwcap);
103 
104 unsigned int elf_hwcap2 __read_mostly;
105 EXPORT_SYMBOL(elf_hwcap2);
106 
107 
108 #ifdef MULTI_CPU
109 struct processor processor __read_mostly;
110 #endif
111 #ifdef MULTI_TLB
112 struct cpu_tlb_fns cpu_tlb __read_mostly;
113 #endif
114 #ifdef MULTI_USER
115 struct cpu_user_fns cpu_user __read_mostly;
116 #endif
117 #ifdef MULTI_CACHE
118 struct cpu_cache_fns cpu_cache __read_mostly;
119 #endif
120 #ifdef CONFIG_OUTER_CACHE
121 struct outer_cache_fns outer_cache __read_mostly;
122 EXPORT_SYMBOL(outer_cache);
123 #endif
124 
125 /*
126  * Cached cpu_architecture() result for use by assembler code.
127  * C code should use the cpu_architecture() function instead of accessing this
128  * variable directly.
129  */
130 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
131 
132 struct stack {
133 	u32 irq[3];
134 	u32 abt[3];
135 	u32 und[3];
136 } ____cacheline_aligned;
137 
138 #ifndef CONFIG_CPU_V7M
139 static struct stack stacks[NR_CPUS];
140 #endif
141 
142 char elf_platform[ELF_PLATFORM_SIZE];
143 EXPORT_SYMBOL(elf_platform);
144 
145 static const char *cpu_name;
146 static const char *machine_name;
147 static char __initdata cmd_line[COMMAND_LINE_SIZE];
148 const struct machine_desc *machine_desc __initdata;
149 
150 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
151 #define ENDIANNESS ((char)endian_test.l)
152 
153 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
154 
155 /*
156  * Standard memory resources
157  */
158 static struct resource mem_res[] = {
159 	{
160 		.name = "Video RAM",
161 		.start = 0,
162 		.end = 0,
163 		.flags = IORESOURCE_MEM
164 	},
165 	{
166 		.name = "Kernel code",
167 		.start = 0,
168 		.end = 0,
169 		.flags = IORESOURCE_MEM
170 	},
171 	{
172 		.name = "Kernel data",
173 		.start = 0,
174 		.end = 0,
175 		.flags = IORESOURCE_MEM
176 	}
177 };
178 
179 #define video_ram   mem_res[0]
180 #define kernel_code mem_res[1]
181 #define kernel_data mem_res[2]
182 
183 static struct resource io_res[] = {
184 	{
185 		.name = "reserved",
186 		.start = 0x3bc,
187 		.end = 0x3be,
188 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
189 	},
190 	{
191 		.name = "reserved",
192 		.start = 0x378,
193 		.end = 0x37f,
194 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
195 	},
196 	{
197 		.name = "reserved",
198 		.start = 0x278,
199 		.end = 0x27f,
200 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
201 	}
202 };
203 
204 #define lp0 io_res[0]
205 #define lp1 io_res[1]
206 #define lp2 io_res[2]
207 
208 static const char *proc_arch[] = {
209 	"undefined/unknown",
210 	"3",
211 	"4",
212 	"4T",
213 	"5",
214 	"5T",
215 	"5TE",
216 	"5TEJ",
217 	"6TEJ",
218 	"7",
219 	"7M",
220 	"?(12)",
221 	"?(13)",
222 	"?(14)",
223 	"?(15)",
224 	"?(16)",
225 	"?(17)",
226 };
227 
228 #ifdef CONFIG_CPU_V7M
229 static int __get_cpu_architecture(void)
230 {
231 	return CPU_ARCH_ARMv7M;
232 }
233 #else
234 static int __get_cpu_architecture(void)
235 {
236 	int cpu_arch;
237 
238 	if ((read_cpuid_id() & 0x0008f000) == 0) {
239 		cpu_arch = CPU_ARCH_UNKNOWN;
240 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
241 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
242 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
243 		cpu_arch = (read_cpuid_id() >> 16) & 7;
244 		if (cpu_arch)
245 			cpu_arch += CPU_ARCH_ARMv3;
246 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
247 		unsigned int mmfr0;
248 
249 		/* Revised CPUID format. Read the Memory Model Feature
250 		 * Register 0 and check for VMSAv7 or PMSAv7 */
251 		asm("mrc	p15, 0, %0, c0, c1, 4"
252 		    : "=r" (mmfr0));
253 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
254 		    (mmfr0 & 0x000000f0) >= 0x00000030)
255 			cpu_arch = CPU_ARCH_ARMv7;
256 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
257 			 (mmfr0 & 0x000000f0) == 0x00000020)
258 			cpu_arch = CPU_ARCH_ARMv6;
259 		else
260 			cpu_arch = CPU_ARCH_UNKNOWN;
261 	} else
262 		cpu_arch = CPU_ARCH_UNKNOWN;
263 
264 	return cpu_arch;
265 }
266 #endif
267 
268 int __pure cpu_architecture(void)
269 {
270 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
271 
272 	return __cpu_architecture;
273 }
274 
275 static int cpu_has_aliasing_icache(unsigned int arch)
276 {
277 	int aliasing_icache;
278 	unsigned int id_reg, num_sets, line_size;
279 
280 	/* PIPT caches never alias. */
281 	if (icache_is_pipt())
282 		return 0;
283 
284 	/* arch specifies the register format */
285 	switch (arch) {
286 	case CPU_ARCH_ARMv7:
287 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
288 		    : /* No output operands */
289 		    : "r" (1));
290 		isb();
291 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
292 		    : "=r" (id_reg));
293 		line_size = 4 << ((id_reg & 0x7) + 2);
294 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
295 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
296 		break;
297 	case CPU_ARCH_ARMv6:
298 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
299 		break;
300 	default:
301 		/* I-cache aliases will be handled by D-cache aliasing code */
302 		aliasing_icache = 0;
303 	}
304 
305 	return aliasing_icache;
306 }
307 
308 static void __init cacheid_init(void)
309 {
310 	unsigned int arch = cpu_architecture();
311 
312 	if (arch == CPU_ARCH_ARMv7M) {
313 		cacheid = 0;
314 	} else if (arch >= CPU_ARCH_ARMv6) {
315 		unsigned int cachetype = read_cpuid_cachetype();
316 		if ((cachetype & (7 << 29)) == 4 << 29) {
317 			/* ARMv7 register format */
318 			arch = CPU_ARCH_ARMv7;
319 			cacheid = CACHEID_VIPT_NONALIASING;
320 			switch (cachetype & (3 << 14)) {
321 			case (1 << 14):
322 				cacheid |= CACHEID_ASID_TAGGED;
323 				break;
324 			case (3 << 14):
325 				cacheid |= CACHEID_PIPT;
326 				break;
327 			}
328 		} else {
329 			arch = CPU_ARCH_ARMv6;
330 			if (cachetype & (1 << 23))
331 				cacheid = CACHEID_VIPT_ALIASING;
332 			else
333 				cacheid = CACHEID_VIPT_NONALIASING;
334 		}
335 		if (cpu_has_aliasing_icache(arch))
336 			cacheid |= CACHEID_VIPT_I_ALIASING;
337 	} else {
338 		cacheid = CACHEID_VIVT;
339 	}
340 
341 	pr_info("CPU: %s data cache, %s instruction cache\n",
342 		cache_is_vivt() ? "VIVT" :
343 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
344 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
345 		cache_is_vivt() ? "VIVT" :
346 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
347 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
348 		icache_is_pipt() ? "PIPT" :
349 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
350 }
351 
352 /*
353  * These functions re-use the assembly code in head.S, which
354  * already provide the required functionality.
355  */
356 extern struct proc_info_list *lookup_processor_type(unsigned int);
357 
358 void __init early_print(const char *str, ...)
359 {
360 	extern void printascii(const char *);
361 	char buf[256];
362 	va_list ap;
363 
364 	va_start(ap, str);
365 	vsnprintf(buf, sizeof(buf), str, ap);
366 	va_end(ap);
367 
368 #ifdef CONFIG_DEBUG_LL
369 	printascii(buf);
370 #endif
371 	printk("%s", buf);
372 }
373 
374 static void __init cpuid_init_hwcaps(void)
375 {
376 	unsigned int divide_instrs, vmsa;
377 
378 	if (cpu_architecture() < CPU_ARCH_ARMv7)
379 		return;
380 
381 	divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
382 
383 	switch (divide_instrs) {
384 	case 2:
385 		elf_hwcap |= HWCAP_IDIVA;
386 	case 1:
387 		elf_hwcap |= HWCAP_IDIVT;
388 	}
389 
390 	/* LPAE implies atomic ldrd/strd instructions */
391 	vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
392 	if (vmsa >= 5)
393 		elf_hwcap |= HWCAP_LPAE;
394 }
395 
396 static void __init feat_v6_fixup(void)
397 {
398 	int id = read_cpuid_id();
399 
400 	if ((id & 0xff0f0000) != 0x41070000)
401 		return;
402 
403 	/*
404 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
405 	 * see also kuser_get_tls_init.
406 	 */
407 	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
408 		elf_hwcap &= ~HWCAP_TLS;
409 }
410 
411 /*
412  * cpu_init - initialise one CPU.
413  *
414  * cpu_init sets up the per-CPU stacks.
415  */
416 void notrace cpu_init(void)
417 {
418 #ifndef CONFIG_CPU_V7M
419 	unsigned int cpu = smp_processor_id();
420 	struct stack *stk = &stacks[cpu];
421 
422 	if (cpu >= NR_CPUS) {
423 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
424 		BUG();
425 	}
426 
427 	/*
428 	 * This only works on resume and secondary cores. For booting on the
429 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
430 	 */
431 	set_my_cpu_offset(per_cpu_offset(cpu));
432 
433 	cpu_proc_init();
434 
435 	/*
436 	 * Define the placement constraint for the inline asm directive below.
437 	 * In Thumb-2, msr with an immediate value is not allowed.
438 	 */
439 #ifdef CONFIG_THUMB2_KERNEL
440 #define PLC	"r"
441 #else
442 #define PLC	"I"
443 #endif
444 
445 	/*
446 	 * setup stacks for re-entrant exception handlers
447 	 */
448 	__asm__ (
449 	"msr	cpsr_c, %1\n\t"
450 	"add	r14, %0, %2\n\t"
451 	"mov	sp, r14\n\t"
452 	"msr	cpsr_c, %3\n\t"
453 	"add	r14, %0, %4\n\t"
454 	"mov	sp, r14\n\t"
455 	"msr	cpsr_c, %5\n\t"
456 	"add	r14, %0, %6\n\t"
457 	"mov	sp, r14\n\t"
458 	"msr	cpsr_c, %7"
459 	    :
460 	    : "r" (stk),
461 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
462 	      "I" (offsetof(struct stack, irq[0])),
463 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
464 	      "I" (offsetof(struct stack, abt[0])),
465 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
466 	      "I" (offsetof(struct stack, und[0])),
467 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
468 	    : "r14");
469 #endif
470 }
471 
472 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
473 
474 void __init smp_setup_processor_id(void)
475 {
476 	int i;
477 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
478 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
479 
480 	cpu_logical_map(0) = cpu;
481 	for (i = 1; i < nr_cpu_ids; ++i)
482 		cpu_logical_map(i) = i == cpu ? 0 : i;
483 
484 	/*
485 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
486 	 * using percpu variable early, for example, lockdep will
487 	 * access percpu variable inside lock_release
488 	 */
489 	set_my_cpu_offset(0);
490 
491 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
492 }
493 
494 struct mpidr_hash mpidr_hash;
495 #ifdef CONFIG_SMP
496 /**
497  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
498  *			  level in order to build a linear index from an
499  *			  MPIDR value. Resulting algorithm is a collision
500  *			  free hash carried out through shifting and ORing
501  */
502 static void __init smp_build_mpidr_hash(void)
503 {
504 	u32 i, affinity;
505 	u32 fs[3], bits[3], ls, mask = 0;
506 	/*
507 	 * Pre-scan the list of MPIDRS and filter out bits that do
508 	 * not contribute to affinity levels, ie they never toggle.
509 	 */
510 	for_each_possible_cpu(i)
511 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
512 	pr_debug("mask of set bits 0x%x\n", mask);
513 	/*
514 	 * Find and stash the last and first bit set at all affinity levels to
515 	 * check how many bits are required to represent them.
516 	 */
517 	for (i = 0; i < 3; i++) {
518 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
519 		/*
520 		 * Find the MSB bit and LSB bits position
521 		 * to determine how many bits are required
522 		 * to express the affinity level.
523 		 */
524 		ls = fls(affinity);
525 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
526 		bits[i] = ls - fs[i];
527 	}
528 	/*
529 	 * An index can be created from the MPIDR by isolating the
530 	 * significant bits at each affinity level and by shifting
531 	 * them in order to compress the 24 bits values space to a
532 	 * compressed set of values. This is equivalent to hashing
533 	 * the MPIDR through shifting and ORing. It is a collision free
534 	 * hash though not minimal since some levels might contain a number
535 	 * of CPUs that is not an exact power of 2 and their bit
536 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
537 	 */
538 	mpidr_hash.shift_aff[0] = fs[0];
539 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
540 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
541 						(bits[1] + bits[0]);
542 	mpidr_hash.mask = mask;
543 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
544 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
545 				mpidr_hash.shift_aff[0],
546 				mpidr_hash.shift_aff[1],
547 				mpidr_hash.shift_aff[2],
548 				mpidr_hash.mask,
549 				mpidr_hash.bits);
550 	/*
551 	 * 4x is an arbitrary value used to warn on a hash table much bigger
552 	 * than expected on most systems.
553 	 */
554 	if (mpidr_hash_size() > 4 * num_possible_cpus())
555 		pr_warn("Large number of MPIDR hash buckets detected\n");
556 	sync_cache_w(&mpidr_hash);
557 }
558 #endif
559 
560 static void __init setup_processor(void)
561 {
562 	struct proc_info_list *list;
563 
564 	/*
565 	 * locate processor in the list of supported processor
566 	 * types.  The linker builds this table for us from the
567 	 * entries in arch/arm/mm/proc-*.S
568 	 */
569 	list = lookup_processor_type(read_cpuid_id());
570 	if (!list) {
571 		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
572 		       read_cpuid_id());
573 		while (1);
574 	}
575 
576 	cpu_name = list->cpu_name;
577 	__cpu_architecture = __get_cpu_architecture();
578 
579 #ifdef MULTI_CPU
580 	processor = *list->proc;
581 #endif
582 #ifdef MULTI_TLB
583 	cpu_tlb = *list->tlb;
584 #endif
585 #ifdef MULTI_USER
586 	cpu_user = *list->user;
587 #endif
588 #ifdef MULTI_CACHE
589 	cpu_cache = *list->cache;
590 #endif
591 
592 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
593 		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
594 		proc_arch[cpu_architecture()], get_cr());
595 
596 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
597 		 list->arch_name, ENDIANNESS);
598 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
599 		 list->elf_name, ENDIANNESS);
600 	elf_hwcap = list->elf_hwcap;
601 
602 	cpuid_init_hwcaps();
603 
604 #ifndef CONFIG_ARM_THUMB
605 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
606 #endif
607 #ifdef CONFIG_MMU
608 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
609 #endif
610 	erratum_a15_798181_init();
611 
612 	feat_v6_fixup();
613 
614 	cacheid_init();
615 	cpu_init();
616 }
617 
618 void __init dump_machine_table(void)
619 {
620 	const struct machine_desc *p;
621 
622 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
623 	for_each_machine_desc(p)
624 		early_print("%08x\t%s\n", p->nr, p->name);
625 
626 	early_print("\nPlease check your kernel config and/or bootloader.\n");
627 
628 	while (true)
629 		/* can't use cpu_relax() here as it may require MMU setup */;
630 }
631 
632 int __init arm_add_memory(u64 start, u64 size)
633 {
634 	u64 aligned_start;
635 
636 	/*
637 	 * Ensure that start/size are aligned to a page boundary.
638 	 * Size is appropriately rounded down, start is rounded up.
639 	 */
640 	size -= start & ~PAGE_MASK;
641 	aligned_start = PAGE_ALIGN(start);
642 
643 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
644 	if (aligned_start > ULONG_MAX) {
645 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
646 			(long long)start);
647 		return -EINVAL;
648 	}
649 
650 	if (aligned_start + size > ULONG_MAX) {
651 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
652 			(long long)start);
653 		/*
654 		 * To ensure bank->start + bank->size is representable in
655 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
656 		 * This means we lose a page after masking.
657 		 */
658 		size = ULONG_MAX - aligned_start;
659 	}
660 #endif
661 
662 	if (aligned_start < PHYS_OFFSET) {
663 		if (aligned_start + size <= PHYS_OFFSET) {
664 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
665 				aligned_start, aligned_start + size);
666 			return -EINVAL;
667 		}
668 
669 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
670 			aligned_start, (u64)PHYS_OFFSET);
671 
672 		size -= PHYS_OFFSET - aligned_start;
673 		aligned_start = PHYS_OFFSET;
674 	}
675 
676 	start = aligned_start;
677 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
678 
679 	/*
680 	 * Check whether this memory region has non-zero size or
681 	 * invalid node number.
682 	 */
683 	if (size == 0)
684 		return -EINVAL;
685 
686 	memblock_add(start, size);
687 	return 0;
688 }
689 
690 /*
691  * Pick out the memory size.  We look for mem=size@start,
692  * where start and size are "size[KkMm]"
693  */
694 
695 static int __init early_mem(char *p)
696 {
697 	static int usermem __initdata = 0;
698 	u64 size;
699 	u64 start;
700 	char *endp;
701 
702 	/*
703 	 * If the user specifies memory size, we
704 	 * blow away any automatically generated
705 	 * size.
706 	 */
707 	if (usermem == 0) {
708 		usermem = 1;
709 		memblock_remove(memblock_start_of_DRAM(),
710 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
711 	}
712 
713 	start = PHYS_OFFSET;
714 	size  = memparse(p, &endp);
715 	if (*endp == '@')
716 		start = memparse(endp + 1, NULL);
717 
718 	arm_add_memory(start, size);
719 
720 	return 0;
721 }
722 early_param("mem", early_mem);
723 
724 static void __init request_standard_resources(const struct machine_desc *mdesc)
725 {
726 	struct memblock_region *region;
727 	struct resource *res;
728 
729 	kernel_code.start   = virt_to_phys(_text);
730 	kernel_code.end     = virt_to_phys(_etext - 1);
731 	kernel_data.start   = virt_to_phys(_sdata);
732 	kernel_data.end     = virt_to_phys(_end - 1);
733 
734 	for_each_memblock(memory, region) {
735 		res = memblock_virt_alloc(sizeof(*res), 0);
736 		res->name  = "System RAM";
737 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
738 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
739 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
740 
741 		request_resource(&iomem_resource, res);
742 
743 		if (kernel_code.start >= res->start &&
744 		    kernel_code.end <= res->end)
745 			request_resource(res, &kernel_code);
746 		if (kernel_data.start >= res->start &&
747 		    kernel_data.end <= res->end)
748 			request_resource(res, &kernel_data);
749 	}
750 
751 	if (mdesc->video_start) {
752 		video_ram.start = mdesc->video_start;
753 		video_ram.end   = mdesc->video_end;
754 		request_resource(&iomem_resource, &video_ram);
755 	}
756 
757 	/*
758 	 * Some machines don't have the possibility of ever
759 	 * possessing lp0, lp1 or lp2
760 	 */
761 	if (mdesc->reserve_lp0)
762 		request_resource(&ioport_resource, &lp0);
763 	if (mdesc->reserve_lp1)
764 		request_resource(&ioport_resource, &lp1);
765 	if (mdesc->reserve_lp2)
766 		request_resource(&ioport_resource, &lp2);
767 }
768 
769 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
770 struct screen_info screen_info = {
771  .orig_video_lines	= 30,
772  .orig_video_cols	= 80,
773  .orig_video_mode	= 0,
774  .orig_video_ega_bx	= 0,
775  .orig_video_isVGA	= 1,
776  .orig_video_points	= 8
777 };
778 #endif
779 
780 static int __init customize_machine(void)
781 {
782 	/*
783 	 * customizes platform devices, or adds new ones
784 	 * On DT based machines, we fall back to populating the
785 	 * machine from the device tree, if no callback is provided,
786 	 * otherwise we would always need an init_machine callback.
787 	 */
788 	if (machine_desc->init_machine)
789 		machine_desc->init_machine();
790 #ifdef CONFIG_OF
791 	else
792 		of_platform_populate(NULL, of_default_bus_match_table,
793 					NULL, NULL);
794 #endif
795 	return 0;
796 }
797 arch_initcall(customize_machine);
798 
799 static int __init init_machine_late(void)
800 {
801 	if (machine_desc->init_late)
802 		machine_desc->init_late();
803 	return 0;
804 }
805 late_initcall(init_machine_late);
806 
807 #ifdef CONFIG_KEXEC
808 static inline unsigned long long get_total_mem(void)
809 {
810 	unsigned long total;
811 
812 	total = max_low_pfn - min_low_pfn;
813 	return total << PAGE_SHIFT;
814 }
815 
816 /**
817  * reserve_crashkernel() - reserves memory are for crash kernel
818  *
819  * This function reserves memory area given in "crashkernel=" kernel command
820  * line parameter. The memory reserved is used by a dump capture kernel when
821  * primary kernel is crashing.
822  */
823 static void __init reserve_crashkernel(void)
824 {
825 	unsigned long long crash_size, crash_base;
826 	unsigned long long total_mem;
827 	int ret;
828 
829 	total_mem = get_total_mem();
830 	ret = parse_crashkernel(boot_command_line, total_mem,
831 				&crash_size, &crash_base);
832 	if (ret)
833 		return;
834 
835 	ret = memblock_reserve(crash_base, crash_size);
836 	if (ret < 0) {
837 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
838 			(unsigned long)crash_base);
839 		return;
840 	}
841 
842 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
843 		(unsigned long)(crash_size >> 20),
844 		(unsigned long)(crash_base >> 20),
845 		(unsigned long)(total_mem >> 20));
846 
847 	crashk_res.start = crash_base;
848 	crashk_res.end = crash_base + crash_size - 1;
849 	insert_resource(&iomem_resource, &crashk_res);
850 }
851 #else
852 static inline void reserve_crashkernel(void) {}
853 #endif /* CONFIG_KEXEC */
854 
855 void __init hyp_mode_check(void)
856 {
857 #ifdef CONFIG_ARM_VIRT_EXT
858 	sync_boot_mode();
859 
860 	if (is_hyp_mode_available()) {
861 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
862 		pr_info("CPU: Virtualization extensions available.\n");
863 	} else if (is_hyp_mode_mismatched()) {
864 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
865 			__boot_cpu_mode & MODE_MASK);
866 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
867 	} else
868 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
869 #endif
870 }
871 
872 void __init setup_arch(char **cmdline_p)
873 {
874 	const struct machine_desc *mdesc;
875 
876 	setup_processor();
877 	mdesc = setup_machine_fdt(__atags_pointer);
878 	if (!mdesc)
879 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
880 	machine_desc = mdesc;
881 	machine_name = mdesc->name;
882 
883 	if (mdesc->reboot_mode != REBOOT_HARD)
884 		reboot_mode = mdesc->reboot_mode;
885 
886 	init_mm.start_code = (unsigned long) _text;
887 	init_mm.end_code   = (unsigned long) _etext;
888 	init_mm.end_data   = (unsigned long) _edata;
889 	init_mm.brk	   = (unsigned long) _end;
890 
891 	/* populate cmd_line too for later use, preserving boot_command_line */
892 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
893 	*cmdline_p = cmd_line;
894 
895 	parse_early_param();
896 
897 	early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
898 	setup_dma_zone(mdesc);
899 	sanity_check_meminfo();
900 	arm_memblock_init(mdesc);
901 
902 	paging_init(mdesc);
903 	request_standard_resources(mdesc);
904 
905 	if (mdesc->restart)
906 		arm_pm_restart = mdesc->restart;
907 
908 	unflatten_device_tree();
909 
910 	arm_dt_init_cpu_maps();
911 	psci_init();
912 #ifdef CONFIG_SMP
913 	if (is_smp()) {
914 		if (!mdesc->smp_init || !mdesc->smp_init()) {
915 			if (psci_smp_available())
916 				smp_set_ops(&psci_smp_ops);
917 			else if (mdesc->smp)
918 				smp_set_ops(mdesc->smp);
919 		}
920 		smp_init_cpus();
921 		smp_build_mpidr_hash();
922 	}
923 #endif
924 
925 	if (!is_smp())
926 		hyp_mode_check();
927 
928 	reserve_crashkernel();
929 
930 #ifdef CONFIG_MULTI_IRQ_HANDLER
931 	handle_arch_irq = mdesc->handle_irq;
932 #endif
933 
934 #ifdef CONFIG_VT
935 #if defined(CONFIG_VGA_CONSOLE)
936 	conswitchp = &vga_con;
937 #elif defined(CONFIG_DUMMY_CONSOLE)
938 	conswitchp = &dummy_con;
939 #endif
940 #endif
941 
942 	if (mdesc->init_early)
943 		mdesc->init_early();
944 }
945 
946 
947 static int __init topology_init(void)
948 {
949 	int cpu;
950 
951 	for_each_possible_cpu(cpu) {
952 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
953 		cpuinfo->cpu.hotpluggable = 1;
954 		register_cpu(&cpuinfo->cpu, cpu);
955 	}
956 
957 	return 0;
958 }
959 subsys_initcall(topology_init);
960 
961 #ifdef CONFIG_HAVE_PROC_CPU
962 static int __init proc_cpu_init(void)
963 {
964 	struct proc_dir_entry *res;
965 
966 	res = proc_mkdir("cpu", NULL);
967 	if (!res)
968 		return -ENOMEM;
969 	return 0;
970 }
971 fs_initcall(proc_cpu_init);
972 #endif
973 
974 static const char *hwcap_str[] = {
975 	"swp",
976 	"half",
977 	"thumb",
978 	"26bit",
979 	"fastmult",
980 	"fpa",
981 	"vfp",
982 	"edsp",
983 	"java",
984 	"iwmmxt",
985 	"crunch",
986 	"thumbee",
987 	"neon",
988 	"vfpv3",
989 	"vfpv3d16",
990 	"tls",
991 	"vfpv4",
992 	"idiva",
993 	"idivt",
994 	"vfpd32",
995 	"lpae",
996 	"evtstrm",
997 	NULL
998 };
999 
1000 static const char *hwcap2_str[] = {
1001 	"aes",
1002 	"pmull",
1003 	"sha1",
1004 	"sha2",
1005 	"crc32",
1006 	NULL
1007 };
1008 
1009 static int c_show(struct seq_file *m, void *v)
1010 {
1011 	int i, j;
1012 	u32 cpuid;
1013 
1014 	for_each_online_cpu(i) {
1015 		/*
1016 		 * glibc reads /proc/cpuinfo to determine the number of
1017 		 * online processors, looking for lines beginning with
1018 		 * "processor".  Give glibc what it expects.
1019 		 */
1020 		seq_printf(m, "processor\t: %d\n", i);
1021 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1022 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1023 			   cpu_name, cpuid & 15, elf_platform);
1024 
1025 		/* dump out the processor features */
1026 		seq_puts(m, "Features\t: ");
1027 
1028 		for (j = 0; hwcap_str[j]; j++)
1029 			if (elf_hwcap & (1 << j))
1030 				seq_printf(m, "%s ", hwcap_str[j]);
1031 
1032 		for (j = 0; hwcap2_str[j]; j++)
1033 			if (elf_hwcap2 & (1 << j))
1034 				seq_printf(m, "%s ", hwcap2_str[j]);
1035 
1036 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1037 		seq_printf(m, "CPU architecture: %s\n",
1038 			   proc_arch[cpu_architecture()]);
1039 
1040 		if ((cpuid & 0x0008f000) == 0x00000000) {
1041 			/* pre-ARM7 */
1042 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1043 		} else {
1044 			if ((cpuid & 0x0008f000) == 0x00007000) {
1045 				/* ARM7 */
1046 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1047 					   (cpuid >> 16) & 127);
1048 			} else {
1049 				/* post-ARM7 */
1050 				seq_printf(m, "CPU variant\t: 0x%x\n",
1051 					   (cpuid >> 20) & 15);
1052 			}
1053 			seq_printf(m, "CPU part\t: 0x%03x\n",
1054 				   (cpuid >> 4) & 0xfff);
1055 		}
1056 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1057 	}
1058 
1059 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1060 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1061 	seq_printf(m, "Serial\t\t: %08x%08x\n",
1062 		   system_serial_high, system_serial_low);
1063 
1064 	return 0;
1065 }
1066 
1067 static void *c_start(struct seq_file *m, loff_t *pos)
1068 {
1069 	return *pos < 1 ? (void *)1 : NULL;
1070 }
1071 
1072 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1073 {
1074 	++*pos;
1075 	return NULL;
1076 }
1077 
1078 static void c_stop(struct seq_file *m, void *v)
1079 {
1080 }
1081 
1082 const struct seq_operations cpuinfo_op = {
1083 	.start	= c_start,
1084 	.next	= c_next,
1085 	.stop	= c_stop,
1086 	.show	= c_show
1087 };
1088