xref: /openbmc/linux/arch/arm/kernel/setup.c (revision 56d06fa2)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/efi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/ioport.h>
15 #include <linux/delay.h>
16 #include <linux/utsname.h>
17 #include <linux/initrd.h>
18 #include <linux/console.h>
19 #include <linux/bootmem.h>
20 #include <linux/seq_file.h>
21 #include <linux/screen_info.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/init.h>
25 #include <linux/kexec.h>
26 #include <linux/of_fdt.h>
27 #include <linux/cpu.h>
28 #include <linux/interrupt.h>
29 #include <linux/smp.h>
30 #include <linux/proc_fs.h>
31 #include <linux/memblock.h>
32 #include <linux/bug.h>
33 #include <linux/compiler.h>
34 #include <linux/sort.h>
35 #include <linux/psci.h>
36 
37 #include <asm/unified.h>
38 #include <asm/cp15.h>
39 #include <asm/cpu.h>
40 #include <asm/cputype.h>
41 #include <asm/efi.h>
42 #include <asm/elf.h>
43 #include <asm/early_ioremap.h>
44 #include <asm/fixmap.h>
45 #include <asm/procinfo.h>
46 #include <asm/psci.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/smp_plat.h>
50 #include <asm/mach-types.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cachetype.h>
53 #include <asm/tlbflush.h>
54 #include <asm/xen/hypervisor.h>
55 
56 #include <asm/prom.h>
57 #include <asm/mach/arch.h>
58 #include <asm/mach/irq.h>
59 #include <asm/mach/time.h>
60 #include <asm/system_info.h>
61 #include <asm/system_misc.h>
62 #include <asm/traps.h>
63 #include <asm/unwind.h>
64 #include <asm/memblock.h>
65 #include <asm/virt.h>
66 
67 #include "atags.h"
68 
69 
70 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
71 char fpe_type[8];
72 
73 static int __init fpe_setup(char *line)
74 {
75 	memcpy(fpe_type, line, 8);
76 	return 1;
77 }
78 
79 __setup("fpe=", fpe_setup);
80 #endif
81 
82 extern void init_default_cache_policy(unsigned long);
83 extern void paging_init(const struct machine_desc *desc);
84 extern void early_paging_init(const struct machine_desc *);
85 extern void sanity_check_meminfo(void);
86 extern enum reboot_mode reboot_mode;
87 extern void setup_dma_zone(const struct machine_desc *desc);
88 
89 unsigned int processor_id;
90 EXPORT_SYMBOL(processor_id);
91 unsigned int __machine_arch_type __read_mostly;
92 EXPORT_SYMBOL(__machine_arch_type);
93 unsigned int cacheid __read_mostly;
94 EXPORT_SYMBOL(cacheid);
95 
96 unsigned int __atags_pointer __initdata;
97 
98 unsigned int system_rev;
99 EXPORT_SYMBOL(system_rev);
100 
101 const char *system_serial;
102 EXPORT_SYMBOL(system_serial);
103 
104 unsigned int system_serial_low;
105 EXPORT_SYMBOL(system_serial_low);
106 
107 unsigned int system_serial_high;
108 EXPORT_SYMBOL(system_serial_high);
109 
110 unsigned int elf_hwcap __read_mostly;
111 EXPORT_SYMBOL(elf_hwcap);
112 
113 unsigned int elf_hwcap2 __read_mostly;
114 EXPORT_SYMBOL(elf_hwcap2);
115 
116 
117 #ifdef MULTI_CPU
118 struct processor processor __read_mostly;
119 #endif
120 #ifdef MULTI_TLB
121 struct cpu_tlb_fns cpu_tlb __read_mostly;
122 #endif
123 #ifdef MULTI_USER
124 struct cpu_user_fns cpu_user __read_mostly;
125 #endif
126 #ifdef MULTI_CACHE
127 struct cpu_cache_fns cpu_cache __read_mostly;
128 #endif
129 #ifdef CONFIG_OUTER_CACHE
130 struct outer_cache_fns outer_cache __read_mostly;
131 EXPORT_SYMBOL(outer_cache);
132 #endif
133 
134 /*
135  * Cached cpu_architecture() result for use by assembler code.
136  * C code should use the cpu_architecture() function instead of accessing this
137  * variable directly.
138  */
139 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
140 
141 struct stack {
142 	u32 irq[3];
143 	u32 abt[3];
144 	u32 und[3];
145 	u32 fiq[3];
146 } ____cacheline_aligned;
147 
148 #ifndef CONFIG_CPU_V7M
149 static struct stack stacks[NR_CPUS];
150 #endif
151 
152 char elf_platform[ELF_PLATFORM_SIZE];
153 EXPORT_SYMBOL(elf_platform);
154 
155 static const char *cpu_name;
156 static const char *machine_name;
157 static char __initdata cmd_line[COMMAND_LINE_SIZE];
158 const struct machine_desc *machine_desc __initdata;
159 
160 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
161 #define ENDIANNESS ((char)endian_test.l)
162 
163 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
164 
165 /*
166  * Standard memory resources
167  */
168 static struct resource mem_res[] = {
169 	{
170 		.name = "Video RAM",
171 		.start = 0,
172 		.end = 0,
173 		.flags = IORESOURCE_MEM
174 	},
175 	{
176 		.name = "Kernel code",
177 		.start = 0,
178 		.end = 0,
179 		.flags = IORESOURCE_SYSTEM_RAM
180 	},
181 	{
182 		.name = "Kernel data",
183 		.start = 0,
184 		.end = 0,
185 		.flags = IORESOURCE_SYSTEM_RAM
186 	}
187 };
188 
189 #define video_ram   mem_res[0]
190 #define kernel_code mem_res[1]
191 #define kernel_data mem_res[2]
192 
193 static struct resource io_res[] = {
194 	{
195 		.name = "reserved",
196 		.start = 0x3bc,
197 		.end = 0x3be,
198 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
199 	},
200 	{
201 		.name = "reserved",
202 		.start = 0x378,
203 		.end = 0x37f,
204 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
205 	},
206 	{
207 		.name = "reserved",
208 		.start = 0x278,
209 		.end = 0x27f,
210 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
211 	}
212 };
213 
214 #define lp0 io_res[0]
215 #define lp1 io_res[1]
216 #define lp2 io_res[2]
217 
218 static const char *proc_arch[] = {
219 	"undefined/unknown",
220 	"3",
221 	"4",
222 	"4T",
223 	"5",
224 	"5T",
225 	"5TE",
226 	"5TEJ",
227 	"6TEJ",
228 	"7",
229 	"7M",
230 	"?(12)",
231 	"?(13)",
232 	"?(14)",
233 	"?(15)",
234 	"?(16)",
235 	"?(17)",
236 };
237 
238 #ifdef CONFIG_CPU_V7M
239 static int __get_cpu_architecture(void)
240 {
241 	return CPU_ARCH_ARMv7M;
242 }
243 #else
244 static int __get_cpu_architecture(void)
245 {
246 	int cpu_arch;
247 
248 	if ((read_cpuid_id() & 0x0008f000) == 0) {
249 		cpu_arch = CPU_ARCH_UNKNOWN;
250 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
251 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
252 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
253 		cpu_arch = (read_cpuid_id() >> 16) & 7;
254 		if (cpu_arch)
255 			cpu_arch += CPU_ARCH_ARMv3;
256 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
257 		/* Revised CPUID format. Read the Memory Model Feature
258 		 * Register 0 and check for VMSAv7 or PMSAv7 */
259 		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
260 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
261 		    (mmfr0 & 0x000000f0) >= 0x00000030)
262 			cpu_arch = CPU_ARCH_ARMv7;
263 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
264 			 (mmfr0 & 0x000000f0) == 0x00000020)
265 			cpu_arch = CPU_ARCH_ARMv6;
266 		else
267 			cpu_arch = CPU_ARCH_UNKNOWN;
268 	} else
269 		cpu_arch = CPU_ARCH_UNKNOWN;
270 
271 	return cpu_arch;
272 }
273 #endif
274 
275 int __pure cpu_architecture(void)
276 {
277 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
278 
279 	return __cpu_architecture;
280 }
281 
282 static int cpu_has_aliasing_icache(unsigned int arch)
283 {
284 	int aliasing_icache;
285 	unsigned int id_reg, num_sets, line_size;
286 
287 	/* PIPT caches never alias. */
288 	if (icache_is_pipt())
289 		return 0;
290 
291 	/* arch specifies the register format */
292 	switch (arch) {
293 	case CPU_ARCH_ARMv7:
294 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
295 		    : /* No output operands */
296 		    : "r" (1));
297 		isb();
298 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
299 		    : "=r" (id_reg));
300 		line_size = 4 << ((id_reg & 0x7) + 2);
301 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
302 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
303 		break;
304 	case CPU_ARCH_ARMv6:
305 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
306 		break;
307 	default:
308 		/* I-cache aliases will be handled by D-cache aliasing code */
309 		aliasing_icache = 0;
310 	}
311 
312 	return aliasing_icache;
313 }
314 
315 static void __init cacheid_init(void)
316 {
317 	unsigned int arch = cpu_architecture();
318 
319 	if (arch == CPU_ARCH_ARMv7M) {
320 		cacheid = 0;
321 	} else if (arch >= CPU_ARCH_ARMv6) {
322 		unsigned int cachetype = read_cpuid_cachetype();
323 		if ((cachetype & (7 << 29)) == 4 << 29) {
324 			/* ARMv7 register format */
325 			arch = CPU_ARCH_ARMv7;
326 			cacheid = CACHEID_VIPT_NONALIASING;
327 			switch (cachetype & (3 << 14)) {
328 			case (1 << 14):
329 				cacheid |= CACHEID_ASID_TAGGED;
330 				break;
331 			case (3 << 14):
332 				cacheid |= CACHEID_PIPT;
333 				break;
334 			}
335 		} else {
336 			arch = CPU_ARCH_ARMv6;
337 			if (cachetype & (1 << 23))
338 				cacheid = CACHEID_VIPT_ALIASING;
339 			else
340 				cacheid = CACHEID_VIPT_NONALIASING;
341 		}
342 		if (cpu_has_aliasing_icache(arch))
343 			cacheid |= CACHEID_VIPT_I_ALIASING;
344 	} else {
345 		cacheid = CACHEID_VIVT;
346 	}
347 
348 	pr_info("CPU: %s data cache, %s instruction cache\n",
349 		cache_is_vivt() ? "VIVT" :
350 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
351 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
352 		cache_is_vivt() ? "VIVT" :
353 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
354 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
355 		icache_is_pipt() ? "PIPT" :
356 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
357 }
358 
359 /*
360  * These functions re-use the assembly code in head.S, which
361  * already provide the required functionality.
362  */
363 extern struct proc_info_list *lookup_processor_type(unsigned int);
364 
365 void __init early_print(const char *str, ...)
366 {
367 	extern void printascii(const char *);
368 	char buf[256];
369 	va_list ap;
370 
371 	va_start(ap, str);
372 	vsnprintf(buf, sizeof(buf), str, ap);
373 	va_end(ap);
374 
375 #ifdef CONFIG_DEBUG_LL
376 	printascii(buf);
377 #endif
378 	printk("%s", buf);
379 }
380 
381 #ifdef CONFIG_ARM_PATCH_IDIV
382 
383 static inline u32 __attribute_const__ sdiv_instruction(void)
384 {
385 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
386 		/* "sdiv r0, r0, r1" */
387 		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
388 		return __opcode_to_mem_thumb32(insn);
389 	}
390 
391 	/* "sdiv r0, r0, r1" */
392 	return __opcode_to_mem_arm(0xe710f110);
393 }
394 
395 static inline u32 __attribute_const__ udiv_instruction(void)
396 {
397 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
398 		/* "udiv r0, r0, r1" */
399 		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
400 		return __opcode_to_mem_thumb32(insn);
401 	}
402 
403 	/* "udiv r0, r0, r1" */
404 	return __opcode_to_mem_arm(0xe730f110);
405 }
406 
407 static inline u32 __attribute_const__ bx_lr_instruction(void)
408 {
409 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
410 		/* "bx lr; nop" */
411 		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
412 		return __opcode_to_mem_thumb32(insn);
413 	}
414 
415 	/* "bx lr" */
416 	return __opcode_to_mem_arm(0xe12fff1e);
417 }
418 
419 static void __init patch_aeabi_idiv(void)
420 {
421 	extern void __aeabi_uidiv(void);
422 	extern void __aeabi_idiv(void);
423 	uintptr_t fn_addr;
424 	unsigned int mask;
425 
426 	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
427 	if (!(elf_hwcap & mask))
428 		return;
429 
430 	pr_info("CPU: div instructions available: patching division code\n");
431 
432 	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
433 	asm ("" : "+g" (fn_addr));
434 	((u32 *)fn_addr)[0] = udiv_instruction();
435 	((u32 *)fn_addr)[1] = bx_lr_instruction();
436 	flush_icache_range(fn_addr, fn_addr + 8);
437 
438 	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
439 	asm ("" : "+g" (fn_addr));
440 	((u32 *)fn_addr)[0] = sdiv_instruction();
441 	((u32 *)fn_addr)[1] = bx_lr_instruction();
442 	flush_icache_range(fn_addr, fn_addr + 8);
443 }
444 
445 #else
446 static inline void patch_aeabi_idiv(void) { }
447 #endif
448 
449 static void __init cpuid_init_hwcaps(void)
450 {
451 	int block;
452 	u32 isar5;
453 
454 	if (cpu_architecture() < CPU_ARCH_ARMv7)
455 		return;
456 
457 	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
458 	if (block >= 2)
459 		elf_hwcap |= HWCAP_IDIVA;
460 	if (block >= 1)
461 		elf_hwcap |= HWCAP_IDIVT;
462 
463 	/* LPAE implies atomic ldrd/strd instructions */
464 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
465 	if (block >= 5)
466 		elf_hwcap |= HWCAP_LPAE;
467 
468 	/* check for supported v8 Crypto instructions */
469 	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
470 
471 	block = cpuid_feature_extract_field(isar5, 4);
472 	if (block >= 2)
473 		elf_hwcap2 |= HWCAP2_PMULL;
474 	if (block >= 1)
475 		elf_hwcap2 |= HWCAP2_AES;
476 
477 	block = cpuid_feature_extract_field(isar5, 8);
478 	if (block >= 1)
479 		elf_hwcap2 |= HWCAP2_SHA1;
480 
481 	block = cpuid_feature_extract_field(isar5, 12);
482 	if (block >= 1)
483 		elf_hwcap2 |= HWCAP2_SHA2;
484 
485 	block = cpuid_feature_extract_field(isar5, 16);
486 	if (block >= 1)
487 		elf_hwcap2 |= HWCAP2_CRC32;
488 }
489 
490 static void __init elf_hwcap_fixup(void)
491 {
492 	unsigned id = read_cpuid_id();
493 
494 	/*
495 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
496 	 * see also kuser_get_tls_init.
497 	 */
498 	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
499 	    ((id >> 20) & 3) == 0) {
500 		elf_hwcap &= ~HWCAP_TLS;
501 		return;
502 	}
503 
504 	/* Verify if CPUID scheme is implemented */
505 	if ((id & 0x000f0000) != 0x000f0000)
506 		return;
507 
508 	/*
509 	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
510 	 * avoid advertising SWP; it may not be atomic with
511 	 * multiprocessing cores.
512 	 */
513 	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
514 	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
515 	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
516 		elf_hwcap &= ~HWCAP_SWP;
517 }
518 
519 /*
520  * cpu_init - initialise one CPU.
521  *
522  * cpu_init sets up the per-CPU stacks.
523  */
524 void notrace cpu_init(void)
525 {
526 #ifndef CONFIG_CPU_V7M
527 	unsigned int cpu = smp_processor_id();
528 	struct stack *stk = &stacks[cpu];
529 
530 	if (cpu >= NR_CPUS) {
531 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
532 		BUG();
533 	}
534 
535 	/*
536 	 * This only works on resume and secondary cores. For booting on the
537 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
538 	 */
539 	set_my_cpu_offset(per_cpu_offset(cpu));
540 
541 	cpu_proc_init();
542 
543 	/*
544 	 * Define the placement constraint for the inline asm directive below.
545 	 * In Thumb-2, msr with an immediate value is not allowed.
546 	 */
547 #ifdef CONFIG_THUMB2_KERNEL
548 #define PLC	"r"
549 #else
550 #define PLC	"I"
551 #endif
552 
553 	/*
554 	 * setup stacks for re-entrant exception handlers
555 	 */
556 	__asm__ (
557 	"msr	cpsr_c, %1\n\t"
558 	"add	r14, %0, %2\n\t"
559 	"mov	sp, r14\n\t"
560 	"msr	cpsr_c, %3\n\t"
561 	"add	r14, %0, %4\n\t"
562 	"mov	sp, r14\n\t"
563 	"msr	cpsr_c, %5\n\t"
564 	"add	r14, %0, %6\n\t"
565 	"mov	sp, r14\n\t"
566 	"msr	cpsr_c, %7\n\t"
567 	"add	r14, %0, %8\n\t"
568 	"mov	sp, r14\n\t"
569 	"msr	cpsr_c, %9"
570 	    :
571 	    : "r" (stk),
572 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
573 	      "I" (offsetof(struct stack, irq[0])),
574 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
575 	      "I" (offsetof(struct stack, abt[0])),
576 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
577 	      "I" (offsetof(struct stack, und[0])),
578 	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
579 	      "I" (offsetof(struct stack, fiq[0])),
580 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
581 	    : "r14");
582 #endif
583 }
584 
585 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
586 
587 void __init smp_setup_processor_id(void)
588 {
589 	int i;
590 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
591 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
592 
593 	cpu_logical_map(0) = cpu;
594 	for (i = 1; i < nr_cpu_ids; ++i)
595 		cpu_logical_map(i) = i == cpu ? 0 : i;
596 
597 	/*
598 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
599 	 * using percpu variable early, for example, lockdep will
600 	 * access percpu variable inside lock_release
601 	 */
602 	set_my_cpu_offset(0);
603 
604 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
605 }
606 
607 struct mpidr_hash mpidr_hash;
608 #ifdef CONFIG_SMP
609 /**
610  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
611  *			  level in order to build a linear index from an
612  *			  MPIDR value. Resulting algorithm is a collision
613  *			  free hash carried out through shifting and ORing
614  */
615 static void __init smp_build_mpidr_hash(void)
616 {
617 	u32 i, affinity;
618 	u32 fs[3], bits[3], ls, mask = 0;
619 	/*
620 	 * Pre-scan the list of MPIDRS and filter out bits that do
621 	 * not contribute to affinity levels, ie they never toggle.
622 	 */
623 	for_each_possible_cpu(i)
624 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
625 	pr_debug("mask of set bits 0x%x\n", mask);
626 	/*
627 	 * Find and stash the last and first bit set at all affinity levels to
628 	 * check how many bits are required to represent them.
629 	 */
630 	for (i = 0; i < 3; i++) {
631 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
632 		/*
633 		 * Find the MSB bit and LSB bits position
634 		 * to determine how many bits are required
635 		 * to express the affinity level.
636 		 */
637 		ls = fls(affinity);
638 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
639 		bits[i] = ls - fs[i];
640 	}
641 	/*
642 	 * An index can be created from the MPIDR by isolating the
643 	 * significant bits at each affinity level and by shifting
644 	 * them in order to compress the 24 bits values space to a
645 	 * compressed set of values. This is equivalent to hashing
646 	 * the MPIDR through shifting and ORing. It is a collision free
647 	 * hash though not minimal since some levels might contain a number
648 	 * of CPUs that is not an exact power of 2 and their bit
649 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
650 	 */
651 	mpidr_hash.shift_aff[0] = fs[0];
652 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
653 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
654 						(bits[1] + bits[0]);
655 	mpidr_hash.mask = mask;
656 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
657 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
658 				mpidr_hash.shift_aff[0],
659 				mpidr_hash.shift_aff[1],
660 				mpidr_hash.shift_aff[2],
661 				mpidr_hash.mask,
662 				mpidr_hash.bits);
663 	/*
664 	 * 4x is an arbitrary value used to warn on a hash table much bigger
665 	 * than expected on most systems.
666 	 */
667 	if (mpidr_hash_size() > 4 * num_possible_cpus())
668 		pr_warn("Large number of MPIDR hash buckets detected\n");
669 	sync_cache_w(&mpidr_hash);
670 }
671 #endif
672 
673 static void __init setup_processor(void)
674 {
675 	struct proc_info_list *list;
676 
677 	/*
678 	 * locate processor in the list of supported processor
679 	 * types.  The linker builds this table for us from the
680 	 * entries in arch/arm/mm/proc-*.S
681 	 */
682 	list = lookup_processor_type(read_cpuid_id());
683 	if (!list) {
684 		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
685 		       read_cpuid_id());
686 		while (1);
687 	}
688 
689 	cpu_name = list->cpu_name;
690 	__cpu_architecture = __get_cpu_architecture();
691 
692 #ifdef MULTI_CPU
693 	processor = *list->proc;
694 #endif
695 #ifdef MULTI_TLB
696 	cpu_tlb = *list->tlb;
697 #endif
698 #ifdef MULTI_USER
699 	cpu_user = *list->user;
700 #endif
701 #ifdef MULTI_CACHE
702 	cpu_cache = *list->cache;
703 #endif
704 
705 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
706 		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
707 		proc_arch[cpu_architecture()], get_cr());
708 
709 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
710 		 list->arch_name, ENDIANNESS);
711 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
712 		 list->elf_name, ENDIANNESS);
713 	elf_hwcap = list->elf_hwcap;
714 
715 	cpuid_init_hwcaps();
716 	patch_aeabi_idiv();
717 
718 #ifndef CONFIG_ARM_THUMB
719 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
720 #endif
721 #ifdef CONFIG_MMU
722 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
723 #endif
724 	erratum_a15_798181_init();
725 
726 	elf_hwcap_fixup();
727 
728 	cacheid_init();
729 	cpu_init();
730 }
731 
732 void __init dump_machine_table(void)
733 {
734 	const struct machine_desc *p;
735 
736 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
737 	for_each_machine_desc(p)
738 		early_print("%08x\t%s\n", p->nr, p->name);
739 
740 	early_print("\nPlease check your kernel config and/or bootloader.\n");
741 
742 	while (true)
743 		/* can't use cpu_relax() here as it may require MMU setup */;
744 }
745 
746 int __init arm_add_memory(u64 start, u64 size)
747 {
748 	u64 aligned_start;
749 
750 	/*
751 	 * Ensure that start/size are aligned to a page boundary.
752 	 * Size is rounded down, start is rounded up.
753 	 */
754 	aligned_start = PAGE_ALIGN(start);
755 	if (aligned_start > start + size)
756 		size = 0;
757 	else
758 		size -= aligned_start - start;
759 
760 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
761 	if (aligned_start > ULONG_MAX) {
762 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
763 			(long long)start);
764 		return -EINVAL;
765 	}
766 
767 	if (aligned_start + size > ULONG_MAX) {
768 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
769 			(long long)start);
770 		/*
771 		 * To ensure bank->start + bank->size is representable in
772 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
773 		 * This means we lose a page after masking.
774 		 */
775 		size = ULONG_MAX - aligned_start;
776 	}
777 #endif
778 
779 	if (aligned_start < PHYS_OFFSET) {
780 		if (aligned_start + size <= PHYS_OFFSET) {
781 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
782 				aligned_start, aligned_start + size);
783 			return -EINVAL;
784 		}
785 
786 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
787 			aligned_start, (u64)PHYS_OFFSET);
788 
789 		size -= PHYS_OFFSET - aligned_start;
790 		aligned_start = PHYS_OFFSET;
791 	}
792 
793 	start = aligned_start;
794 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
795 
796 	/*
797 	 * Check whether this memory region has non-zero size or
798 	 * invalid node number.
799 	 */
800 	if (size == 0)
801 		return -EINVAL;
802 
803 	memblock_add(start, size);
804 	return 0;
805 }
806 
807 /*
808  * Pick out the memory size.  We look for mem=size@start,
809  * where start and size are "size[KkMm]"
810  */
811 
812 static int __init early_mem(char *p)
813 {
814 	static int usermem __initdata = 0;
815 	u64 size;
816 	u64 start;
817 	char *endp;
818 
819 	/*
820 	 * If the user specifies memory size, we
821 	 * blow away any automatically generated
822 	 * size.
823 	 */
824 	if (usermem == 0) {
825 		usermem = 1;
826 		memblock_remove(memblock_start_of_DRAM(),
827 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
828 	}
829 
830 	start = PHYS_OFFSET;
831 	size  = memparse(p, &endp);
832 	if (*endp == '@')
833 		start = memparse(endp + 1, NULL);
834 
835 	arm_add_memory(start, size);
836 
837 	return 0;
838 }
839 early_param("mem", early_mem);
840 
841 static void __init request_standard_resources(const struct machine_desc *mdesc)
842 {
843 	struct memblock_region *region;
844 	struct resource *res;
845 
846 	kernel_code.start   = virt_to_phys(_text);
847 	kernel_code.end     = virt_to_phys(_etext - 1);
848 	kernel_data.start   = virt_to_phys(_sdata);
849 	kernel_data.end     = virt_to_phys(_end - 1);
850 
851 	for_each_memblock(memory, region) {
852 		res = memblock_virt_alloc(sizeof(*res), 0);
853 		res->name  = "System RAM";
854 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
855 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
856 		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
857 
858 		request_resource(&iomem_resource, res);
859 
860 		if (kernel_code.start >= res->start &&
861 		    kernel_code.end <= res->end)
862 			request_resource(res, &kernel_code);
863 		if (kernel_data.start >= res->start &&
864 		    kernel_data.end <= res->end)
865 			request_resource(res, &kernel_data);
866 	}
867 
868 	if (mdesc->video_start) {
869 		video_ram.start = mdesc->video_start;
870 		video_ram.end   = mdesc->video_end;
871 		request_resource(&iomem_resource, &video_ram);
872 	}
873 
874 	/*
875 	 * Some machines don't have the possibility of ever
876 	 * possessing lp0, lp1 or lp2
877 	 */
878 	if (mdesc->reserve_lp0)
879 		request_resource(&ioport_resource, &lp0);
880 	if (mdesc->reserve_lp1)
881 		request_resource(&ioport_resource, &lp1);
882 	if (mdesc->reserve_lp2)
883 		request_resource(&ioport_resource, &lp2);
884 }
885 
886 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
887 struct screen_info screen_info = {
888  .orig_video_lines	= 30,
889  .orig_video_cols	= 80,
890  .orig_video_mode	= 0,
891  .orig_video_ega_bx	= 0,
892  .orig_video_isVGA	= 1,
893  .orig_video_points	= 8
894 };
895 #endif
896 
897 static int __init customize_machine(void)
898 {
899 	/*
900 	 * customizes platform devices, or adds new ones
901 	 * On DT based machines, we fall back to populating the
902 	 * machine from the device tree, if no callback is provided,
903 	 * otherwise we would always need an init_machine callback.
904 	 */
905 	of_iommu_init();
906 	if (machine_desc->init_machine)
907 		machine_desc->init_machine();
908 #ifdef CONFIG_OF
909 	else
910 		of_platform_populate(NULL, of_default_bus_match_table,
911 					NULL, NULL);
912 #endif
913 	return 0;
914 }
915 arch_initcall(customize_machine);
916 
917 static int __init init_machine_late(void)
918 {
919 	struct device_node *root;
920 	int ret;
921 
922 	if (machine_desc->init_late)
923 		machine_desc->init_late();
924 
925 	root = of_find_node_by_path("/");
926 	if (root) {
927 		ret = of_property_read_string(root, "serial-number",
928 					      &system_serial);
929 		if (ret)
930 			system_serial = NULL;
931 	}
932 
933 	if (!system_serial)
934 		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
935 					  system_serial_high,
936 					  system_serial_low);
937 
938 	return 0;
939 }
940 late_initcall(init_machine_late);
941 
942 #ifdef CONFIG_KEXEC
943 static inline unsigned long long get_total_mem(void)
944 {
945 	unsigned long total;
946 
947 	total = max_low_pfn - min_low_pfn;
948 	return total << PAGE_SHIFT;
949 }
950 
951 /**
952  * reserve_crashkernel() - reserves memory are for crash kernel
953  *
954  * This function reserves memory area given in "crashkernel=" kernel command
955  * line parameter. The memory reserved is used by a dump capture kernel when
956  * primary kernel is crashing.
957  */
958 static void __init reserve_crashkernel(void)
959 {
960 	unsigned long long crash_size, crash_base;
961 	unsigned long long total_mem;
962 	int ret;
963 
964 	total_mem = get_total_mem();
965 	ret = parse_crashkernel(boot_command_line, total_mem,
966 				&crash_size, &crash_base);
967 	if (ret)
968 		return;
969 
970 	ret = memblock_reserve(crash_base, crash_size);
971 	if (ret < 0) {
972 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
973 			(unsigned long)crash_base);
974 		return;
975 	}
976 
977 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
978 		(unsigned long)(crash_size >> 20),
979 		(unsigned long)(crash_base >> 20),
980 		(unsigned long)(total_mem >> 20));
981 
982 	crashk_res.start = crash_base;
983 	crashk_res.end = crash_base + crash_size - 1;
984 	insert_resource(&iomem_resource, &crashk_res);
985 }
986 #else
987 static inline void reserve_crashkernel(void) {}
988 #endif /* CONFIG_KEXEC */
989 
990 void __init hyp_mode_check(void)
991 {
992 #ifdef CONFIG_ARM_VIRT_EXT
993 	sync_boot_mode();
994 
995 	if (is_hyp_mode_available()) {
996 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
997 		pr_info("CPU: Virtualization extensions available.\n");
998 	} else if (is_hyp_mode_mismatched()) {
999 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1000 			__boot_cpu_mode & MODE_MASK);
1001 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1002 	} else
1003 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1004 #endif
1005 }
1006 
1007 void __init setup_arch(char **cmdline_p)
1008 {
1009 	const struct machine_desc *mdesc;
1010 
1011 	setup_processor();
1012 	mdesc = setup_machine_fdt(__atags_pointer);
1013 	if (!mdesc)
1014 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1015 	machine_desc = mdesc;
1016 	machine_name = mdesc->name;
1017 	dump_stack_set_arch_desc("%s", mdesc->name);
1018 
1019 	if (mdesc->reboot_mode != REBOOT_HARD)
1020 		reboot_mode = mdesc->reboot_mode;
1021 
1022 	init_mm.start_code = (unsigned long) _text;
1023 	init_mm.end_code   = (unsigned long) _etext;
1024 	init_mm.end_data   = (unsigned long) _edata;
1025 	init_mm.brk	   = (unsigned long) _end;
1026 
1027 	/* populate cmd_line too for later use, preserving boot_command_line */
1028 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1029 	*cmdline_p = cmd_line;
1030 
1031 	early_fixmap_init();
1032 	early_ioremap_init();
1033 
1034 	parse_early_param();
1035 
1036 #ifdef CONFIG_MMU
1037 	early_paging_init(mdesc);
1038 #endif
1039 	setup_dma_zone(mdesc);
1040 	efi_init();
1041 	sanity_check_meminfo();
1042 	arm_memblock_init(mdesc);
1043 
1044 	early_ioremap_reset();
1045 
1046 	paging_init(mdesc);
1047 	request_standard_resources(mdesc);
1048 
1049 	if (mdesc->restart)
1050 		arm_pm_restart = mdesc->restart;
1051 
1052 	unflatten_device_tree();
1053 
1054 	arm_dt_init_cpu_maps();
1055 	psci_dt_init();
1056 	xen_early_init();
1057 #ifdef CONFIG_SMP
1058 	if (is_smp()) {
1059 		if (!mdesc->smp_init || !mdesc->smp_init()) {
1060 			if (psci_smp_available())
1061 				smp_set_ops(&psci_smp_ops);
1062 			else if (mdesc->smp)
1063 				smp_set_ops(mdesc->smp);
1064 		}
1065 		smp_init_cpus();
1066 		smp_build_mpidr_hash();
1067 	}
1068 #endif
1069 
1070 	if (!is_smp())
1071 		hyp_mode_check();
1072 
1073 	reserve_crashkernel();
1074 
1075 #ifdef CONFIG_MULTI_IRQ_HANDLER
1076 	handle_arch_irq = mdesc->handle_irq;
1077 #endif
1078 
1079 #ifdef CONFIG_VT
1080 #if defined(CONFIG_VGA_CONSOLE)
1081 	conswitchp = &vga_con;
1082 #elif defined(CONFIG_DUMMY_CONSOLE)
1083 	conswitchp = &dummy_con;
1084 #endif
1085 #endif
1086 
1087 	if (mdesc->init_early)
1088 		mdesc->init_early();
1089 }
1090 
1091 
1092 static int __init topology_init(void)
1093 {
1094 	int cpu;
1095 
1096 	for_each_possible_cpu(cpu) {
1097 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1098 		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1099 		register_cpu(&cpuinfo->cpu, cpu);
1100 	}
1101 
1102 	return 0;
1103 }
1104 subsys_initcall(topology_init);
1105 
1106 #ifdef CONFIG_HAVE_PROC_CPU
1107 static int __init proc_cpu_init(void)
1108 {
1109 	struct proc_dir_entry *res;
1110 
1111 	res = proc_mkdir("cpu", NULL);
1112 	if (!res)
1113 		return -ENOMEM;
1114 	return 0;
1115 }
1116 fs_initcall(proc_cpu_init);
1117 #endif
1118 
1119 static const char *hwcap_str[] = {
1120 	"swp",
1121 	"half",
1122 	"thumb",
1123 	"26bit",
1124 	"fastmult",
1125 	"fpa",
1126 	"vfp",
1127 	"edsp",
1128 	"java",
1129 	"iwmmxt",
1130 	"crunch",
1131 	"thumbee",
1132 	"neon",
1133 	"vfpv3",
1134 	"vfpv3d16",
1135 	"tls",
1136 	"vfpv4",
1137 	"idiva",
1138 	"idivt",
1139 	"vfpd32",
1140 	"lpae",
1141 	"evtstrm",
1142 	NULL
1143 };
1144 
1145 static const char *hwcap2_str[] = {
1146 	"aes",
1147 	"pmull",
1148 	"sha1",
1149 	"sha2",
1150 	"crc32",
1151 	NULL
1152 };
1153 
1154 static int c_show(struct seq_file *m, void *v)
1155 {
1156 	int i, j;
1157 	u32 cpuid;
1158 
1159 	for_each_online_cpu(i) {
1160 		/*
1161 		 * glibc reads /proc/cpuinfo to determine the number of
1162 		 * online processors, looking for lines beginning with
1163 		 * "processor".  Give glibc what it expects.
1164 		 */
1165 		seq_printf(m, "processor\t: %d\n", i);
1166 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1167 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1168 			   cpu_name, cpuid & 15, elf_platform);
1169 
1170 #if defined(CONFIG_SMP)
1171 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1172 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1173 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1174 #else
1175 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1176 			   loops_per_jiffy / (500000/HZ),
1177 			   (loops_per_jiffy / (5000/HZ)) % 100);
1178 #endif
1179 		/* dump out the processor features */
1180 		seq_puts(m, "Features\t: ");
1181 
1182 		for (j = 0; hwcap_str[j]; j++)
1183 			if (elf_hwcap & (1 << j))
1184 				seq_printf(m, "%s ", hwcap_str[j]);
1185 
1186 		for (j = 0; hwcap2_str[j]; j++)
1187 			if (elf_hwcap2 & (1 << j))
1188 				seq_printf(m, "%s ", hwcap2_str[j]);
1189 
1190 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1191 		seq_printf(m, "CPU architecture: %s\n",
1192 			   proc_arch[cpu_architecture()]);
1193 
1194 		if ((cpuid & 0x0008f000) == 0x00000000) {
1195 			/* pre-ARM7 */
1196 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1197 		} else {
1198 			if ((cpuid & 0x0008f000) == 0x00007000) {
1199 				/* ARM7 */
1200 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1201 					   (cpuid >> 16) & 127);
1202 			} else {
1203 				/* post-ARM7 */
1204 				seq_printf(m, "CPU variant\t: 0x%x\n",
1205 					   (cpuid >> 20) & 15);
1206 			}
1207 			seq_printf(m, "CPU part\t: 0x%03x\n",
1208 				   (cpuid >> 4) & 0xfff);
1209 		}
1210 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1211 	}
1212 
1213 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1214 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1215 	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1216 
1217 	return 0;
1218 }
1219 
1220 static void *c_start(struct seq_file *m, loff_t *pos)
1221 {
1222 	return *pos < 1 ? (void *)1 : NULL;
1223 }
1224 
1225 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1226 {
1227 	++*pos;
1228 	return NULL;
1229 }
1230 
1231 static void c_stop(struct seq_file *m, void *v)
1232 {
1233 }
1234 
1235 const struct seq_operations cpuinfo_op = {
1236 	.start	= c_start,
1237 	.next	= c_next,
1238 	.stop	= c_stop,
1239 	.show	= c_show
1240 };
1241