1 /* 2 * linux/arch/arm/kernel/setup.c 3 * 4 * Copyright (C) 1995-2001 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/export.h> 11 #include <linux/kernel.h> 12 #include <linux/stddef.h> 13 #include <linux/ioport.h> 14 #include <linux/delay.h> 15 #include <linux/utsname.h> 16 #include <linux/initrd.h> 17 #include <linux/console.h> 18 #include <linux/bootmem.h> 19 #include <linux/seq_file.h> 20 #include <linux/screen_info.h> 21 #include <linux/of_platform.h> 22 #include <linux/init.h> 23 #include <linux/kexec.h> 24 #include <linux/of_fdt.h> 25 #include <linux/cpu.h> 26 #include <linux/interrupt.h> 27 #include <linux/smp.h> 28 #include <linux/proc_fs.h> 29 #include <linux/memblock.h> 30 #include <linux/bug.h> 31 #include <linux/compiler.h> 32 #include <linux/sort.h> 33 34 #include <asm/unified.h> 35 #include <asm/cp15.h> 36 #include <asm/cpu.h> 37 #include <asm/cputype.h> 38 #include <asm/elf.h> 39 #include <asm/procinfo.h> 40 #include <asm/psci.h> 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 #include <asm/smp_plat.h> 44 #include <asm/mach-types.h> 45 #include <asm/cacheflush.h> 46 #include <asm/cachetype.h> 47 #include <asm/tlbflush.h> 48 49 #include <asm/prom.h> 50 #include <asm/mach/arch.h> 51 #include <asm/mach/irq.h> 52 #include <asm/mach/time.h> 53 #include <asm/system_info.h> 54 #include <asm/system_misc.h> 55 #include <asm/traps.h> 56 #include <asm/unwind.h> 57 #include <asm/memblock.h> 58 #include <asm/virt.h> 59 60 #include "atags.h" 61 62 63 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) 64 char fpe_type[8]; 65 66 static int __init fpe_setup(char *line) 67 { 68 memcpy(fpe_type, line, 8); 69 return 1; 70 } 71 72 __setup("fpe=", fpe_setup); 73 #endif 74 75 extern void paging_init(const struct machine_desc *desc); 76 extern void early_paging_init(const struct machine_desc *, 77 struct proc_info_list *); 78 extern void sanity_check_meminfo(void); 79 extern enum reboot_mode reboot_mode; 80 extern void setup_dma_zone(const struct machine_desc *desc); 81 82 unsigned int processor_id; 83 EXPORT_SYMBOL(processor_id); 84 unsigned int __machine_arch_type __read_mostly; 85 EXPORT_SYMBOL(__machine_arch_type); 86 unsigned int cacheid __read_mostly; 87 EXPORT_SYMBOL(cacheid); 88 89 unsigned int __atags_pointer __initdata; 90 91 unsigned int system_rev; 92 EXPORT_SYMBOL(system_rev); 93 94 unsigned int system_serial_low; 95 EXPORT_SYMBOL(system_serial_low); 96 97 unsigned int system_serial_high; 98 EXPORT_SYMBOL(system_serial_high); 99 100 unsigned int elf_hwcap __read_mostly; 101 EXPORT_SYMBOL(elf_hwcap); 102 103 104 #ifdef MULTI_CPU 105 struct processor processor __read_mostly; 106 #endif 107 #ifdef MULTI_TLB 108 struct cpu_tlb_fns cpu_tlb __read_mostly; 109 #endif 110 #ifdef MULTI_USER 111 struct cpu_user_fns cpu_user __read_mostly; 112 #endif 113 #ifdef MULTI_CACHE 114 struct cpu_cache_fns cpu_cache __read_mostly; 115 #endif 116 #ifdef CONFIG_OUTER_CACHE 117 struct outer_cache_fns outer_cache __read_mostly; 118 EXPORT_SYMBOL(outer_cache); 119 #endif 120 121 /* 122 * Cached cpu_architecture() result for use by assembler code. 123 * C code should use the cpu_architecture() function instead of accessing this 124 * variable directly. 125 */ 126 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN; 127 128 struct stack { 129 u32 irq[3]; 130 u32 abt[3]; 131 u32 und[3]; 132 } ____cacheline_aligned; 133 134 #ifndef CONFIG_CPU_V7M 135 static struct stack stacks[NR_CPUS]; 136 #endif 137 138 char elf_platform[ELF_PLATFORM_SIZE]; 139 EXPORT_SYMBOL(elf_platform); 140 141 static const char *cpu_name; 142 static const char *machine_name; 143 static char __initdata cmd_line[COMMAND_LINE_SIZE]; 144 const struct machine_desc *machine_desc __initdata; 145 146 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; 147 #define ENDIANNESS ((char)endian_test.l) 148 149 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); 150 151 /* 152 * Standard memory resources 153 */ 154 static struct resource mem_res[] = { 155 { 156 .name = "Video RAM", 157 .start = 0, 158 .end = 0, 159 .flags = IORESOURCE_MEM 160 }, 161 { 162 .name = "Kernel code", 163 .start = 0, 164 .end = 0, 165 .flags = IORESOURCE_MEM 166 }, 167 { 168 .name = "Kernel data", 169 .start = 0, 170 .end = 0, 171 .flags = IORESOURCE_MEM 172 } 173 }; 174 175 #define video_ram mem_res[0] 176 #define kernel_code mem_res[1] 177 #define kernel_data mem_res[2] 178 179 static struct resource io_res[] = { 180 { 181 .name = "reserved", 182 .start = 0x3bc, 183 .end = 0x3be, 184 .flags = IORESOURCE_IO | IORESOURCE_BUSY 185 }, 186 { 187 .name = "reserved", 188 .start = 0x378, 189 .end = 0x37f, 190 .flags = IORESOURCE_IO | IORESOURCE_BUSY 191 }, 192 { 193 .name = "reserved", 194 .start = 0x278, 195 .end = 0x27f, 196 .flags = IORESOURCE_IO | IORESOURCE_BUSY 197 } 198 }; 199 200 #define lp0 io_res[0] 201 #define lp1 io_res[1] 202 #define lp2 io_res[2] 203 204 static const char *proc_arch[] = { 205 "undefined/unknown", 206 "3", 207 "4", 208 "4T", 209 "5", 210 "5T", 211 "5TE", 212 "5TEJ", 213 "6TEJ", 214 "7", 215 "7M", 216 "?(12)", 217 "?(13)", 218 "?(14)", 219 "?(15)", 220 "?(16)", 221 "?(17)", 222 }; 223 224 #ifdef CONFIG_CPU_V7M 225 static int __get_cpu_architecture(void) 226 { 227 return CPU_ARCH_ARMv7M; 228 } 229 #else 230 static int __get_cpu_architecture(void) 231 { 232 int cpu_arch; 233 234 if ((read_cpuid_id() & 0x0008f000) == 0) { 235 cpu_arch = CPU_ARCH_UNKNOWN; 236 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { 237 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; 238 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { 239 cpu_arch = (read_cpuid_id() >> 16) & 7; 240 if (cpu_arch) 241 cpu_arch += CPU_ARCH_ARMv3; 242 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { 243 unsigned int mmfr0; 244 245 /* Revised CPUID format. Read the Memory Model Feature 246 * Register 0 and check for VMSAv7 or PMSAv7 */ 247 asm("mrc p15, 0, %0, c0, c1, 4" 248 : "=r" (mmfr0)); 249 if ((mmfr0 & 0x0000000f) >= 0x00000003 || 250 (mmfr0 & 0x000000f0) >= 0x00000030) 251 cpu_arch = CPU_ARCH_ARMv7; 252 else if ((mmfr0 & 0x0000000f) == 0x00000002 || 253 (mmfr0 & 0x000000f0) == 0x00000020) 254 cpu_arch = CPU_ARCH_ARMv6; 255 else 256 cpu_arch = CPU_ARCH_UNKNOWN; 257 } else 258 cpu_arch = CPU_ARCH_UNKNOWN; 259 260 return cpu_arch; 261 } 262 #endif 263 264 int __pure cpu_architecture(void) 265 { 266 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN); 267 268 return __cpu_architecture; 269 } 270 271 static int cpu_has_aliasing_icache(unsigned int arch) 272 { 273 int aliasing_icache; 274 unsigned int id_reg, num_sets, line_size; 275 276 /* PIPT caches never alias. */ 277 if (icache_is_pipt()) 278 return 0; 279 280 /* arch specifies the register format */ 281 switch (arch) { 282 case CPU_ARCH_ARMv7: 283 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR" 284 : /* No output operands */ 285 : "r" (1)); 286 isb(); 287 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR" 288 : "=r" (id_reg)); 289 line_size = 4 << ((id_reg & 0x7) + 2); 290 num_sets = ((id_reg >> 13) & 0x7fff) + 1; 291 aliasing_icache = (line_size * num_sets) > PAGE_SIZE; 292 break; 293 case CPU_ARCH_ARMv6: 294 aliasing_icache = read_cpuid_cachetype() & (1 << 11); 295 break; 296 default: 297 /* I-cache aliases will be handled by D-cache aliasing code */ 298 aliasing_icache = 0; 299 } 300 301 return aliasing_icache; 302 } 303 304 static void __init cacheid_init(void) 305 { 306 unsigned int arch = cpu_architecture(); 307 308 if (arch == CPU_ARCH_ARMv7M) { 309 cacheid = 0; 310 } else if (arch >= CPU_ARCH_ARMv6) { 311 unsigned int cachetype = read_cpuid_cachetype(); 312 if ((cachetype & (7 << 29)) == 4 << 29) { 313 /* ARMv7 register format */ 314 arch = CPU_ARCH_ARMv7; 315 cacheid = CACHEID_VIPT_NONALIASING; 316 switch (cachetype & (3 << 14)) { 317 case (1 << 14): 318 cacheid |= CACHEID_ASID_TAGGED; 319 break; 320 case (3 << 14): 321 cacheid |= CACHEID_PIPT; 322 break; 323 } 324 } else { 325 arch = CPU_ARCH_ARMv6; 326 if (cachetype & (1 << 23)) 327 cacheid = CACHEID_VIPT_ALIASING; 328 else 329 cacheid = CACHEID_VIPT_NONALIASING; 330 } 331 if (cpu_has_aliasing_icache(arch)) 332 cacheid |= CACHEID_VIPT_I_ALIASING; 333 } else { 334 cacheid = CACHEID_VIVT; 335 } 336 337 pr_info("CPU: %s data cache, %s instruction cache\n", 338 cache_is_vivt() ? "VIVT" : 339 cache_is_vipt_aliasing() ? "VIPT aliasing" : 340 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown", 341 cache_is_vivt() ? "VIVT" : 342 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" : 343 icache_is_vipt_aliasing() ? "VIPT aliasing" : 344 icache_is_pipt() ? "PIPT" : 345 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown"); 346 } 347 348 /* 349 * These functions re-use the assembly code in head.S, which 350 * already provide the required functionality. 351 */ 352 extern struct proc_info_list *lookup_processor_type(unsigned int); 353 354 void __init early_print(const char *str, ...) 355 { 356 extern void printascii(const char *); 357 char buf[256]; 358 va_list ap; 359 360 va_start(ap, str); 361 vsnprintf(buf, sizeof(buf), str, ap); 362 va_end(ap); 363 364 #ifdef CONFIG_DEBUG_LL 365 printascii(buf); 366 #endif 367 printk("%s", buf); 368 } 369 370 static void __init cpuid_init_hwcaps(void) 371 { 372 unsigned int divide_instrs, vmsa; 373 374 if (cpu_architecture() < CPU_ARCH_ARMv7) 375 return; 376 377 divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24; 378 379 switch (divide_instrs) { 380 case 2: 381 elf_hwcap |= HWCAP_IDIVA; 382 case 1: 383 elf_hwcap |= HWCAP_IDIVT; 384 } 385 386 /* LPAE implies atomic ldrd/strd instructions */ 387 vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0; 388 if (vmsa >= 5) 389 elf_hwcap |= HWCAP_LPAE; 390 } 391 392 static void __init feat_v6_fixup(void) 393 { 394 int id = read_cpuid_id(); 395 396 if ((id & 0xff0f0000) != 0x41070000) 397 return; 398 399 /* 400 * HWCAP_TLS is available only on 1136 r1p0 and later, 401 * see also kuser_get_tls_init. 402 */ 403 if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0)) 404 elf_hwcap &= ~HWCAP_TLS; 405 } 406 407 /* 408 * cpu_init - initialise one CPU. 409 * 410 * cpu_init sets up the per-CPU stacks. 411 */ 412 void notrace cpu_init(void) 413 { 414 #ifndef CONFIG_CPU_V7M 415 unsigned int cpu = smp_processor_id(); 416 struct stack *stk = &stacks[cpu]; 417 418 if (cpu >= NR_CPUS) { 419 pr_crit("CPU%u: bad primary CPU number\n", cpu); 420 BUG(); 421 } 422 423 /* 424 * This only works on resume and secondary cores. For booting on the 425 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup. 426 */ 427 set_my_cpu_offset(per_cpu_offset(cpu)); 428 429 cpu_proc_init(); 430 431 /* 432 * Define the placement constraint for the inline asm directive below. 433 * In Thumb-2, msr with an immediate value is not allowed. 434 */ 435 #ifdef CONFIG_THUMB2_KERNEL 436 #define PLC "r" 437 #else 438 #define PLC "I" 439 #endif 440 441 /* 442 * setup stacks for re-entrant exception handlers 443 */ 444 __asm__ ( 445 "msr cpsr_c, %1\n\t" 446 "add r14, %0, %2\n\t" 447 "mov sp, r14\n\t" 448 "msr cpsr_c, %3\n\t" 449 "add r14, %0, %4\n\t" 450 "mov sp, r14\n\t" 451 "msr cpsr_c, %5\n\t" 452 "add r14, %0, %6\n\t" 453 "mov sp, r14\n\t" 454 "msr cpsr_c, %7" 455 : 456 : "r" (stk), 457 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), 458 "I" (offsetof(struct stack, irq[0])), 459 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE), 460 "I" (offsetof(struct stack, abt[0])), 461 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE), 462 "I" (offsetof(struct stack, und[0])), 463 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE) 464 : "r14"); 465 #endif 466 } 467 468 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID }; 469 470 void __init smp_setup_processor_id(void) 471 { 472 int i; 473 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0; 474 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 475 476 cpu_logical_map(0) = cpu; 477 for (i = 1; i < nr_cpu_ids; ++i) 478 cpu_logical_map(i) = i == cpu ? 0 : i; 479 480 /* 481 * clear __my_cpu_offset on boot CPU to avoid hang caused by 482 * using percpu variable early, for example, lockdep will 483 * access percpu variable inside lock_release 484 */ 485 set_my_cpu_offset(0); 486 487 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr); 488 } 489 490 struct mpidr_hash mpidr_hash; 491 #ifdef CONFIG_SMP 492 /** 493 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 494 * level in order to build a linear index from an 495 * MPIDR value. Resulting algorithm is a collision 496 * free hash carried out through shifting and ORing 497 */ 498 static void __init smp_build_mpidr_hash(void) 499 { 500 u32 i, affinity; 501 u32 fs[3], bits[3], ls, mask = 0; 502 /* 503 * Pre-scan the list of MPIDRS and filter out bits that do 504 * not contribute to affinity levels, ie they never toggle. 505 */ 506 for_each_possible_cpu(i) 507 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 508 pr_debug("mask of set bits 0x%x\n", mask); 509 /* 510 * Find and stash the last and first bit set at all affinity levels to 511 * check how many bits are required to represent them. 512 */ 513 for (i = 0; i < 3; i++) { 514 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 515 /* 516 * Find the MSB bit and LSB bits position 517 * to determine how many bits are required 518 * to express the affinity level. 519 */ 520 ls = fls(affinity); 521 fs[i] = affinity ? ffs(affinity) - 1 : 0; 522 bits[i] = ls - fs[i]; 523 } 524 /* 525 * An index can be created from the MPIDR by isolating the 526 * significant bits at each affinity level and by shifting 527 * them in order to compress the 24 bits values space to a 528 * compressed set of values. This is equivalent to hashing 529 * the MPIDR through shifting and ORing. It is a collision free 530 * hash though not minimal since some levels might contain a number 531 * of CPUs that is not an exact power of 2 and their bit 532 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}. 533 */ 534 mpidr_hash.shift_aff[0] = fs[0]; 535 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0]; 536 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] - 537 (bits[1] + bits[0]); 538 mpidr_hash.mask = mask; 539 mpidr_hash.bits = bits[2] + bits[1] + bits[0]; 540 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n", 541 mpidr_hash.shift_aff[0], 542 mpidr_hash.shift_aff[1], 543 mpidr_hash.shift_aff[2], 544 mpidr_hash.mask, 545 mpidr_hash.bits); 546 /* 547 * 4x is an arbitrary value used to warn on a hash table much bigger 548 * than expected on most systems. 549 */ 550 if (mpidr_hash_size() > 4 * num_possible_cpus()) 551 pr_warn("Large number of MPIDR hash buckets detected\n"); 552 sync_cache_w(&mpidr_hash); 553 } 554 #endif 555 556 static void __init setup_processor(void) 557 { 558 struct proc_info_list *list; 559 560 /* 561 * locate processor in the list of supported processor 562 * types. The linker builds this table for us from the 563 * entries in arch/arm/mm/proc-*.S 564 */ 565 list = lookup_processor_type(read_cpuid_id()); 566 if (!list) { 567 pr_err("CPU configuration botched (ID %08x), unable to continue.\n", 568 read_cpuid_id()); 569 while (1); 570 } 571 572 cpu_name = list->cpu_name; 573 __cpu_architecture = __get_cpu_architecture(); 574 575 #ifdef MULTI_CPU 576 processor = *list->proc; 577 #endif 578 #ifdef MULTI_TLB 579 cpu_tlb = *list->tlb; 580 #endif 581 #ifdef MULTI_USER 582 cpu_user = *list->user; 583 #endif 584 #ifdef MULTI_CACHE 585 cpu_cache = *list->cache; 586 #endif 587 588 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", 589 cpu_name, read_cpuid_id(), read_cpuid_id() & 15, 590 proc_arch[cpu_architecture()], cr_alignment); 591 592 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c", 593 list->arch_name, ENDIANNESS); 594 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c", 595 list->elf_name, ENDIANNESS); 596 elf_hwcap = list->elf_hwcap; 597 598 cpuid_init_hwcaps(); 599 600 #ifndef CONFIG_ARM_THUMB 601 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT); 602 #endif 603 604 erratum_a15_798181_init(); 605 606 feat_v6_fixup(); 607 608 cacheid_init(); 609 cpu_init(); 610 } 611 612 void __init dump_machine_table(void) 613 { 614 const struct machine_desc *p; 615 616 early_print("Available machine support:\n\nID (hex)\tNAME\n"); 617 for_each_machine_desc(p) 618 early_print("%08x\t%s\n", p->nr, p->name); 619 620 early_print("\nPlease check your kernel config and/or bootloader.\n"); 621 622 while (true) 623 /* can't use cpu_relax() here as it may require MMU setup */; 624 } 625 626 int __init arm_add_memory(u64 start, u64 size) 627 { 628 struct membank *bank = &meminfo.bank[meminfo.nr_banks]; 629 u64 aligned_start; 630 631 if (meminfo.nr_banks >= NR_BANKS) { 632 pr_crit("NR_BANKS too low, ignoring memory at 0x%08llx\n", 633 (long long)start); 634 return -EINVAL; 635 } 636 637 /* 638 * Ensure that start/size are aligned to a page boundary. 639 * Size is appropriately rounded down, start is rounded up. 640 */ 641 size -= start & ~PAGE_MASK; 642 aligned_start = PAGE_ALIGN(start); 643 644 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT 645 if (aligned_start > ULONG_MAX) { 646 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n", 647 (long long)start); 648 return -EINVAL; 649 } 650 651 if (aligned_start + size > ULONG_MAX) { 652 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n", 653 (long long)start); 654 /* 655 * To ensure bank->start + bank->size is representable in 656 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB. 657 * This means we lose a page after masking. 658 */ 659 size = ULONG_MAX - aligned_start; 660 } 661 #endif 662 663 if (aligned_start < PHYS_OFFSET) { 664 if (aligned_start + size <= PHYS_OFFSET) { 665 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 666 aligned_start, aligned_start + size); 667 return -EINVAL; 668 } 669 670 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 671 aligned_start, (u64)PHYS_OFFSET); 672 673 size -= PHYS_OFFSET - aligned_start; 674 aligned_start = PHYS_OFFSET; 675 } 676 677 bank->start = aligned_start; 678 bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1); 679 680 /* 681 * Check whether this memory region has non-zero size or 682 * invalid node number. 683 */ 684 if (bank->size == 0) 685 return -EINVAL; 686 687 meminfo.nr_banks++; 688 return 0; 689 } 690 691 /* 692 * Pick out the memory size. We look for mem=size@start, 693 * where start and size are "size[KkMm]" 694 */ 695 static int __init early_mem(char *p) 696 { 697 static int usermem __initdata = 0; 698 u64 size; 699 u64 start; 700 char *endp; 701 702 /* 703 * If the user specifies memory size, we 704 * blow away any automatically generated 705 * size. 706 */ 707 if (usermem == 0) { 708 usermem = 1; 709 meminfo.nr_banks = 0; 710 } 711 712 start = PHYS_OFFSET; 713 size = memparse(p, &endp); 714 if (*endp == '@') 715 start = memparse(endp + 1, NULL); 716 717 arm_add_memory(start, size); 718 719 return 0; 720 } 721 early_param("mem", early_mem); 722 723 static void __init request_standard_resources(const struct machine_desc *mdesc) 724 { 725 struct memblock_region *region; 726 struct resource *res; 727 728 kernel_code.start = virt_to_phys(_text); 729 kernel_code.end = virt_to_phys(_etext - 1); 730 kernel_data.start = virt_to_phys(_sdata); 731 kernel_data.end = virt_to_phys(_end - 1); 732 733 for_each_memblock(memory, region) { 734 res = memblock_virt_alloc_low(sizeof(*res), 0); 735 res->name = "System RAM"; 736 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 737 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 738 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 739 740 request_resource(&iomem_resource, res); 741 742 if (kernel_code.start >= res->start && 743 kernel_code.end <= res->end) 744 request_resource(res, &kernel_code); 745 if (kernel_data.start >= res->start && 746 kernel_data.end <= res->end) 747 request_resource(res, &kernel_data); 748 } 749 750 if (mdesc->video_start) { 751 video_ram.start = mdesc->video_start; 752 video_ram.end = mdesc->video_end; 753 request_resource(&iomem_resource, &video_ram); 754 } 755 756 /* 757 * Some machines don't have the possibility of ever 758 * possessing lp0, lp1 or lp2 759 */ 760 if (mdesc->reserve_lp0) 761 request_resource(&ioport_resource, &lp0); 762 if (mdesc->reserve_lp1) 763 request_resource(&ioport_resource, &lp1); 764 if (mdesc->reserve_lp2) 765 request_resource(&ioport_resource, &lp2); 766 } 767 768 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) 769 struct screen_info screen_info = { 770 .orig_video_lines = 30, 771 .orig_video_cols = 80, 772 .orig_video_mode = 0, 773 .orig_video_ega_bx = 0, 774 .orig_video_isVGA = 1, 775 .orig_video_points = 8 776 }; 777 #endif 778 779 static int __init customize_machine(void) 780 { 781 /* 782 * customizes platform devices, or adds new ones 783 * On DT based machines, we fall back to populating the 784 * machine from the device tree, if no callback is provided, 785 * otherwise we would always need an init_machine callback. 786 */ 787 if (machine_desc->init_machine) 788 machine_desc->init_machine(); 789 #ifdef CONFIG_OF 790 else 791 of_platform_populate(NULL, of_default_bus_match_table, 792 NULL, NULL); 793 #endif 794 return 0; 795 } 796 arch_initcall(customize_machine); 797 798 static int __init init_machine_late(void) 799 { 800 if (machine_desc->init_late) 801 machine_desc->init_late(); 802 return 0; 803 } 804 late_initcall(init_machine_late); 805 806 #ifdef CONFIG_KEXEC 807 static inline unsigned long long get_total_mem(void) 808 { 809 unsigned long total; 810 811 total = max_low_pfn - min_low_pfn; 812 return total << PAGE_SHIFT; 813 } 814 815 /** 816 * reserve_crashkernel() - reserves memory are for crash kernel 817 * 818 * This function reserves memory area given in "crashkernel=" kernel command 819 * line parameter. The memory reserved is used by a dump capture kernel when 820 * primary kernel is crashing. 821 */ 822 static void __init reserve_crashkernel(void) 823 { 824 unsigned long long crash_size, crash_base; 825 unsigned long long total_mem; 826 int ret; 827 828 total_mem = get_total_mem(); 829 ret = parse_crashkernel(boot_command_line, total_mem, 830 &crash_size, &crash_base); 831 if (ret) 832 return; 833 834 ret = memblock_reserve(crash_base, crash_size); 835 if (ret < 0) { 836 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n", 837 (unsigned long)crash_base); 838 return; 839 } 840 841 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 842 (unsigned long)(crash_size >> 20), 843 (unsigned long)(crash_base >> 20), 844 (unsigned long)(total_mem >> 20)); 845 846 crashk_res.start = crash_base; 847 crashk_res.end = crash_base + crash_size - 1; 848 insert_resource(&iomem_resource, &crashk_res); 849 } 850 #else 851 static inline void reserve_crashkernel(void) {} 852 #endif /* CONFIG_KEXEC */ 853 854 static int __init meminfo_cmp(const void *_a, const void *_b) 855 { 856 const struct membank *a = _a, *b = _b; 857 long cmp = bank_pfn_start(a) - bank_pfn_start(b); 858 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; 859 } 860 861 void __init hyp_mode_check(void) 862 { 863 #ifdef CONFIG_ARM_VIRT_EXT 864 sync_boot_mode(); 865 866 if (is_hyp_mode_available()) { 867 pr_info("CPU: All CPU(s) started in HYP mode.\n"); 868 pr_info("CPU: Virtualization extensions available.\n"); 869 } else if (is_hyp_mode_mismatched()) { 870 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n", 871 __boot_cpu_mode & MODE_MASK); 872 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n"); 873 } else 874 pr_info("CPU: All CPU(s) started in SVC mode.\n"); 875 #endif 876 } 877 878 void __init setup_arch(char **cmdline_p) 879 { 880 const struct machine_desc *mdesc; 881 882 setup_processor(); 883 mdesc = setup_machine_fdt(__atags_pointer); 884 if (!mdesc) 885 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type); 886 machine_desc = mdesc; 887 machine_name = mdesc->name; 888 889 if (mdesc->reboot_mode != REBOOT_HARD) 890 reboot_mode = mdesc->reboot_mode; 891 892 init_mm.start_code = (unsigned long) _text; 893 init_mm.end_code = (unsigned long) _etext; 894 init_mm.end_data = (unsigned long) _edata; 895 init_mm.brk = (unsigned long) _end; 896 897 /* populate cmd_line too for later use, preserving boot_command_line */ 898 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); 899 *cmdline_p = cmd_line; 900 901 parse_early_param(); 902 903 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL); 904 905 early_paging_init(mdesc, lookup_processor_type(read_cpuid_id())); 906 setup_dma_zone(mdesc); 907 sanity_check_meminfo(); 908 arm_memblock_init(&meminfo, mdesc); 909 910 paging_init(mdesc); 911 request_standard_resources(mdesc); 912 913 if (mdesc->restart) 914 arm_pm_restart = mdesc->restart; 915 916 unflatten_device_tree(); 917 918 arm_dt_init_cpu_maps(); 919 psci_init(); 920 #ifdef CONFIG_SMP 921 if (is_smp()) { 922 if (!mdesc->smp_init || !mdesc->smp_init()) { 923 if (psci_smp_available()) 924 smp_set_ops(&psci_smp_ops); 925 else if (mdesc->smp) 926 smp_set_ops(mdesc->smp); 927 } 928 smp_init_cpus(); 929 smp_build_mpidr_hash(); 930 } 931 #endif 932 933 if (!is_smp()) 934 hyp_mode_check(); 935 936 reserve_crashkernel(); 937 938 #ifdef CONFIG_MULTI_IRQ_HANDLER 939 handle_arch_irq = mdesc->handle_irq; 940 #endif 941 942 #ifdef CONFIG_VT 943 #if defined(CONFIG_VGA_CONSOLE) 944 conswitchp = &vga_con; 945 #elif defined(CONFIG_DUMMY_CONSOLE) 946 conswitchp = &dummy_con; 947 #endif 948 #endif 949 950 if (mdesc->init_early) 951 mdesc->init_early(); 952 } 953 954 955 static int __init topology_init(void) 956 { 957 int cpu; 958 959 for_each_possible_cpu(cpu) { 960 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); 961 cpuinfo->cpu.hotpluggable = 1; 962 register_cpu(&cpuinfo->cpu, cpu); 963 } 964 965 return 0; 966 } 967 subsys_initcall(topology_init); 968 969 #ifdef CONFIG_HAVE_PROC_CPU 970 static int __init proc_cpu_init(void) 971 { 972 struct proc_dir_entry *res; 973 974 res = proc_mkdir("cpu", NULL); 975 if (!res) 976 return -ENOMEM; 977 return 0; 978 } 979 fs_initcall(proc_cpu_init); 980 #endif 981 982 static const char *hwcap_str[] = { 983 "swp", 984 "half", 985 "thumb", 986 "26bit", 987 "fastmult", 988 "fpa", 989 "vfp", 990 "edsp", 991 "java", 992 "iwmmxt", 993 "crunch", 994 "thumbee", 995 "neon", 996 "vfpv3", 997 "vfpv3d16", 998 "tls", 999 "vfpv4", 1000 "idiva", 1001 "idivt", 1002 "vfpd32", 1003 "lpae", 1004 "evtstrm", 1005 NULL 1006 }; 1007 1008 static int c_show(struct seq_file *m, void *v) 1009 { 1010 int i, j; 1011 u32 cpuid; 1012 1013 for_each_online_cpu(i) { 1014 /* 1015 * glibc reads /proc/cpuinfo to determine the number of 1016 * online processors, looking for lines beginning with 1017 * "processor". Give glibc what it expects. 1018 */ 1019 seq_printf(m, "processor\t: %d\n", i); 1020 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id(); 1021 seq_printf(m, "model name\t: %s rev %d (%s)\n", 1022 cpu_name, cpuid & 15, elf_platform); 1023 1024 /* dump out the processor features */ 1025 seq_puts(m, "Features\t: "); 1026 1027 for (j = 0; hwcap_str[j]; j++) 1028 if (elf_hwcap & (1 << j)) 1029 seq_printf(m, "%s ", hwcap_str[j]); 1030 1031 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24); 1032 seq_printf(m, "CPU architecture: %s\n", 1033 proc_arch[cpu_architecture()]); 1034 1035 if ((cpuid & 0x0008f000) == 0x00000000) { 1036 /* pre-ARM7 */ 1037 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4); 1038 } else { 1039 if ((cpuid & 0x0008f000) == 0x00007000) { 1040 /* ARM7 */ 1041 seq_printf(m, "CPU variant\t: 0x%02x\n", 1042 (cpuid >> 16) & 127); 1043 } else { 1044 /* post-ARM7 */ 1045 seq_printf(m, "CPU variant\t: 0x%x\n", 1046 (cpuid >> 20) & 15); 1047 } 1048 seq_printf(m, "CPU part\t: 0x%03x\n", 1049 (cpuid >> 4) & 0xfff); 1050 } 1051 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15); 1052 } 1053 1054 seq_printf(m, "Hardware\t: %s\n", machine_name); 1055 seq_printf(m, "Revision\t: %04x\n", system_rev); 1056 seq_printf(m, "Serial\t\t: %08x%08x\n", 1057 system_serial_high, system_serial_low); 1058 1059 return 0; 1060 } 1061 1062 static void *c_start(struct seq_file *m, loff_t *pos) 1063 { 1064 return *pos < 1 ? (void *)1 : NULL; 1065 } 1066 1067 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 1068 { 1069 ++*pos; 1070 return NULL; 1071 } 1072 1073 static void c_stop(struct seq_file *m, void *v) 1074 { 1075 } 1076 1077 const struct seq_operations cpuinfo_op = { 1078 .start = c_start, 1079 .next = c_next, 1080 .stop = c_stop, 1081 .show = c_show 1082 }; 1083