xref: /openbmc/linux/arch/arm/kernel/setup.c (revision 4bf3bd0f)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/efi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/ioport.h>
15 #include <linux/delay.h>
16 #include <linux/utsname.h>
17 #include <linux/initrd.h>
18 #include <linux/console.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
33 #include <linux/psci.h>
34 
35 #include <asm/unified.h>
36 #include <asm/cp15.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/efi.h>
40 #include <asm/elf.h>
41 #include <asm/early_ioremap.h>
42 #include <asm/fixmap.h>
43 #include <asm/procinfo.h>
44 #include <asm/psci.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <asm/smp_plat.h>
48 #include <asm/mach-types.h>
49 #include <asm/cacheflush.h>
50 #include <asm/cachetype.h>
51 #include <asm/tlbflush.h>
52 #include <asm/xen/hypervisor.h>
53 
54 #include <asm/prom.h>
55 #include <asm/mach/arch.h>
56 #include <asm/mach/irq.h>
57 #include <asm/mach/time.h>
58 #include <asm/system_info.h>
59 #include <asm/system_misc.h>
60 #include <asm/traps.h>
61 #include <asm/unwind.h>
62 #include <asm/memblock.h>
63 #include <asm/virt.h>
64 
65 #include "atags.h"
66 
67 
68 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
69 char fpe_type[8];
70 
71 static int __init fpe_setup(char *line)
72 {
73 	memcpy(fpe_type, line, 8);
74 	return 1;
75 }
76 
77 __setup("fpe=", fpe_setup);
78 #endif
79 
80 extern void init_default_cache_policy(unsigned long);
81 extern void paging_init(const struct machine_desc *desc);
82 extern void early_mm_init(const struct machine_desc *);
83 extern void adjust_lowmem_bounds(void);
84 extern enum reboot_mode reboot_mode;
85 extern void setup_dma_zone(const struct machine_desc *desc);
86 
87 unsigned int processor_id;
88 EXPORT_SYMBOL(processor_id);
89 unsigned int __machine_arch_type __read_mostly;
90 EXPORT_SYMBOL(__machine_arch_type);
91 unsigned int cacheid __read_mostly;
92 EXPORT_SYMBOL(cacheid);
93 
94 unsigned int __atags_pointer __initdata;
95 
96 unsigned int system_rev;
97 EXPORT_SYMBOL(system_rev);
98 
99 const char *system_serial;
100 EXPORT_SYMBOL(system_serial);
101 
102 unsigned int system_serial_low;
103 EXPORT_SYMBOL(system_serial_low);
104 
105 unsigned int system_serial_high;
106 EXPORT_SYMBOL(system_serial_high);
107 
108 unsigned int elf_hwcap __read_mostly;
109 EXPORT_SYMBOL(elf_hwcap);
110 
111 unsigned int elf_hwcap2 __read_mostly;
112 EXPORT_SYMBOL(elf_hwcap2);
113 
114 
115 #ifdef MULTI_CPU
116 struct processor processor __ro_after_init;
117 #endif
118 #ifdef MULTI_TLB
119 struct cpu_tlb_fns cpu_tlb __ro_after_init;
120 #endif
121 #ifdef MULTI_USER
122 struct cpu_user_fns cpu_user __ro_after_init;
123 #endif
124 #ifdef MULTI_CACHE
125 struct cpu_cache_fns cpu_cache __ro_after_init;
126 #endif
127 #ifdef CONFIG_OUTER_CACHE
128 struct outer_cache_fns outer_cache __ro_after_init;
129 EXPORT_SYMBOL(outer_cache);
130 #endif
131 
132 /*
133  * Cached cpu_architecture() result for use by assembler code.
134  * C code should use the cpu_architecture() function instead of accessing this
135  * variable directly.
136  */
137 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
138 
139 struct stack {
140 	u32 irq[3];
141 	u32 abt[3];
142 	u32 und[3];
143 	u32 fiq[3];
144 } ____cacheline_aligned;
145 
146 #ifndef CONFIG_CPU_V7M
147 static struct stack stacks[NR_CPUS];
148 #endif
149 
150 char elf_platform[ELF_PLATFORM_SIZE];
151 EXPORT_SYMBOL(elf_platform);
152 
153 static const char *cpu_name;
154 static const char *machine_name;
155 static char __initdata cmd_line[COMMAND_LINE_SIZE];
156 const struct machine_desc *machine_desc __initdata;
157 
158 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
159 #define ENDIANNESS ((char)endian_test.l)
160 
161 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
162 
163 /*
164  * Standard memory resources
165  */
166 static struct resource mem_res[] = {
167 	{
168 		.name = "Video RAM",
169 		.start = 0,
170 		.end = 0,
171 		.flags = IORESOURCE_MEM
172 	},
173 	{
174 		.name = "Kernel code",
175 		.start = 0,
176 		.end = 0,
177 		.flags = IORESOURCE_SYSTEM_RAM
178 	},
179 	{
180 		.name = "Kernel data",
181 		.start = 0,
182 		.end = 0,
183 		.flags = IORESOURCE_SYSTEM_RAM
184 	}
185 };
186 
187 #define video_ram   mem_res[0]
188 #define kernel_code mem_res[1]
189 #define kernel_data mem_res[2]
190 
191 static struct resource io_res[] = {
192 	{
193 		.name = "reserved",
194 		.start = 0x3bc,
195 		.end = 0x3be,
196 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
197 	},
198 	{
199 		.name = "reserved",
200 		.start = 0x378,
201 		.end = 0x37f,
202 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
203 	},
204 	{
205 		.name = "reserved",
206 		.start = 0x278,
207 		.end = 0x27f,
208 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
209 	}
210 };
211 
212 #define lp0 io_res[0]
213 #define lp1 io_res[1]
214 #define lp2 io_res[2]
215 
216 static const char *proc_arch[] = {
217 	"undefined/unknown",
218 	"3",
219 	"4",
220 	"4T",
221 	"5",
222 	"5T",
223 	"5TE",
224 	"5TEJ",
225 	"6TEJ",
226 	"7",
227 	"7M",
228 	"?(12)",
229 	"?(13)",
230 	"?(14)",
231 	"?(15)",
232 	"?(16)",
233 	"?(17)",
234 };
235 
236 #ifdef CONFIG_CPU_V7M
237 static int __get_cpu_architecture(void)
238 {
239 	return CPU_ARCH_ARMv7M;
240 }
241 #else
242 static int __get_cpu_architecture(void)
243 {
244 	int cpu_arch;
245 
246 	if ((read_cpuid_id() & 0x0008f000) == 0) {
247 		cpu_arch = CPU_ARCH_UNKNOWN;
248 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
249 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
250 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
251 		cpu_arch = (read_cpuid_id() >> 16) & 7;
252 		if (cpu_arch)
253 			cpu_arch += CPU_ARCH_ARMv3;
254 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
255 		/* Revised CPUID format. Read the Memory Model Feature
256 		 * Register 0 and check for VMSAv7 or PMSAv7 */
257 		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
258 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
259 		    (mmfr0 & 0x000000f0) >= 0x00000030)
260 			cpu_arch = CPU_ARCH_ARMv7;
261 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
262 			 (mmfr0 & 0x000000f0) == 0x00000020)
263 			cpu_arch = CPU_ARCH_ARMv6;
264 		else
265 			cpu_arch = CPU_ARCH_UNKNOWN;
266 	} else
267 		cpu_arch = CPU_ARCH_UNKNOWN;
268 
269 	return cpu_arch;
270 }
271 #endif
272 
273 int __pure cpu_architecture(void)
274 {
275 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
276 
277 	return __cpu_architecture;
278 }
279 
280 static int cpu_has_aliasing_icache(unsigned int arch)
281 {
282 	int aliasing_icache;
283 	unsigned int id_reg, num_sets, line_size;
284 
285 	/* PIPT caches never alias. */
286 	if (icache_is_pipt())
287 		return 0;
288 
289 	/* arch specifies the register format */
290 	switch (arch) {
291 	case CPU_ARCH_ARMv7:
292 		set_csselr(CSSELR_ICACHE | CSSELR_L1);
293 		isb();
294 		id_reg = read_ccsidr();
295 		line_size = 4 << ((id_reg & 0x7) + 2);
296 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
297 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
298 		break;
299 	case CPU_ARCH_ARMv6:
300 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
301 		break;
302 	default:
303 		/* I-cache aliases will be handled by D-cache aliasing code */
304 		aliasing_icache = 0;
305 	}
306 
307 	return aliasing_icache;
308 }
309 
310 static void __init cacheid_init(void)
311 {
312 	unsigned int arch = cpu_architecture();
313 
314 	if (arch >= CPU_ARCH_ARMv6) {
315 		unsigned int cachetype = read_cpuid_cachetype();
316 
317 		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
318 			cacheid = 0;
319 		} else if ((cachetype & (7 << 29)) == 4 << 29) {
320 			/* ARMv7 register format */
321 			arch = CPU_ARCH_ARMv7;
322 			cacheid = CACHEID_VIPT_NONALIASING;
323 			switch (cachetype & (3 << 14)) {
324 			case (1 << 14):
325 				cacheid |= CACHEID_ASID_TAGGED;
326 				break;
327 			case (3 << 14):
328 				cacheid |= CACHEID_PIPT;
329 				break;
330 			}
331 		} else {
332 			arch = CPU_ARCH_ARMv6;
333 			if (cachetype & (1 << 23))
334 				cacheid = CACHEID_VIPT_ALIASING;
335 			else
336 				cacheid = CACHEID_VIPT_NONALIASING;
337 		}
338 		if (cpu_has_aliasing_icache(arch))
339 			cacheid |= CACHEID_VIPT_I_ALIASING;
340 	} else {
341 		cacheid = CACHEID_VIVT;
342 	}
343 
344 	pr_info("CPU: %s data cache, %s instruction cache\n",
345 		cache_is_vivt() ? "VIVT" :
346 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
347 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
348 		cache_is_vivt() ? "VIVT" :
349 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
350 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
351 		icache_is_pipt() ? "PIPT" :
352 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
353 }
354 
355 /*
356  * These functions re-use the assembly code in head.S, which
357  * already provide the required functionality.
358  */
359 extern struct proc_info_list *lookup_processor_type(unsigned int);
360 
361 void __init early_print(const char *str, ...)
362 {
363 	extern void printascii(const char *);
364 	char buf[256];
365 	va_list ap;
366 
367 	va_start(ap, str);
368 	vsnprintf(buf, sizeof(buf), str, ap);
369 	va_end(ap);
370 
371 #ifdef CONFIG_DEBUG_LL
372 	printascii(buf);
373 #endif
374 	printk("%s", buf);
375 }
376 
377 #ifdef CONFIG_ARM_PATCH_IDIV
378 
379 static inline u32 __attribute_const__ sdiv_instruction(void)
380 {
381 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
382 		/* "sdiv r0, r0, r1" */
383 		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
384 		return __opcode_to_mem_thumb32(insn);
385 	}
386 
387 	/* "sdiv r0, r0, r1" */
388 	return __opcode_to_mem_arm(0xe710f110);
389 }
390 
391 static inline u32 __attribute_const__ udiv_instruction(void)
392 {
393 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
394 		/* "udiv r0, r0, r1" */
395 		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
396 		return __opcode_to_mem_thumb32(insn);
397 	}
398 
399 	/* "udiv r0, r0, r1" */
400 	return __opcode_to_mem_arm(0xe730f110);
401 }
402 
403 static inline u32 __attribute_const__ bx_lr_instruction(void)
404 {
405 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
406 		/* "bx lr; nop" */
407 		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
408 		return __opcode_to_mem_thumb32(insn);
409 	}
410 
411 	/* "bx lr" */
412 	return __opcode_to_mem_arm(0xe12fff1e);
413 }
414 
415 static void __init patch_aeabi_idiv(void)
416 {
417 	extern void __aeabi_uidiv(void);
418 	extern void __aeabi_idiv(void);
419 	uintptr_t fn_addr;
420 	unsigned int mask;
421 
422 	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
423 	if (!(elf_hwcap & mask))
424 		return;
425 
426 	pr_info("CPU: div instructions available: patching division code\n");
427 
428 	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
429 	asm ("" : "+g" (fn_addr));
430 	((u32 *)fn_addr)[0] = udiv_instruction();
431 	((u32 *)fn_addr)[1] = bx_lr_instruction();
432 	flush_icache_range(fn_addr, fn_addr + 8);
433 
434 	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
435 	asm ("" : "+g" (fn_addr));
436 	((u32 *)fn_addr)[0] = sdiv_instruction();
437 	((u32 *)fn_addr)[1] = bx_lr_instruction();
438 	flush_icache_range(fn_addr, fn_addr + 8);
439 }
440 
441 #else
442 static inline void patch_aeabi_idiv(void) { }
443 #endif
444 
445 static void __init cpuid_init_hwcaps(void)
446 {
447 	int block;
448 	u32 isar5;
449 
450 	if (cpu_architecture() < CPU_ARCH_ARMv7)
451 		return;
452 
453 	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
454 	if (block >= 2)
455 		elf_hwcap |= HWCAP_IDIVA;
456 	if (block >= 1)
457 		elf_hwcap |= HWCAP_IDIVT;
458 
459 	/* LPAE implies atomic ldrd/strd instructions */
460 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
461 	if (block >= 5)
462 		elf_hwcap |= HWCAP_LPAE;
463 
464 	/* check for supported v8 Crypto instructions */
465 	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
466 
467 	block = cpuid_feature_extract_field(isar5, 4);
468 	if (block >= 2)
469 		elf_hwcap2 |= HWCAP2_PMULL;
470 	if (block >= 1)
471 		elf_hwcap2 |= HWCAP2_AES;
472 
473 	block = cpuid_feature_extract_field(isar5, 8);
474 	if (block >= 1)
475 		elf_hwcap2 |= HWCAP2_SHA1;
476 
477 	block = cpuid_feature_extract_field(isar5, 12);
478 	if (block >= 1)
479 		elf_hwcap2 |= HWCAP2_SHA2;
480 
481 	block = cpuid_feature_extract_field(isar5, 16);
482 	if (block >= 1)
483 		elf_hwcap2 |= HWCAP2_CRC32;
484 }
485 
486 static void __init elf_hwcap_fixup(void)
487 {
488 	unsigned id = read_cpuid_id();
489 
490 	/*
491 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
492 	 * see also kuser_get_tls_init.
493 	 */
494 	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
495 	    ((id >> 20) & 3) == 0) {
496 		elf_hwcap &= ~HWCAP_TLS;
497 		return;
498 	}
499 
500 	/* Verify if CPUID scheme is implemented */
501 	if ((id & 0x000f0000) != 0x000f0000)
502 		return;
503 
504 	/*
505 	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
506 	 * avoid advertising SWP; it may not be atomic with
507 	 * multiprocessing cores.
508 	 */
509 	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
510 	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
511 	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
512 		elf_hwcap &= ~HWCAP_SWP;
513 }
514 
515 /*
516  * cpu_init - initialise one CPU.
517  *
518  * cpu_init sets up the per-CPU stacks.
519  */
520 void notrace cpu_init(void)
521 {
522 #ifndef CONFIG_CPU_V7M
523 	unsigned int cpu = smp_processor_id();
524 	struct stack *stk = &stacks[cpu];
525 
526 	if (cpu >= NR_CPUS) {
527 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
528 		BUG();
529 	}
530 
531 	/*
532 	 * This only works on resume and secondary cores. For booting on the
533 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
534 	 */
535 	set_my_cpu_offset(per_cpu_offset(cpu));
536 
537 	cpu_proc_init();
538 
539 	/*
540 	 * Define the placement constraint for the inline asm directive below.
541 	 * In Thumb-2, msr with an immediate value is not allowed.
542 	 */
543 #ifdef CONFIG_THUMB2_KERNEL
544 #define PLC	"r"
545 #else
546 #define PLC	"I"
547 #endif
548 
549 	/*
550 	 * setup stacks for re-entrant exception handlers
551 	 */
552 	__asm__ (
553 	"msr	cpsr_c, %1\n\t"
554 	"add	r14, %0, %2\n\t"
555 	"mov	sp, r14\n\t"
556 	"msr	cpsr_c, %3\n\t"
557 	"add	r14, %0, %4\n\t"
558 	"mov	sp, r14\n\t"
559 	"msr	cpsr_c, %5\n\t"
560 	"add	r14, %0, %6\n\t"
561 	"mov	sp, r14\n\t"
562 	"msr	cpsr_c, %7\n\t"
563 	"add	r14, %0, %8\n\t"
564 	"mov	sp, r14\n\t"
565 	"msr	cpsr_c, %9"
566 	    :
567 	    : "r" (stk),
568 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
569 	      "I" (offsetof(struct stack, irq[0])),
570 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
571 	      "I" (offsetof(struct stack, abt[0])),
572 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
573 	      "I" (offsetof(struct stack, und[0])),
574 	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
575 	      "I" (offsetof(struct stack, fiq[0])),
576 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
577 	    : "r14");
578 #endif
579 }
580 
581 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
582 
583 void __init smp_setup_processor_id(void)
584 {
585 	int i;
586 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
587 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
588 
589 	cpu_logical_map(0) = cpu;
590 	for (i = 1; i < nr_cpu_ids; ++i)
591 		cpu_logical_map(i) = i == cpu ? 0 : i;
592 
593 	/*
594 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
595 	 * using percpu variable early, for example, lockdep will
596 	 * access percpu variable inside lock_release
597 	 */
598 	set_my_cpu_offset(0);
599 
600 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
601 }
602 
603 struct mpidr_hash mpidr_hash;
604 #ifdef CONFIG_SMP
605 /**
606  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
607  *			  level in order to build a linear index from an
608  *			  MPIDR value. Resulting algorithm is a collision
609  *			  free hash carried out through shifting and ORing
610  */
611 static void __init smp_build_mpidr_hash(void)
612 {
613 	u32 i, affinity;
614 	u32 fs[3], bits[3], ls, mask = 0;
615 	/*
616 	 * Pre-scan the list of MPIDRS and filter out bits that do
617 	 * not contribute to affinity levels, ie they never toggle.
618 	 */
619 	for_each_possible_cpu(i)
620 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
621 	pr_debug("mask of set bits 0x%x\n", mask);
622 	/*
623 	 * Find and stash the last and first bit set at all affinity levels to
624 	 * check how many bits are required to represent them.
625 	 */
626 	for (i = 0; i < 3; i++) {
627 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
628 		/*
629 		 * Find the MSB bit and LSB bits position
630 		 * to determine how many bits are required
631 		 * to express the affinity level.
632 		 */
633 		ls = fls(affinity);
634 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
635 		bits[i] = ls - fs[i];
636 	}
637 	/*
638 	 * An index can be created from the MPIDR by isolating the
639 	 * significant bits at each affinity level and by shifting
640 	 * them in order to compress the 24 bits values space to a
641 	 * compressed set of values. This is equivalent to hashing
642 	 * the MPIDR through shifting and ORing. It is a collision free
643 	 * hash though not minimal since some levels might contain a number
644 	 * of CPUs that is not an exact power of 2 and their bit
645 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
646 	 */
647 	mpidr_hash.shift_aff[0] = fs[0];
648 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
649 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
650 						(bits[1] + bits[0]);
651 	mpidr_hash.mask = mask;
652 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
653 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
654 				mpidr_hash.shift_aff[0],
655 				mpidr_hash.shift_aff[1],
656 				mpidr_hash.shift_aff[2],
657 				mpidr_hash.mask,
658 				mpidr_hash.bits);
659 	/*
660 	 * 4x is an arbitrary value used to warn on a hash table much bigger
661 	 * than expected on most systems.
662 	 */
663 	if (mpidr_hash_size() > 4 * num_possible_cpus())
664 		pr_warn("Large number of MPIDR hash buckets detected\n");
665 	sync_cache_w(&mpidr_hash);
666 }
667 #endif
668 
669 static void __init setup_processor(void)
670 {
671 	struct proc_info_list *list;
672 
673 	/*
674 	 * locate processor in the list of supported processor
675 	 * types.  The linker builds this table for us from the
676 	 * entries in arch/arm/mm/proc-*.S
677 	 */
678 	list = lookup_processor_type(read_cpuid_id());
679 	if (!list) {
680 		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
681 		       read_cpuid_id());
682 		while (1);
683 	}
684 
685 	cpu_name = list->cpu_name;
686 	__cpu_architecture = __get_cpu_architecture();
687 
688 #ifdef MULTI_CPU
689 	processor = *list->proc;
690 #endif
691 #ifdef MULTI_TLB
692 	cpu_tlb = *list->tlb;
693 #endif
694 #ifdef MULTI_USER
695 	cpu_user = *list->user;
696 #endif
697 #ifdef MULTI_CACHE
698 	cpu_cache = *list->cache;
699 #endif
700 
701 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
702 		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
703 		proc_arch[cpu_architecture()], get_cr());
704 
705 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
706 		 list->arch_name, ENDIANNESS);
707 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
708 		 list->elf_name, ENDIANNESS);
709 	elf_hwcap = list->elf_hwcap;
710 
711 	cpuid_init_hwcaps();
712 	patch_aeabi_idiv();
713 
714 #ifndef CONFIG_ARM_THUMB
715 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
716 #endif
717 #ifdef CONFIG_MMU
718 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
719 #endif
720 	erratum_a15_798181_init();
721 
722 	elf_hwcap_fixup();
723 
724 	cacheid_init();
725 	cpu_init();
726 }
727 
728 void __init dump_machine_table(void)
729 {
730 	const struct machine_desc *p;
731 
732 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
733 	for_each_machine_desc(p)
734 		early_print("%08x\t%s\n", p->nr, p->name);
735 
736 	early_print("\nPlease check your kernel config and/or bootloader.\n");
737 
738 	while (true)
739 		/* can't use cpu_relax() here as it may require MMU setup */;
740 }
741 
742 int __init arm_add_memory(u64 start, u64 size)
743 {
744 	u64 aligned_start;
745 
746 	/*
747 	 * Ensure that start/size are aligned to a page boundary.
748 	 * Size is rounded down, start is rounded up.
749 	 */
750 	aligned_start = PAGE_ALIGN(start);
751 	if (aligned_start > start + size)
752 		size = 0;
753 	else
754 		size -= aligned_start - start;
755 
756 #ifndef CONFIG_PHYS_ADDR_T_64BIT
757 	if (aligned_start > ULONG_MAX) {
758 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
759 			(long long)start);
760 		return -EINVAL;
761 	}
762 
763 	if (aligned_start + size > ULONG_MAX) {
764 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
765 			(long long)start);
766 		/*
767 		 * To ensure bank->start + bank->size is representable in
768 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
769 		 * This means we lose a page after masking.
770 		 */
771 		size = ULONG_MAX - aligned_start;
772 	}
773 #endif
774 
775 	if (aligned_start < PHYS_OFFSET) {
776 		if (aligned_start + size <= PHYS_OFFSET) {
777 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
778 				aligned_start, aligned_start + size);
779 			return -EINVAL;
780 		}
781 
782 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
783 			aligned_start, (u64)PHYS_OFFSET);
784 
785 		size -= PHYS_OFFSET - aligned_start;
786 		aligned_start = PHYS_OFFSET;
787 	}
788 
789 	start = aligned_start;
790 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
791 
792 	/*
793 	 * Check whether this memory region has non-zero size or
794 	 * invalid node number.
795 	 */
796 	if (size == 0)
797 		return -EINVAL;
798 
799 	memblock_add(start, size);
800 	return 0;
801 }
802 
803 /*
804  * Pick out the memory size.  We look for mem=size@start,
805  * where start and size are "size[KkMm]"
806  */
807 
808 static int __init early_mem(char *p)
809 {
810 	static int usermem __initdata = 0;
811 	u64 size;
812 	u64 start;
813 	char *endp;
814 
815 	/*
816 	 * If the user specifies memory size, we
817 	 * blow away any automatically generated
818 	 * size.
819 	 */
820 	if (usermem == 0) {
821 		usermem = 1;
822 		memblock_remove(memblock_start_of_DRAM(),
823 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
824 	}
825 
826 	start = PHYS_OFFSET;
827 	size  = memparse(p, &endp);
828 	if (*endp == '@')
829 		start = memparse(endp + 1, NULL);
830 
831 	arm_add_memory(start, size);
832 
833 	return 0;
834 }
835 early_param("mem", early_mem);
836 
837 static void __init request_standard_resources(const struct machine_desc *mdesc)
838 {
839 	struct memblock_region *region;
840 	struct resource *res;
841 
842 	kernel_code.start   = virt_to_phys(_text);
843 	kernel_code.end     = virt_to_phys(__init_begin - 1);
844 	kernel_data.start   = virt_to_phys(_sdata);
845 	kernel_data.end     = virt_to_phys(_end - 1);
846 
847 	for_each_memblock(memory, region) {
848 		phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
849 		phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
850 		unsigned long boot_alias_start;
851 
852 		/*
853 		 * Some systems have a special memory alias which is only
854 		 * used for booting.  We need to advertise this region to
855 		 * kexec-tools so they know where bootable RAM is located.
856 		 */
857 		boot_alias_start = phys_to_idmap(start);
858 		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
859 			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
860 			res->name = "System RAM (boot alias)";
861 			res->start = boot_alias_start;
862 			res->end = phys_to_idmap(end);
863 			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
864 			request_resource(&iomem_resource, res);
865 		}
866 
867 		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
868 		res->name  = "System RAM";
869 		res->start = start;
870 		res->end = end;
871 		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
872 
873 		request_resource(&iomem_resource, res);
874 
875 		if (kernel_code.start >= res->start &&
876 		    kernel_code.end <= res->end)
877 			request_resource(res, &kernel_code);
878 		if (kernel_data.start >= res->start &&
879 		    kernel_data.end <= res->end)
880 			request_resource(res, &kernel_data);
881 	}
882 
883 	if (mdesc->video_start) {
884 		video_ram.start = mdesc->video_start;
885 		video_ram.end   = mdesc->video_end;
886 		request_resource(&iomem_resource, &video_ram);
887 	}
888 
889 	/*
890 	 * Some machines don't have the possibility of ever
891 	 * possessing lp0, lp1 or lp2
892 	 */
893 	if (mdesc->reserve_lp0)
894 		request_resource(&ioport_resource, &lp0);
895 	if (mdesc->reserve_lp1)
896 		request_resource(&ioport_resource, &lp1);
897 	if (mdesc->reserve_lp2)
898 		request_resource(&ioport_resource, &lp2);
899 }
900 
901 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
902     defined(CONFIG_EFI)
903 struct screen_info screen_info = {
904  .orig_video_lines	= 30,
905  .orig_video_cols	= 80,
906  .orig_video_mode	= 0,
907  .orig_video_ega_bx	= 0,
908  .orig_video_isVGA	= 1,
909  .orig_video_points	= 8
910 };
911 #endif
912 
913 static int __init customize_machine(void)
914 {
915 	/*
916 	 * customizes platform devices, or adds new ones
917 	 * On DT based machines, we fall back to populating the
918 	 * machine from the device tree, if no callback is provided,
919 	 * otherwise we would always need an init_machine callback.
920 	 */
921 	if (machine_desc->init_machine)
922 		machine_desc->init_machine();
923 
924 	return 0;
925 }
926 arch_initcall(customize_machine);
927 
928 static int __init init_machine_late(void)
929 {
930 	struct device_node *root;
931 	int ret;
932 
933 	if (machine_desc->init_late)
934 		machine_desc->init_late();
935 
936 	root = of_find_node_by_path("/");
937 	if (root) {
938 		ret = of_property_read_string(root, "serial-number",
939 					      &system_serial);
940 		if (ret)
941 			system_serial = NULL;
942 	}
943 
944 	if (!system_serial)
945 		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
946 					  system_serial_high,
947 					  system_serial_low);
948 
949 	return 0;
950 }
951 late_initcall(init_machine_late);
952 
953 #ifdef CONFIG_KEXEC
954 /*
955  * The crash region must be aligned to 128MB to avoid
956  * zImage relocating below the reserved region.
957  */
958 #define CRASH_ALIGN	(128 << 20)
959 
960 static inline unsigned long long get_total_mem(void)
961 {
962 	unsigned long total;
963 
964 	total = max_low_pfn - min_low_pfn;
965 	return total << PAGE_SHIFT;
966 }
967 
968 /**
969  * reserve_crashkernel() - reserves memory are for crash kernel
970  *
971  * This function reserves memory area given in "crashkernel=" kernel command
972  * line parameter. The memory reserved is used by a dump capture kernel when
973  * primary kernel is crashing.
974  */
975 static void __init reserve_crashkernel(void)
976 {
977 	unsigned long long crash_size, crash_base;
978 	unsigned long long total_mem;
979 	int ret;
980 
981 	total_mem = get_total_mem();
982 	ret = parse_crashkernel(boot_command_line, total_mem,
983 				&crash_size, &crash_base);
984 	if (ret)
985 		return;
986 
987 	if (crash_base <= 0) {
988 		unsigned long long crash_max = idmap_to_phys((u32)~0);
989 		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
990 		if (crash_max > lowmem_max)
991 			crash_max = lowmem_max;
992 		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
993 						    crash_size, CRASH_ALIGN);
994 		if (!crash_base) {
995 			pr_err("crashkernel reservation failed - No suitable area found.\n");
996 			return;
997 		}
998 	} else {
999 		unsigned long long start;
1000 
1001 		start = memblock_find_in_range(crash_base,
1002 					       crash_base + crash_size,
1003 					       crash_size, SECTION_SIZE);
1004 		if (start != crash_base) {
1005 			pr_err("crashkernel reservation failed - memory is in use.\n");
1006 			return;
1007 		}
1008 	}
1009 
1010 	ret = memblock_reserve(crash_base, crash_size);
1011 	if (ret < 0) {
1012 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1013 			(unsigned long)crash_base);
1014 		return;
1015 	}
1016 
1017 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1018 		(unsigned long)(crash_size >> 20),
1019 		(unsigned long)(crash_base >> 20),
1020 		(unsigned long)(total_mem >> 20));
1021 
1022 	/* The crashk resource must always be located in normal mem */
1023 	crashk_res.start = crash_base;
1024 	crashk_res.end = crash_base + crash_size - 1;
1025 	insert_resource(&iomem_resource, &crashk_res);
1026 
1027 	if (arm_has_idmap_alias()) {
1028 		/*
1029 		 * If we have a special RAM alias for use at boot, we
1030 		 * need to advertise to kexec tools where the alias is.
1031 		 */
1032 		static struct resource crashk_boot_res = {
1033 			.name = "Crash kernel (boot alias)",
1034 			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1035 		};
1036 
1037 		crashk_boot_res.start = phys_to_idmap(crash_base);
1038 		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1039 		insert_resource(&iomem_resource, &crashk_boot_res);
1040 	}
1041 }
1042 #else
1043 static inline void reserve_crashkernel(void) {}
1044 #endif /* CONFIG_KEXEC */
1045 
1046 void __init hyp_mode_check(void)
1047 {
1048 #ifdef CONFIG_ARM_VIRT_EXT
1049 	sync_boot_mode();
1050 
1051 	if (is_hyp_mode_available()) {
1052 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1053 		pr_info("CPU: Virtualization extensions available.\n");
1054 	} else if (is_hyp_mode_mismatched()) {
1055 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1056 			__boot_cpu_mode & MODE_MASK);
1057 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1058 	} else
1059 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1060 #endif
1061 }
1062 
1063 void __init setup_arch(char **cmdline_p)
1064 {
1065 	const struct machine_desc *mdesc;
1066 
1067 	setup_processor();
1068 	mdesc = setup_machine_fdt(__atags_pointer);
1069 	if (!mdesc)
1070 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1071 	if (!mdesc) {
1072 		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1073 		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1074 			    __atags_pointer);
1075 		if (__atags_pointer)
1076 			early_print("  r2[]=%*ph\n", 16,
1077 				    phys_to_virt(__atags_pointer));
1078 		dump_machine_table();
1079 	}
1080 
1081 	machine_desc = mdesc;
1082 	machine_name = mdesc->name;
1083 	dump_stack_set_arch_desc("%s", mdesc->name);
1084 
1085 	if (mdesc->reboot_mode != REBOOT_HARD)
1086 		reboot_mode = mdesc->reboot_mode;
1087 
1088 	init_mm.start_code = (unsigned long) _text;
1089 	init_mm.end_code   = (unsigned long) _etext;
1090 	init_mm.end_data   = (unsigned long) _edata;
1091 	init_mm.brk	   = (unsigned long) _end;
1092 
1093 	/* populate cmd_line too for later use, preserving boot_command_line */
1094 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1095 	*cmdline_p = cmd_line;
1096 
1097 	early_fixmap_init();
1098 	early_ioremap_init();
1099 
1100 	parse_early_param();
1101 
1102 #ifdef CONFIG_MMU
1103 	early_mm_init(mdesc);
1104 #endif
1105 	setup_dma_zone(mdesc);
1106 	xen_early_init();
1107 	efi_init();
1108 	/*
1109 	 * Make sure the calculation for lowmem/highmem is set appropriately
1110 	 * before reserving/allocating any mmeory
1111 	 */
1112 	adjust_lowmem_bounds();
1113 	arm_memblock_init(mdesc);
1114 	/* Memory may have been removed so recalculate the bounds. */
1115 	adjust_lowmem_bounds();
1116 
1117 	early_ioremap_reset();
1118 
1119 	paging_init(mdesc);
1120 	request_standard_resources(mdesc);
1121 
1122 	if (mdesc->restart)
1123 		arm_pm_restart = mdesc->restart;
1124 
1125 	unflatten_device_tree();
1126 
1127 	arm_dt_init_cpu_maps();
1128 	psci_dt_init();
1129 #ifdef CONFIG_SMP
1130 	if (is_smp()) {
1131 		if (!mdesc->smp_init || !mdesc->smp_init()) {
1132 			if (psci_smp_available())
1133 				smp_set_ops(&psci_smp_ops);
1134 			else if (mdesc->smp)
1135 				smp_set_ops(mdesc->smp);
1136 		}
1137 		smp_init_cpus();
1138 		smp_build_mpidr_hash();
1139 	}
1140 #endif
1141 
1142 	if (!is_smp())
1143 		hyp_mode_check();
1144 
1145 	reserve_crashkernel();
1146 
1147 #ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1148 	handle_arch_irq = mdesc->handle_irq;
1149 #endif
1150 
1151 #ifdef CONFIG_VT
1152 #if defined(CONFIG_VGA_CONSOLE)
1153 	conswitchp = &vga_con;
1154 #elif defined(CONFIG_DUMMY_CONSOLE)
1155 	conswitchp = &dummy_con;
1156 #endif
1157 #endif
1158 
1159 	if (mdesc->init_early)
1160 		mdesc->init_early();
1161 }
1162 
1163 
1164 static int __init topology_init(void)
1165 {
1166 	int cpu;
1167 
1168 	for_each_possible_cpu(cpu) {
1169 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1170 		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1171 		register_cpu(&cpuinfo->cpu, cpu);
1172 	}
1173 
1174 	return 0;
1175 }
1176 subsys_initcall(topology_init);
1177 
1178 #ifdef CONFIG_HAVE_PROC_CPU
1179 static int __init proc_cpu_init(void)
1180 {
1181 	struct proc_dir_entry *res;
1182 
1183 	res = proc_mkdir("cpu", NULL);
1184 	if (!res)
1185 		return -ENOMEM;
1186 	return 0;
1187 }
1188 fs_initcall(proc_cpu_init);
1189 #endif
1190 
1191 static const char *hwcap_str[] = {
1192 	"swp",
1193 	"half",
1194 	"thumb",
1195 	"26bit",
1196 	"fastmult",
1197 	"fpa",
1198 	"vfp",
1199 	"edsp",
1200 	"java",
1201 	"iwmmxt",
1202 	"crunch",
1203 	"thumbee",
1204 	"neon",
1205 	"vfpv3",
1206 	"vfpv3d16",
1207 	"tls",
1208 	"vfpv4",
1209 	"idiva",
1210 	"idivt",
1211 	"vfpd32",
1212 	"lpae",
1213 	"evtstrm",
1214 	NULL
1215 };
1216 
1217 static const char *hwcap2_str[] = {
1218 	"aes",
1219 	"pmull",
1220 	"sha1",
1221 	"sha2",
1222 	"crc32",
1223 	NULL
1224 };
1225 
1226 static int c_show(struct seq_file *m, void *v)
1227 {
1228 	int i, j;
1229 	u32 cpuid;
1230 
1231 	for_each_online_cpu(i) {
1232 		/*
1233 		 * glibc reads /proc/cpuinfo to determine the number of
1234 		 * online processors, looking for lines beginning with
1235 		 * "processor".  Give glibc what it expects.
1236 		 */
1237 		seq_printf(m, "processor\t: %d\n", i);
1238 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1239 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1240 			   cpu_name, cpuid & 15, elf_platform);
1241 
1242 #if defined(CONFIG_SMP)
1243 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1244 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1245 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1246 #else
1247 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1248 			   loops_per_jiffy / (500000/HZ),
1249 			   (loops_per_jiffy / (5000/HZ)) % 100);
1250 #endif
1251 		/* dump out the processor features */
1252 		seq_puts(m, "Features\t: ");
1253 
1254 		for (j = 0; hwcap_str[j]; j++)
1255 			if (elf_hwcap & (1 << j))
1256 				seq_printf(m, "%s ", hwcap_str[j]);
1257 
1258 		for (j = 0; hwcap2_str[j]; j++)
1259 			if (elf_hwcap2 & (1 << j))
1260 				seq_printf(m, "%s ", hwcap2_str[j]);
1261 
1262 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1263 		seq_printf(m, "CPU architecture: %s\n",
1264 			   proc_arch[cpu_architecture()]);
1265 
1266 		if ((cpuid & 0x0008f000) == 0x00000000) {
1267 			/* pre-ARM7 */
1268 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1269 		} else {
1270 			if ((cpuid & 0x0008f000) == 0x00007000) {
1271 				/* ARM7 */
1272 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1273 					   (cpuid >> 16) & 127);
1274 			} else {
1275 				/* post-ARM7 */
1276 				seq_printf(m, "CPU variant\t: 0x%x\n",
1277 					   (cpuid >> 20) & 15);
1278 			}
1279 			seq_printf(m, "CPU part\t: 0x%03x\n",
1280 				   (cpuid >> 4) & 0xfff);
1281 		}
1282 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1283 	}
1284 
1285 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1286 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1287 	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1288 
1289 	return 0;
1290 }
1291 
1292 static void *c_start(struct seq_file *m, loff_t *pos)
1293 {
1294 	return *pos < 1 ? (void *)1 : NULL;
1295 }
1296 
1297 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1298 {
1299 	++*pos;
1300 	return NULL;
1301 }
1302 
1303 static void c_stop(struct seq_file *m, void *v)
1304 {
1305 }
1306 
1307 const struct seq_operations cpuinfo_op = {
1308 	.start	= c_start,
1309 	.next	= c_next,
1310 	.stop	= c_stop,
1311 	.show	= c_show
1312 };
1313