xref: /openbmc/linux/arch/arm/kernel/setup.c (revision 5bd8e16d)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
33 
34 #include <asm/unified.h>
35 #include <asm/cp15.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/elf.h>
39 #include <asm/procinfo.h>
40 #include <asm/psci.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <asm/smp_plat.h>
44 #include <asm/mach-types.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cachetype.h>
47 #include <asm/tlbflush.h>
48 
49 #include <asm/prom.h>
50 #include <asm/mach/arch.h>
51 #include <asm/mach/irq.h>
52 #include <asm/mach/time.h>
53 #include <asm/system_info.h>
54 #include <asm/system_misc.h>
55 #include <asm/traps.h>
56 #include <asm/unwind.h>
57 #include <asm/memblock.h>
58 #include <asm/virt.h>
59 
60 #include "atags.h"
61 
62 
63 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
64 char fpe_type[8];
65 
66 static int __init fpe_setup(char *line)
67 {
68 	memcpy(fpe_type, line, 8);
69 	return 1;
70 }
71 
72 __setup("fpe=", fpe_setup);
73 #endif
74 
75 extern void paging_init(const struct machine_desc *desc);
76 extern void sanity_check_meminfo(void);
77 extern enum reboot_mode reboot_mode;
78 extern void setup_dma_zone(const struct machine_desc *desc);
79 
80 unsigned int processor_id;
81 EXPORT_SYMBOL(processor_id);
82 unsigned int __machine_arch_type __read_mostly;
83 EXPORT_SYMBOL(__machine_arch_type);
84 unsigned int cacheid __read_mostly;
85 EXPORT_SYMBOL(cacheid);
86 
87 unsigned int __atags_pointer __initdata;
88 
89 unsigned int system_rev;
90 EXPORT_SYMBOL(system_rev);
91 
92 unsigned int system_serial_low;
93 EXPORT_SYMBOL(system_serial_low);
94 
95 unsigned int system_serial_high;
96 EXPORT_SYMBOL(system_serial_high);
97 
98 unsigned int elf_hwcap __read_mostly;
99 EXPORT_SYMBOL(elf_hwcap);
100 
101 
102 #ifdef MULTI_CPU
103 struct processor processor __read_mostly;
104 #endif
105 #ifdef MULTI_TLB
106 struct cpu_tlb_fns cpu_tlb __read_mostly;
107 #endif
108 #ifdef MULTI_USER
109 struct cpu_user_fns cpu_user __read_mostly;
110 #endif
111 #ifdef MULTI_CACHE
112 struct cpu_cache_fns cpu_cache __read_mostly;
113 #endif
114 #ifdef CONFIG_OUTER_CACHE
115 struct outer_cache_fns outer_cache __read_mostly;
116 EXPORT_SYMBOL(outer_cache);
117 #endif
118 
119 /*
120  * Cached cpu_architecture() result for use by assembler code.
121  * C code should use the cpu_architecture() function instead of accessing this
122  * variable directly.
123  */
124 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
125 
126 struct stack {
127 	u32 irq[3];
128 	u32 abt[3];
129 	u32 und[3];
130 } ____cacheline_aligned;
131 
132 #ifndef CONFIG_CPU_V7M
133 static struct stack stacks[NR_CPUS];
134 #endif
135 
136 char elf_platform[ELF_PLATFORM_SIZE];
137 EXPORT_SYMBOL(elf_platform);
138 
139 static const char *cpu_name;
140 static const char *machine_name;
141 static char __initdata cmd_line[COMMAND_LINE_SIZE];
142 const struct machine_desc *machine_desc __initdata;
143 
144 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
145 #define ENDIANNESS ((char)endian_test.l)
146 
147 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
148 
149 /*
150  * Standard memory resources
151  */
152 static struct resource mem_res[] = {
153 	{
154 		.name = "Video RAM",
155 		.start = 0,
156 		.end = 0,
157 		.flags = IORESOURCE_MEM
158 	},
159 	{
160 		.name = "Kernel code",
161 		.start = 0,
162 		.end = 0,
163 		.flags = IORESOURCE_MEM
164 	},
165 	{
166 		.name = "Kernel data",
167 		.start = 0,
168 		.end = 0,
169 		.flags = IORESOURCE_MEM
170 	}
171 };
172 
173 #define video_ram   mem_res[0]
174 #define kernel_code mem_res[1]
175 #define kernel_data mem_res[2]
176 
177 static struct resource io_res[] = {
178 	{
179 		.name = "reserved",
180 		.start = 0x3bc,
181 		.end = 0x3be,
182 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
183 	},
184 	{
185 		.name = "reserved",
186 		.start = 0x378,
187 		.end = 0x37f,
188 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
189 	},
190 	{
191 		.name = "reserved",
192 		.start = 0x278,
193 		.end = 0x27f,
194 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
195 	}
196 };
197 
198 #define lp0 io_res[0]
199 #define lp1 io_res[1]
200 #define lp2 io_res[2]
201 
202 static const char *proc_arch[] = {
203 	"undefined/unknown",
204 	"3",
205 	"4",
206 	"4T",
207 	"5",
208 	"5T",
209 	"5TE",
210 	"5TEJ",
211 	"6TEJ",
212 	"7",
213 	"7M",
214 	"?(12)",
215 	"?(13)",
216 	"?(14)",
217 	"?(15)",
218 	"?(16)",
219 	"?(17)",
220 };
221 
222 #ifdef CONFIG_CPU_V7M
223 static int __get_cpu_architecture(void)
224 {
225 	return CPU_ARCH_ARMv7M;
226 }
227 #else
228 static int __get_cpu_architecture(void)
229 {
230 	int cpu_arch;
231 
232 	if ((read_cpuid_id() & 0x0008f000) == 0) {
233 		cpu_arch = CPU_ARCH_UNKNOWN;
234 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
235 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
236 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
237 		cpu_arch = (read_cpuid_id() >> 16) & 7;
238 		if (cpu_arch)
239 			cpu_arch += CPU_ARCH_ARMv3;
240 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
241 		unsigned int mmfr0;
242 
243 		/* Revised CPUID format. Read the Memory Model Feature
244 		 * Register 0 and check for VMSAv7 or PMSAv7 */
245 		asm("mrc	p15, 0, %0, c0, c1, 4"
246 		    : "=r" (mmfr0));
247 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
248 		    (mmfr0 & 0x000000f0) >= 0x00000030)
249 			cpu_arch = CPU_ARCH_ARMv7;
250 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
251 			 (mmfr0 & 0x000000f0) == 0x00000020)
252 			cpu_arch = CPU_ARCH_ARMv6;
253 		else
254 			cpu_arch = CPU_ARCH_UNKNOWN;
255 	} else
256 		cpu_arch = CPU_ARCH_UNKNOWN;
257 
258 	return cpu_arch;
259 }
260 #endif
261 
262 int __pure cpu_architecture(void)
263 {
264 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
265 
266 	return __cpu_architecture;
267 }
268 
269 static int cpu_has_aliasing_icache(unsigned int arch)
270 {
271 	int aliasing_icache;
272 	unsigned int id_reg, num_sets, line_size;
273 
274 	/* PIPT caches never alias. */
275 	if (icache_is_pipt())
276 		return 0;
277 
278 	/* arch specifies the register format */
279 	switch (arch) {
280 	case CPU_ARCH_ARMv7:
281 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
282 		    : /* No output operands */
283 		    : "r" (1));
284 		isb();
285 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
286 		    : "=r" (id_reg));
287 		line_size = 4 << ((id_reg & 0x7) + 2);
288 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
289 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
290 		break;
291 	case CPU_ARCH_ARMv6:
292 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
293 		break;
294 	default:
295 		/* I-cache aliases will be handled by D-cache aliasing code */
296 		aliasing_icache = 0;
297 	}
298 
299 	return aliasing_icache;
300 }
301 
302 static void __init cacheid_init(void)
303 {
304 	unsigned int arch = cpu_architecture();
305 
306 	if (arch == CPU_ARCH_ARMv7M) {
307 		cacheid = 0;
308 	} else if (arch >= CPU_ARCH_ARMv6) {
309 		unsigned int cachetype = read_cpuid_cachetype();
310 		if ((cachetype & (7 << 29)) == 4 << 29) {
311 			/* ARMv7 register format */
312 			arch = CPU_ARCH_ARMv7;
313 			cacheid = CACHEID_VIPT_NONALIASING;
314 			switch (cachetype & (3 << 14)) {
315 			case (1 << 14):
316 				cacheid |= CACHEID_ASID_TAGGED;
317 				break;
318 			case (3 << 14):
319 				cacheid |= CACHEID_PIPT;
320 				break;
321 			}
322 		} else {
323 			arch = CPU_ARCH_ARMv6;
324 			if (cachetype & (1 << 23))
325 				cacheid = CACHEID_VIPT_ALIASING;
326 			else
327 				cacheid = CACHEID_VIPT_NONALIASING;
328 		}
329 		if (cpu_has_aliasing_icache(arch))
330 			cacheid |= CACHEID_VIPT_I_ALIASING;
331 	} else {
332 		cacheid = CACHEID_VIVT;
333 	}
334 
335 	printk("CPU: %s data cache, %s instruction cache\n",
336 		cache_is_vivt() ? "VIVT" :
337 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
338 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
339 		cache_is_vivt() ? "VIVT" :
340 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
341 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
342 		icache_is_pipt() ? "PIPT" :
343 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
344 }
345 
346 /*
347  * These functions re-use the assembly code in head.S, which
348  * already provide the required functionality.
349  */
350 extern struct proc_info_list *lookup_processor_type(unsigned int);
351 
352 void __init early_print(const char *str, ...)
353 {
354 	extern void printascii(const char *);
355 	char buf[256];
356 	va_list ap;
357 
358 	va_start(ap, str);
359 	vsnprintf(buf, sizeof(buf), str, ap);
360 	va_end(ap);
361 
362 #ifdef CONFIG_DEBUG_LL
363 	printascii(buf);
364 #endif
365 	printk("%s", buf);
366 }
367 
368 static void __init cpuid_init_hwcaps(void)
369 {
370 	unsigned int divide_instrs, vmsa;
371 
372 	if (cpu_architecture() < CPU_ARCH_ARMv7)
373 		return;
374 
375 	divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
376 
377 	switch (divide_instrs) {
378 	case 2:
379 		elf_hwcap |= HWCAP_IDIVA;
380 	case 1:
381 		elf_hwcap |= HWCAP_IDIVT;
382 	}
383 
384 	/* LPAE implies atomic ldrd/strd instructions */
385 	vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
386 	if (vmsa >= 5)
387 		elf_hwcap |= HWCAP_LPAE;
388 }
389 
390 static void __init feat_v6_fixup(void)
391 {
392 	int id = read_cpuid_id();
393 
394 	if ((id & 0xff0f0000) != 0x41070000)
395 		return;
396 
397 	/*
398 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
399 	 * see also kuser_get_tls_init.
400 	 */
401 	if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
402 		elf_hwcap &= ~HWCAP_TLS;
403 }
404 
405 /*
406  * cpu_init - initialise one CPU.
407  *
408  * cpu_init sets up the per-CPU stacks.
409  */
410 void notrace cpu_init(void)
411 {
412 #ifndef CONFIG_CPU_V7M
413 	unsigned int cpu = smp_processor_id();
414 	struct stack *stk = &stacks[cpu];
415 
416 	if (cpu >= NR_CPUS) {
417 		printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
418 		BUG();
419 	}
420 
421 	/*
422 	 * This only works on resume and secondary cores. For booting on the
423 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
424 	 */
425 	set_my_cpu_offset(per_cpu_offset(cpu));
426 
427 	cpu_proc_init();
428 
429 	/*
430 	 * Define the placement constraint for the inline asm directive below.
431 	 * In Thumb-2, msr with an immediate value is not allowed.
432 	 */
433 #ifdef CONFIG_THUMB2_KERNEL
434 #define PLC	"r"
435 #else
436 #define PLC	"I"
437 #endif
438 
439 	/*
440 	 * setup stacks for re-entrant exception handlers
441 	 */
442 	__asm__ (
443 	"msr	cpsr_c, %1\n\t"
444 	"add	r14, %0, %2\n\t"
445 	"mov	sp, r14\n\t"
446 	"msr	cpsr_c, %3\n\t"
447 	"add	r14, %0, %4\n\t"
448 	"mov	sp, r14\n\t"
449 	"msr	cpsr_c, %5\n\t"
450 	"add	r14, %0, %6\n\t"
451 	"mov	sp, r14\n\t"
452 	"msr	cpsr_c, %7"
453 	    :
454 	    : "r" (stk),
455 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
456 	      "I" (offsetof(struct stack, irq[0])),
457 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
458 	      "I" (offsetof(struct stack, abt[0])),
459 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
460 	      "I" (offsetof(struct stack, und[0])),
461 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
462 	    : "r14");
463 #endif
464 }
465 
466 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
467 
468 void __init smp_setup_processor_id(void)
469 {
470 	int i;
471 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
472 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
473 
474 	cpu_logical_map(0) = cpu;
475 	for (i = 1; i < nr_cpu_ids; ++i)
476 		cpu_logical_map(i) = i == cpu ? 0 : i;
477 
478 	/*
479 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
480 	 * using percpu variable early, for example, lockdep will
481 	 * access percpu variable inside lock_release
482 	 */
483 	set_my_cpu_offset(0);
484 
485 	printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
486 }
487 
488 struct mpidr_hash mpidr_hash;
489 #ifdef CONFIG_SMP
490 /**
491  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
492  *			  level in order to build a linear index from an
493  *			  MPIDR value. Resulting algorithm is a collision
494  *			  free hash carried out through shifting and ORing
495  */
496 static void __init smp_build_mpidr_hash(void)
497 {
498 	u32 i, affinity;
499 	u32 fs[3], bits[3], ls, mask = 0;
500 	/*
501 	 * Pre-scan the list of MPIDRS and filter out bits that do
502 	 * not contribute to affinity levels, ie they never toggle.
503 	 */
504 	for_each_possible_cpu(i)
505 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
506 	pr_debug("mask of set bits 0x%x\n", mask);
507 	/*
508 	 * Find and stash the last and first bit set at all affinity levels to
509 	 * check how many bits are required to represent them.
510 	 */
511 	for (i = 0; i < 3; i++) {
512 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
513 		/*
514 		 * Find the MSB bit and LSB bits position
515 		 * to determine how many bits are required
516 		 * to express the affinity level.
517 		 */
518 		ls = fls(affinity);
519 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
520 		bits[i] = ls - fs[i];
521 	}
522 	/*
523 	 * An index can be created from the MPIDR by isolating the
524 	 * significant bits at each affinity level and by shifting
525 	 * them in order to compress the 24 bits values space to a
526 	 * compressed set of values. This is equivalent to hashing
527 	 * the MPIDR through shifting and ORing. It is a collision free
528 	 * hash though not minimal since some levels might contain a number
529 	 * of CPUs that is not an exact power of 2 and their bit
530 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
531 	 */
532 	mpidr_hash.shift_aff[0] = fs[0];
533 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
534 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
535 						(bits[1] + bits[0]);
536 	mpidr_hash.mask = mask;
537 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
538 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
539 				mpidr_hash.shift_aff[0],
540 				mpidr_hash.shift_aff[1],
541 				mpidr_hash.shift_aff[2],
542 				mpidr_hash.mask,
543 				mpidr_hash.bits);
544 	/*
545 	 * 4x is an arbitrary value used to warn on a hash table much bigger
546 	 * than expected on most systems.
547 	 */
548 	if (mpidr_hash_size() > 4 * num_possible_cpus())
549 		pr_warn("Large number of MPIDR hash buckets detected\n");
550 	sync_cache_w(&mpidr_hash);
551 }
552 #endif
553 
554 static void __init setup_processor(void)
555 {
556 	struct proc_info_list *list;
557 
558 	/*
559 	 * locate processor in the list of supported processor
560 	 * types.  The linker builds this table for us from the
561 	 * entries in arch/arm/mm/proc-*.S
562 	 */
563 	list = lookup_processor_type(read_cpuid_id());
564 	if (!list) {
565 		printk("CPU configuration botched (ID %08x), unable "
566 		       "to continue.\n", read_cpuid_id());
567 		while (1);
568 	}
569 
570 	cpu_name = list->cpu_name;
571 	__cpu_architecture = __get_cpu_architecture();
572 
573 #ifdef MULTI_CPU
574 	processor = *list->proc;
575 #endif
576 #ifdef MULTI_TLB
577 	cpu_tlb = *list->tlb;
578 #endif
579 #ifdef MULTI_USER
580 	cpu_user = *list->user;
581 #endif
582 #ifdef MULTI_CACHE
583 	cpu_cache = *list->cache;
584 #endif
585 
586 	printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
587 	       cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
588 	       proc_arch[cpu_architecture()], cr_alignment);
589 
590 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
591 		 list->arch_name, ENDIANNESS);
592 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
593 		 list->elf_name, ENDIANNESS);
594 	elf_hwcap = list->elf_hwcap;
595 
596 	cpuid_init_hwcaps();
597 
598 #ifndef CONFIG_ARM_THUMB
599 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
600 #endif
601 
602 	feat_v6_fixup();
603 
604 	cacheid_init();
605 	cpu_init();
606 }
607 
608 void __init dump_machine_table(void)
609 {
610 	const struct machine_desc *p;
611 
612 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
613 	for_each_machine_desc(p)
614 		early_print("%08x\t%s\n", p->nr, p->name);
615 
616 	early_print("\nPlease check your kernel config and/or bootloader.\n");
617 
618 	while (true)
619 		/* can't use cpu_relax() here as it may require MMU setup */;
620 }
621 
622 int __init arm_add_memory(phys_addr_t start, phys_addr_t size)
623 {
624 	struct membank *bank = &meminfo.bank[meminfo.nr_banks];
625 
626 	if (meminfo.nr_banks >= NR_BANKS) {
627 		printk(KERN_CRIT "NR_BANKS too low, "
628 			"ignoring memory at 0x%08llx\n", (long long)start);
629 		return -EINVAL;
630 	}
631 
632 	/*
633 	 * Ensure that start/size are aligned to a page boundary.
634 	 * Size is appropriately rounded down, start is rounded up.
635 	 */
636 	size -= start & ~PAGE_MASK;
637 	bank->start = PAGE_ALIGN(start);
638 
639 #ifndef CONFIG_ARM_LPAE
640 	if (bank->start + size < bank->start) {
641 		printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
642 			"32-bit physical address space\n", (long long)start);
643 		/*
644 		 * To ensure bank->start + bank->size is representable in
645 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
646 		 * This means we lose a page after masking.
647 		 */
648 		size = ULONG_MAX - bank->start;
649 	}
650 #endif
651 
652 	bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
653 
654 	/*
655 	 * Check whether this memory region has non-zero size or
656 	 * invalid node number.
657 	 */
658 	if (bank->size == 0)
659 		return -EINVAL;
660 
661 	meminfo.nr_banks++;
662 	return 0;
663 }
664 
665 /*
666  * Pick out the memory size.  We look for mem=size@start,
667  * where start and size are "size[KkMm]"
668  */
669 static int __init early_mem(char *p)
670 {
671 	static int usermem __initdata = 0;
672 	phys_addr_t size;
673 	phys_addr_t start;
674 	char *endp;
675 
676 	/*
677 	 * If the user specifies memory size, we
678 	 * blow away any automatically generated
679 	 * size.
680 	 */
681 	if (usermem == 0) {
682 		usermem = 1;
683 		meminfo.nr_banks = 0;
684 	}
685 
686 	start = PHYS_OFFSET;
687 	size  = memparse(p, &endp);
688 	if (*endp == '@')
689 		start = memparse(endp + 1, NULL);
690 
691 	arm_add_memory(start, size);
692 
693 	return 0;
694 }
695 early_param("mem", early_mem);
696 
697 static void __init request_standard_resources(const struct machine_desc *mdesc)
698 {
699 	struct memblock_region *region;
700 	struct resource *res;
701 
702 	kernel_code.start   = virt_to_phys(_text);
703 	kernel_code.end     = virt_to_phys(_etext - 1);
704 	kernel_data.start   = virt_to_phys(_sdata);
705 	kernel_data.end     = virt_to_phys(_end - 1);
706 
707 	for_each_memblock(memory, region) {
708 		res = alloc_bootmem_low(sizeof(*res));
709 		res->name  = "System RAM";
710 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
711 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
712 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
713 
714 		request_resource(&iomem_resource, res);
715 
716 		if (kernel_code.start >= res->start &&
717 		    kernel_code.end <= res->end)
718 			request_resource(res, &kernel_code);
719 		if (kernel_data.start >= res->start &&
720 		    kernel_data.end <= res->end)
721 			request_resource(res, &kernel_data);
722 	}
723 
724 	if (mdesc->video_start) {
725 		video_ram.start = mdesc->video_start;
726 		video_ram.end   = mdesc->video_end;
727 		request_resource(&iomem_resource, &video_ram);
728 	}
729 
730 	/*
731 	 * Some machines don't have the possibility of ever
732 	 * possessing lp0, lp1 or lp2
733 	 */
734 	if (mdesc->reserve_lp0)
735 		request_resource(&ioport_resource, &lp0);
736 	if (mdesc->reserve_lp1)
737 		request_resource(&ioport_resource, &lp1);
738 	if (mdesc->reserve_lp2)
739 		request_resource(&ioport_resource, &lp2);
740 }
741 
742 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
743 struct screen_info screen_info = {
744  .orig_video_lines	= 30,
745  .orig_video_cols	= 80,
746  .orig_video_mode	= 0,
747  .orig_video_ega_bx	= 0,
748  .orig_video_isVGA	= 1,
749  .orig_video_points	= 8
750 };
751 #endif
752 
753 static int __init customize_machine(void)
754 {
755 	/*
756 	 * customizes platform devices, or adds new ones
757 	 * On DT based machines, we fall back to populating the
758 	 * machine from the device tree, if no callback is provided,
759 	 * otherwise we would always need an init_machine callback.
760 	 */
761 	if (machine_desc->init_machine)
762 		machine_desc->init_machine();
763 #ifdef CONFIG_OF
764 	else
765 		of_platform_populate(NULL, of_default_bus_match_table,
766 					NULL, NULL);
767 #endif
768 	return 0;
769 }
770 arch_initcall(customize_machine);
771 
772 static int __init init_machine_late(void)
773 {
774 	if (machine_desc->init_late)
775 		machine_desc->init_late();
776 	return 0;
777 }
778 late_initcall(init_machine_late);
779 
780 #ifdef CONFIG_KEXEC
781 static inline unsigned long long get_total_mem(void)
782 {
783 	unsigned long total;
784 
785 	total = max_low_pfn - min_low_pfn;
786 	return total << PAGE_SHIFT;
787 }
788 
789 /**
790  * reserve_crashkernel() - reserves memory are for crash kernel
791  *
792  * This function reserves memory area given in "crashkernel=" kernel command
793  * line parameter. The memory reserved is used by a dump capture kernel when
794  * primary kernel is crashing.
795  */
796 static void __init reserve_crashkernel(void)
797 {
798 	unsigned long long crash_size, crash_base;
799 	unsigned long long total_mem;
800 	int ret;
801 
802 	total_mem = get_total_mem();
803 	ret = parse_crashkernel(boot_command_line, total_mem,
804 				&crash_size, &crash_base);
805 	if (ret)
806 		return;
807 
808 	ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
809 	if (ret < 0) {
810 		printk(KERN_WARNING "crashkernel reservation failed - "
811 		       "memory is in use (0x%lx)\n", (unsigned long)crash_base);
812 		return;
813 	}
814 
815 	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
816 	       "for crashkernel (System RAM: %ldMB)\n",
817 	       (unsigned long)(crash_size >> 20),
818 	       (unsigned long)(crash_base >> 20),
819 	       (unsigned long)(total_mem >> 20));
820 
821 	crashk_res.start = crash_base;
822 	crashk_res.end = crash_base + crash_size - 1;
823 	insert_resource(&iomem_resource, &crashk_res);
824 }
825 #else
826 static inline void reserve_crashkernel(void) {}
827 #endif /* CONFIG_KEXEC */
828 
829 static int __init meminfo_cmp(const void *_a, const void *_b)
830 {
831 	const struct membank *a = _a, *b = _b;
832 	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
833 	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
834 }
835 
836 void __init hyp_mode_check(void)
837 {
838 #ifdef CONFIG_ARM_VIRT_EXT
839 	sync_boot_mode();
840 
841 	if (is_hyp_mode_available()) {
842 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
843 		pr_info("CPU: Virtualization extensions available.\n");
844 	} else if (is_hyp_mode_mismatched()) {
845 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
846 			__boot_cpu_mode & MODE_MASK);
847 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
848 	} else
849 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
850 #endif
851 }
852 
853 void __init setup_arch(char **cmdline_p)
854 {
855 	const struct machine_desc *mdesc;
856 
857 	setup_processor();
858 	mdesc = setup_machine_fdt(__atags_pointer);
859 	if (!mdesc)
860 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
861 	machine_desc = mdesc;
862 	machine_name = mdesc->name;
863 
864 	setup_dma_zone(mdesc);
865 
866 	if (mdesc->reboot_mode != REBOOT_HARD)
867 		reboot_mode = mdesc->reboot_mode;
868 
869 	init_mm.start_code = (unsigned long) _text;
870 	init_mm.end_code   = (unsigned long) _etext;
871 	init_mm.end_data   = (unsigned long) _edata;
872 	init_mm.brk	   = (unsigned long) _end;
873 
874 	/* populate cmd_line too for later use, preserving boot_command_line */
875 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
876 	*cmdline_p = cmd_line;
877 
878 	parse_early_param();
879 
880 	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
881 	sanity_check_meminfo();
882 	arm_memblock_init(&meminfo, mdesc);
883 
884 	paging_init(mdesc);
885 	request_standard_resources(mdesc);
886 
887 	if (mdesc->restart)
888 		arm_pm_restart = mdesc->restart;
889 
890 	unflatten_device_tree();
891 
892 	arm_dt_init_cpu_maps();
893 	psci_init();
894 #ifdef CONFIG_SMP
895 	if (is_smp()) {
896 		if (!mdesc->smp_init || !mdesc->smp_init()) {
897 			if (psci_smp_available())
898 				smp_set_ops(&psci_smp_ops);
899 			else if (mdesc->smp)
900 				smp_set_ops(mdesc->smp);
901 		}
902 		smp_init_cpus();
903 		smp_build_mpidr_hash();
904 	}
905 #endif
906 
907 	if (!is_smp())
908 		hyp_mode_check();
909 
910 	reserve_crashkernel();
911 
912 #ifdef CONFIG_MULTI_IRQ_HANDLER
913 	handle_arch_irq = mdesc->handle_irq;
914 #endif
915 
916 #ifdef CONFIG_VT
917 #if defined(CONFIG_VGA_CONSOLE)
918 	conswitchp = &vga_con;
919 #elif defined(CONFIG_DUMMY_CONSOLE)
920 	conswitchp = &dummy_con;
921 #endif
922 #endif
923 
924 	if (mdesc->init_early)
925 		mdesc->init_early();
926 }
927 
928 
929 static int __init topology_init(void)
930 {
931 	int cpu;
932 
933 	for_each_possible_cpu(cpu) {
934 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
935 		cpuinfo->cpu.hotpluggable = 1;
936 		register_cpu(&cpuinfo->cpu, cpu);
937 	}
938 
939 	return 0;
940 }
941 subsys_initcall(topology_init);
942 
943 #ifdef CONFIG_HAVE_PROC_CPU
944 static int __init proc_cpu_init(void)
945 {
946 	struct proc_dir_entry *res;
947 
948 	res = proc_mkdir("cpu", NULL);
949 	if (!res)
950 		return -ENOMEM;
951 	return 0;
952 }
953 fs_initcall(proc_cpu_init);
954 #endif
955 
956 static const char *hwcap_str[] = {
957 	"swp",
958 	"half",
959 	"thumb",
960 	"26bit",
961 	"fastmult",
962 	"fpa",
963 	"vfp",
964 	"edsp",
965 	"java",
966 	"iwmmxt",
967 	"crunch",
968 	"thumbee",
969 	"neon",
970 	"vfpv3",
971 	"vfpv3d16",
972 	"tls",
973 	"vfpv4",
974 	"idiva",
975 	"idivt",
976 	"vfpd32",
977 	"lpae",
978 	NULL
979 };
980 
981 static int c_show(struct seq_file *m, void *v)
982 {
983 	int i, j;
984 	u32 cpuid;
985 
986 	for_each_online_cpu(i) {
987 		/*
988 		 * glibc reads /proc/cpuinfo to determine the number of
989 		 * online processors, looking for lines beginning with
990 		 * "processor".  Give glibc what it expects.
991 		 */
992 		seq_printf(m, "processor\t: %d\n", i);
993 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
994 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
995 			   cpu_name, cpuid & 15, elf_platform);
996 
997 		/* dump out the processor features */
998 		seq_puts(m, "Features\t: ");
999 
1000 		for (j = 0; hwcap_str[j]; j++)
1001 			if (elf_hwcap & (1 << j))
1002 				seq_printf(m, "%s ", hwcap_str[j]);
1003 
1004 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1005 		seq_printf(m, "CPU architecture: %s\n",
1006 			   proc_arch[cpu_architecture()]);
1007 
1008 		if ((cpuid & 0x0008f000) == 0x00000000) {
1009 			/* pre-ARM7 */
1010 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1011 		} else {
1012 			if ((cpuid & 0x0008f000) == 0x00007000) {
1013 				/* ARM7 */
1014 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1015 					   (cpuid >> 16) & 127);
1016 			} else {
1017 				/* post-ARM7 */
1018 				seq_printf(m, "CPU variant\t: 0x%x\n",
1019 					   (cpuid >> 20) & 15);
1020 			}
1021 			seq_printf(m, "CPU part\t: 0x%03x\n",
1022 				   (cpuid >> 4) & 0xfff);
1023 		}
1024 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1025 	}
1026 
1027 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1028 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1029 	seq_printf(m, "Serial\t\t: %08x%08x\n",
1030 		   system_serial_high, system_serial_low);
1031 
1032 	return 0;
1033 }
1034 
1035 static void *c_start(struct seq_file *m, loff_t *pos)
1036 {
1037 	return *pos < 1 ? (void *)1 : NULL;
1038 }
1039 
1040 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1041 {
1042 	++*pos;
1043 	return NULL;
1044 }
1045 
1046 static void c_stop(struct seq_file *m, void *v)
1047 {
1048 }
1049 
1050 const struct seq_operations cpuinfo_op = {
1051 	.start	= c_start,
1052 	.next	= c_next,
1053 	.stop	= c_stop,
1054 	.show	= c_show
1055 };
1056