1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/setup.c 4 * 5 * Copyright (C) 1995-2001 Russell King 6 */ 7 #include <linux/efi.h> 8 #include <linux/export.h> 9 #include <linux/kernel.h> 10 #include <linux/stddef.h> 11 #include <linux/ioport.h> 12 #include <linux/delay.h> 13 #include <linux/utsname.h> 14 #include <linux/initrd.h> 15 #include <linux/console.h> 16 #include <linux/seq_file.h> 17 #include <linux/screen_info.h> 18 #include <linux/of_platform.h> 19 #include <linux/init.h> 20 #include <linux/kexec.h> 21 #include <linux/of_fdt.h> 22 #include <linux/cpu.h> 23 #include <linux/interrupt.h> 24 #include <linux/smp.h> 25 #include <linux/proc_fs.h> 26 #include <linux/memblock.h> 27 #include <linux/bug.h> 28 #include <linux/compiler.h> 29 #include <linux/sort.h> 30 #include <linux/psci.h> 31 32 #include <asm/unified.h> 33 #include <asm/cp15.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/efi.h> 37 #include <asm/elf.h> 38 #include <asm/early_ioremap.h> 39 #include <asm/fixmap.h> 40 #include <asm/procinfo.h> 41 #include <asm/psci.h> 42 #include <asm/sections.h> 43 #include <asm/setup.h> 44 #include <asm/smp_plat.h> 45 #include <asm/mach-types.h> 46 #include <asm/cacheflush.h> 47 #include <asm/cachetype.h> 48 #include <asm/tlbflush.h> 49 #include <asm/xen/hypervisor.h> 50 51 #include <asm/prom.h> 52 #include <asm/mach/arch.h> 53 #include <asm/mach/irq.h> 54 #include <asm/mach/time.h> 55 #include <asm/system_info.h> 56 #include <asm/system_misc.h> 57 #include <asm/traps.h> 58 #include <asm/unwind.h> 59 #include <asm/memblock.h> 60 #include <asm/virt.h> 61 62 #include "atags.h" 63 64 65 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) 66 char fpe_type[8]; 67 68 static int __init fpe_setup(char *line) 69 { 70 memcpy(fpe_type, line, 8); 71 return 1; 72 } 73 74 __setup("fpe=", fpe_setup); 75 #endif 76 77 extern void init_default_cache_policy(unsigned long); 78 extern void paging_init(const struct machine_desc *desc); 79 extern void early_mm_init(const struct machine_desc *); 80 extern void adjust_lowmem_bounds(void); 81 extern enum reboot_mode reboot_mode; 82 extern void setup_dma_zone(const struct machine_desc *desc); 83 84 unsigned int processor_id; 85 EXPORT_SYMBOL(processor_id); 86 unsigned int __machine_arch_type __read_mostly; 87 EXPORT_SYMBOL(__machine_arch_type); 88 unsigned int cacheid __read_mostly; 89 EXPORT_SYMBOL(cacheid); 90 91 unsigned int __atags_pointer __initdata; 92 93 unsigned int system_rev; 94 EXPORT_SYMBOL(system_rev); 95 96 const char *system_serial; 97 EXPORT_SYMBOL(system_serial); 98 99 unsigned int system_serial_low; 100 EXPORT_SYMBOL(system_serial_low); 101 102 unsigned int system_serial_high; 103 EXPORT_SYMBOL(system_serial_high); 104 105 unsigned int elf_hwcap __read_mostly; 106 EXPORT_SYMBOL(elf_hwcap); 107 108 unsigned int elf_hwcap2 __read_mostly; 109 EXPORT_SYMBOL(elf_hwcap2); 110 111 112 #ifdef MULTI_CPU 113 struct processor processor __ro_after_init; 114 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 115 struct processor *cpu_vtable[NR_CPUS] = { 116 [0] = &processor, 117 }; 118 #endif 119 #endif 120 #ifdef MULTI_TLB 121 struct cpu_tlb_fns cpu_tlb __ro_after_init; 122 #endif 123 #ifdef MULTI_USER 124 struct cpu_user_fns cpu_user __ro_after_init; 125 #endif 126 #ifdef MULTI_CACHE 127 struct cpu_cache_fns cpu_cache __ro_after_init; 128 #endif 129 #ifdef CONFIG_OUTER_CACHE 130 struct outer_cache_fns outer_cache __ro_after_init; 131 EXPORT_SYMBOL(outer_cache); 132 #endif 133 134 /* 135 * Cached cpu_architecture() result for use by assembler code. 136 * C code should use the cpu_architecture() function instead of accessing this 137 * variable directly. 138 */ 139 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN; 140 141 struct stack { 142 u32 irq[3]; 143 u32 abt[3]; 144 u32 und[3]; 145 u32 fiq[3]; 146 } ____cacheline_aligned; 147 148 #ifndef CONFIG_CPU_V7M 149 static struct stack stacks[NR_CPUS]; 150 #endif 151 152 char elf_platform[ELF_PLATFORM_SIZE]; 153 EXPORT_SYMBOL(elf_platform); 154 155 static const char *cpu_name; 156 static const char *machine_name; 157 static char __initdata cmd_line[COMMAND_LINE_SIZE]; 158 const struct machine_desc *machine_desc __initdata; 159 160 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; 161 #define ENDIANNESS ((char)endian_test.l) 162 163 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); 164 165 /* 166 * Standard memory resources 167 */ 168 static struct resource mem_res[] = { 169 { 170 .name = "Video RAM", 171 .start = 0, 172 .end = 0, 173 .flags = IORESOURCE_MEM 174 }, 175 { 176 .name = "Kernel code", 177 .start = 0, 178 .end = 0, 179 .flags = IORESOURCE_SYSTEM_RAM 180 }, 181 { 182 .name = "Kernel data", 183 .start = 0, 184 .end = 0, 185 .flags = IORESOURCE_SYSTEM_RAM 186 } 187 }; 188 189 #define video_ram mem_res[0] 190 #define kernel_code mem_res[1] 191 #define kernel_data mem_res[2] 192 193 static struct resource io_res[] = { 194 { 195 .name = "reserved", 196 .start = 0x3bc, 197 .end = 0x3be, 198 .flags = IORESOURCE_IO | IORESOURCE_BUSY 199 }, 200 { 201 .name = "reserved", 202 .start = 0x378, 203 .end = 0x37f, 204 .flags = IORESOURCE_IO | IORESOURCE_BUSY 205 }, 206 { 207 .name = "reserved", 208 .start = 0x278, 209 .end = 0x27f, 210 .flags = IORESOURCE_IO | IORESOURCE_BUSY 211 } 212 }; 213 214 #define lp0 io_res[0] 215 #define lp1 io_res[1] 216 #define lp2 io_res[2] 217 218 static const char *proc_arch[] = { 219 "undefined/unknown", 220 "3", 221 "4", 222 "4T", 223 "5", 224 "5T", 225 "5TE", 226 "5TEJ", 227 "6TEJ", 228 "7", 229 "7M", 230 "?(12)", 231 "?(13)", 232 "?(14)", 233 "?(15)", 234 "?(16)", 235 "?(17)", 236 }; 237 238 #ifdef CONFIG_CPU_V7M 239 static int __get_cpu_architecture(void) 240 { 241 return CPU_ARCH_ARMv7M; 242 } 243 #else 244 static int __get_cpu_architecture(void) 245 { 246 int cpu_arch; 247 248 if ((read_cpuid_id() & 0x0008f000) == 0) { 249 cpu_arch = CPU_ARCH_UNKNOWN; 250 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { 251 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; 252 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { 253 cpu_arch = (read_cpuid_id() >> 16) & 7; 254 if (cpu_arch) 255 cpu_arch += CPU_ARCH_ARMv3; 256 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { 257 /* Revised CPUID format. Read the Memory Model Feature 258 * Register 0 and check for VMSAv7 or PMSAv7 */ 259 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0); 260 if ((mmfr0 & 0x0000000f) >= 0x00000003 || 261 (mmfr0 & 0x000000f0) >= 0x00000030) 262 cpu_arch = CPU_ARCH_ARMv7; 263 else if ((mmfr0 & 0x0000000f) == 0x00000002 || 264 (mmfr0 & 0x000000f0) == 0x00000020) 265 cpu_arch = CPU_ARCH_ARMv6; 266 else 267 cpu_arch = CPU_ARCH_UNKNOWN; 268 } else 269 cpu_arch = CPU_ARCH_UNKNOWN; 270 271 return cpu_arch; 272 } 273 #endif 274 275 int __pure cpu_architecture(void) 276 { 277 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN); 278 279 return __cpu_architecture; 280 } 281 282 static int cpu_has_aliasing_icache(unsigned int arch) 283 { 284 int aliasing_icache; 285 unsigned int id_reg, num_sets, line_size; 286 287 /* PIPT caches never alias. */ 288 if (icache_is_pipt()) 289 return 0; 290 291 /* arch specifies the register format */ 292 switch (arch) { 293 case CPU_ARCH_ARMv7: 294 set_csselr(CSSELR_ICACHE | CSSELR_L1); 295 isb(); 296 id_reg = read_ccsidr(); 297 line_size = 4 << ((id_reg & 0x7) + 2); 298 num_sets = ((id_reg >> 13) & 0x7fff) + 1; 299 aliasing_icache = (line_size * num_sets) > PAGE_SIZE; 300 break; 301 case CPU_ARCH_ARMv6: 302 aliasing_icache = read_cpuid_cachetype() & (1 << 11); 303 break; 304 default: 305 /* I-cache aliases will be handled by D-cache aliasing code */ 306 aliasing_icache = 0; 307 } 308 309 return aliasing_icache; 310 } 311 312 static void __init cacheid_init(void) 313 { 314 unsigned int arch = cpu_architecture(); 315 316 if (arch >= CPU_ARCH_ARMv6) { 317 unsigned int cachetype = read_cpuid_cachetype(); 318 319 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) { 320 cacheid = 0; 321 } else if ((cachetype & (7 << 29)) == 4 << 29) { 322 /* ARMv7 register format */ 323 arch = CPU_ARCH_ARMv7; 324 cacheid = CACHEID_VIPT_NONALIASING; 325 switch (cachetype & (3 << 14)) { 326 case (1 << 14): 327 cacheid |= CACHEID_ASID_TAGGED; 328 break; 329 case (3 << 14): 330 cacheid |= CACHEID_PIPT; 331 break; 332 } 333 } else { 334 arch = CPU_ARCH_ARMv6; 335 if (cachetype & (1 << 23)) 336 cacheid = CACHEID_VIPT_ALIASING; 337 else 338 cacheid = CACHEID_VIPT_NONALIASING; 339 } 340 if (cpu_has_aliasing_icache(arch)) 341 cacheid |= CACHEID_VIPT_I_ALIASING; 342 } else { 343 cacheid = CACHEID_VIVT; 344 } 345 346 pr_info("CPU: %s data cache, %s instruction cache\n", 347 cache_is_vivt() ? "VIVT" : 348 cache_is_vipt_aliasing() ? "VIPT aliasing" : 349 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown", 350 cache_is_vivt() ? "VIVT" : 351 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" : 352 icache_is_vipt_aliasing() ? "VIPT aliasing" : 353 icache_is_pipt() ? "PIPT" : 354 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown"); 355 } 356 357 /* 358 * These functions re-use the assembly code in head.S, which 359 * already provide the required functionality. 360 */ 361 extern struct proc_info_list *lookup_processor_type(unsigned int); 362 363 void __init early_print(const char *str, ...) 364 { 365 extern void printascii(const char *); 366 char buf[256]; 367 va_list ap; 368 369 va_start(ap, str); 370 vsnprintf(buf, sizeof(buf), str, ap); 371 va_end(ap); 372 373 #ifdef CONFIG_DEBUG_LL 374 printascii(buf); 375 #endif 376 printk("%s", buf); 377 } 378 379 #ifdef CONFIG_ARM_PATCH_IDIV 380 381 static inline u32 __attribute_const__ sdiv_instruction(void) 382 { 383 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 384 /* "sdiv r0, r0, r1" */ 385 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1); 386 return __opcode_to_mem_thumb32(insn); 387 } 388 389 /* "sdiv r0, r0, r1" */ 390 return __opcode_to_mem_arm(0xe710f110); 391 } 392 393 static inline u32 __attribute_const__ udiv_instruction(void) 394 { 395 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 396 /* "udiv r0, r0, r1" */ 397 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1); 398 return __opcode_to_mem_thumb32(insn); 399 } 400 401 /* "udiv r0, r0, r1" */ 402 return __opcode_to_mem_arm(0xe730f110); 403 } 404 405 static inline u32 __attribute_const__ bx_lr_instruction(void) 406 { 407 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 408 /* "bx lr; nop" */ 409 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0); 410 return __opcode_to_mem_thumb32(insn); 411 } 412 413 /* "bx lr" */ 414 return __opcode_to_mem_arm(0xe12fff1e); 415 } 416 417 static void __init patch_aeabi_idiv(void) 418 { 419 extern void __aeabi_uidiv(void); 420 extern void __aeabi_idiv(void); 421 uintptr_t fn_addr; 422 unsigned int mask; 423 424 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA; 425 if (!(elf_hwcap & mask)) 426 return; 427 428 pr_info("CPU: div instructions available: patching division code\n"); 429 430 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1; 431 asm ("" : "+g" (fn_addr)); 432 ((u32 *)fn_addr)[0] = udiv_instruction(); 433 ((u32 *)fn_addr)[1] = bx_lr_instruction(); 434 flush_icache_range(fn_addr, fn_addr + 8); 435 436 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1; 437 asm ("" : "+g" (fn_addr)); 438 ((u32 *)fn_addr)[0] = sdiv_instruction(); 439 ((u32 *)fn_addr)[1] = bx_lr_instruction(); 440 flush_icache_range(fn_addr, fn_addr + 8); 441 } 442 443 #else 444 static inline void patch_aeabi_idiv(void) { } 445 #endif 446 447 static void __init cpuid_init_hwcaps(void) 448 { 449 int block; 450 u32 isar5; 451 452 if (cpu_architecture() < CPU_ARCH_ARMv7) 453 return; 454 455 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24); 456 if (block >= 2) 457 elf_hwcap |= HWCAP_IDIVA; 458 if (block >= 1) 459 elf_hwcap |= HWCAP_IDIVT; 460 461 /* LPAE implies atomic ldrd/strd instructions */ 462 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0); 463 if (block >= 5) 464 elf_hwcap |= HWCAP_LPAE; 465 466 /* check for supported v8 Crypto instructions */ 467 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5); 468 469 block = cpuid_feature_extract_field(isar5, 4); 470 if (block >= 2) 471 elf_hwcap2 |= HWCAP2_PMULL; 472 if (block >= 1) 473 elf_hwcap2 |= HWCAP2_AES; 474 475 block = cpuid_feature_extract_field(isar5, 8); 476 if (block >= 1) 477 elf_hwcap2 |= HWCAP2_SHA1; 478 479 block = cpuid_feature_extract_field(isar5, 12); 480 if (block >= 1) 481 elf_hwcap2 |= HWCAP2_SHA2; 482 483 block = cpuid_feature_extract_field(isar5, 16); 484 if (block >= 1) 485 elf_hwcap2 |= HWCAP2_CRC32; 486 } 487 488 static void __init elf_hwcap_fixup(void) 489 { 490 unsigned id = read_cpuid_id(); 491 492 /* 493 * HWCAP_TLS is available only on 1136 r1p0 and later, 494 * see also kuser_get_tls_init. 495 */ 496 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 && 497 ((id >> 20) & 3) == 0) { 498 elf_hwcap &= ~HWCAP_TLS; 499 return; 500 } 501 502 /* Verify if CPUID scheme is implemented */ 503 if ((id & 0x000f0000) != 0x000f0000) 504 return; 505 506 /* 507 * If the CPU supports LDREX/STREX and LDREXB/STREXB, 508 * avoid advertising SWP; it may not be atomic with 509 * multiprocessing cores. 510 */ 511 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 || 512 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 && 513 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3)) 514 elf_hwcap &= ~HWCAP_SWP; 515 } 516 517 /* 518 * cpu_init - initialise one CPU. 519 * 520 * cpu_init sets up the per-CPU stacks. 521 */ 522 void notrace cpu_init(void) 523 { 524 #ifndef CONFIG_CPU_V7M 525 unsigned int cpu = smp_processor_id(); 526 struct stack *stk = &stacks[cpu]; 527 528 if (cpu >= NR_CPUS) { 529 pr_crit("CPU%u: bad primary CPU number\n", cpu); 530 BUG(); 531 } 532 533 /* 534 * This only works on resume and secondary cores. For booting on the 535 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup. 536 */ 537 set_my_cpu_offset(per_cpu_offset(cpu)); 538 539 cpu_proc_init(); 540 541 /* 542 * Define the placement constraint for the inline asm directive below. 543 * In Thumb-2, msr with an immediate value is not allowed. 544 */ 545 #ifdef CONFIG_THUMB2_KERNEL 546 #define PLC "r" 547 #else 548 #define PLC "I" 549 #endif 550 551 /* 552 * setup stacks for re-entrant exception handlers 553 */ 554 __asm__ ( 555 "msr cpsr_c, %1\n\t" 556 "add r14, %0, %2\n\t" 557 "mov sp, r14\n\t" 558 "msr cpsr_c, %3\n\t" 559 "add r14, %0, %4\n\t" 560 "mov sp, r14\n\t" 561 "msr cpsr_c, %5\n\t" 562 "add r14, %0, %6\n\t" 563 "mov sp, r14\n\t" 564 "msr cpsr_c, %7\n\t" 565 "add r14, %0, %8\n\t" 566 "mov sp, r14\n\t" 567 "msr cpsr_c, %9" 568 : 569 : "r" (stk), 570 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), 571 "I" (offsetof(struct stack, irq[0])), 572 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE), 573 "I" (offsetof(struct stack, abt[0])), 574 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE), 575 "I" (offsetof(struct stack, und[0])), 576 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE), 577 "I" (offsetof(struct stack, fiq[0])), 578 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE) 579 : "r14"); 580 #endif 581 } 582 583 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID }; 584 585 void __init smp_setup_processor_id(void) 586 { 587 int i; 588 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0; 589 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 590 591 cpu_logical_map(0) = cpu; 592 for (i = 1; i < nr_cpu_ids; ++i) 593 cpu_logical_map(i) = i == cpu ? 0 : i; 594 595 /* 596 * clear __my_cpu_offset on boot CPU to avoid hang caused by 597 * using percpu variable early, for example, lockdep will 598 * access percpu variable inside lock_release 599 */ 600 set_my_cpu_offset(0); 601 602 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr); 603 } 604 605 struct mpidr_hash mpidr_hash; 606 #ifdef CONFIG_SMP 607 /** 608 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity 609 * level in order to build a linear index from an 610 * MPIDR value. Resulting algorithm is a collision 611 * free hash carried out through shifting and ORing 612 */ 613 static void __init smp_build_mpidr_hash(void) 614 { 615 u32 i, affinity; 616 u32 fs[3], bits[3], ls, mask = 0; 617 /* 618 * Pre-scan the list of MPIDRS and filter out bits that do 619 * not contribute to affinity levels, ie they never toggle. 620 */ 621 for_each_possible_cpu(i) 622 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); 623 pr_debug("mask of set bits 0x%x\n", mask); 624 /* 625 * Find and stash the last and first bit set at all affinity levels to 626 * check how many bits are required to represent them. 627 */ 628 for (i = 0; i < 3; i++) { 629 affinity = MPIDR_AFFINITY_LEVEL(mask, i); 630 /* 631 * Find the MSB bit and LSB bits position 632 * to determine how many bits are required 633 * to express the affinity level. 634 */ 635 ls = fls(affinity); 636 fs[i] = affinity ? ffs(affinity) - 1 : 0; 637 bits[i] = ls - fs[i]; 638 } 639 /* 640 * An index can be created from the MPIDR by isolating the 641 * significant bits at each affinity level and by shifting 642 * them in order to compress the 24 bits values space to a 643 * compressed set of values. This is equivalent to hashing 644 * the MPIDR through shifting and ORing. It is a collision free 645 * hash though not minimal since some levels might contain a number 646 * of CPUs that is not an exact power of 2 and their bit 647 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}. 648 */ 649 mpidr_hash.shift_aff[0] = fs[0]; 650 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0]; 651 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] - 652 (bits[1] + bits[0]); 653 mpidr_hash.mask = mask; 654 mpidr_hash.bits = bits[2] + bits[1] + bits[0]; 655 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n", 656 mpidr_hash.shift_aff[0], 657 mpidr_hash.shift_aff[1], 658 mpidr_hash.shift_aff[2], 659 mpidr_hash.mask, 660 mpidr_hash.bits); 661 /* 662 * 4x is an arbitrary value used to warn on a hash table much bigger 663 * than expected on most systems. 664 */ 665 if (mpidr_hash_size() > 4 * num_possible_cpus()) 666 pr_warn("Large number of MPIDR hash buckets detected\n"); 667 sync_cache_w(&mpidr_hash); 668 } 669 #endif 670 671 /* 672 * locate processor in the list of supported processor types. The linker 673 * builds this table for us from the entries in arch/arm/mm/proc-*.S 674 */ 675 struct proc_info_list *lookup_processor(u32 midr) 676 { 677 struct proc_info_list *list = lookup_processor_type(midr); 678 679 if (!list) { 680 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n", 681 smp_processor_id(), midr); 682 while (1) 683 /* can't use cpu_relax() here as it may require MMU setup */; 684 } 685 686 return list; 687 } 688 689 static void __init setup_processor(void) 690 { 691 unsigned int midr = read_cpuid_id(); 692 struct proc_info_list *list = lookup_processor(midr); 693 694 cpu_name = list->cpu_name; 695 __cpu_architecture = __get_cpu_architecture(); 696 697 init_proc_vtable(list->proc); 698 #ifdef MULTI_TLB 699 cpu_tlb = *list->tlb; 700 #endif 701 #ifdef MULTI_USER 702 cpu_user = *list->user; 703 #endif 704 #ifdef MULTI_CACHE 705 cpu_cache = *list->cache; 706 #endif 707 708 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", 709 list->cpu_name, midr, midr & 15, 710 proc_arch[cpu_architecture()], get_cr()); 711 712 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c", 713 list->arch_name, ENDIANNESS); 714 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c", 715 list->elf_name, ENDIANNESS); 716 elf_hwcap = list->elf_hwcap; 717 718 cpuid_init_hwcaps(); 719 patch_aeabi_idiv(); 720 721 #ifndef CONFIG_ARM_THUMB 722 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT); 723 #endif 724 #ifdef CONFIG_MMU 725 init_default_cache_policy(list->__cpu_mm_mmu_flags); 726 #endif 727 erratum_a15_798181_init(); 728 729 elf_hwcap_fixup(); 730 731 cacheid_init(); 732 cpu_init(); 733 } 734 735 void __init dump_machine_table(void) 736 { 737 const struct machine_desc *p; 738 739 early_print("Available machine support:\n\nID (hex)\tNAME\n"); 740 for_each_machine_desc(p) 741 early_print("%08x\t%s\n", p->nr, p->name); 742 743 early_print("\nPlease check your kernel config and/or bootloader.\n"); 744 745 while (true) 746 /* can't use cpu_relax() here as it may require MMU setup */; 747 } 748 749 int __init arm_add_memory(u64 start, u64 size) 750 { 751 u64 aligned_start; 752 753 /* 754 * Ensure that start/size are aligned to a page boundary. 755 * Size is rounded down, start is rounded up. 756 */ 757 aligned_start = PAGE_ALIGN(start); 758 if (aligned_start > start + size) 759 size = 0; 760 else 761 size -= aligned_start - start; 762 763 #ifndef CONFIG_PHYS_ADDR_T_64BIT 764 if (aligned_start > ULONG_MAX) { 765 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n", 766 (long long)start); 767 return -EINVAL; 768 } 769 770 if (aligned_start + size > ULONG_MAX) { 771 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n", 772 (long long)start); 773 /* 774 * To ensure bank->start + bank->size is representable in 775 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB. 776 * This means we lose a page after masking. 777 */ 778 size = ULONG_MAX - aligned_start; 779 } 780 #endif 781 782 if (aligned_start < PHYS_OFFSET) { 783 if (aligned_start + size <= PHYS_OFFSET) { 784 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 785 aligned_start, aligned_start + size); 786 return -EINVAL; 787 } 788 789 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", 790 aligned_start, (u64)PHYS_OFFSET); 791 792 size -= PHYS_OFFSET - aligned_start; 793 aligned_start = PHYS_OFFSET; 794 } 795 796 start = aligned_start; 797 size = size & ~(phys_addr_t)(PAGE_SIZE - 1); 798 799 /* 800 * Check whether this memory region has non-zero size or 801 * invalid node number. 802 */ 803 if (size == 0) 804 return -EINVAL; 805 806 memblock_add(start, size); 807 return 0; 808 } 809 810 /* 811 * Pick out the memory size. We look for mem=size@start, 812 * where start and size are "size[KkMm]" 813 */ 814 815 static int __init early_mem(char *p) 816 { 817 static int usermem __initdata = 0; 818 u64 size; 819 u64 start; 820 char *endp; 821 822 /* 823 * If the user specifies memory size, we 824 * blow away any automatically generated 825 * size. 826 */ 827 if (usermem == 0) { 828 usermem = 1; 829 memblock_remove(memblock_start_of_DRAM(), 830 memblock_end_of_DRAM() - memblock_start_of_DRAM()); 831 } 832 833 start = PHYS_OFFSET; 834 size = memparse(p, &endp); 835 if (*endp == '@') 836 start = memparse(endp + 1, NULL); 837 838 arm_add_memory(start, size); 839 840 return 0; 841 } 842 early_param("mem", early_mem); 843 844 static void __init request_standard_resources(const struct machine_desc *mdesc) 845 { 846 struct memblock_region *region; 847 struct resource *res; 848 849 kernel_code.start = virt_to_phys(_text); 850 kernel_code.end = virt_to_phys(__init_begin - 1); 851 kernel_data.start = virt_to_phys(_sdata); 852 kernel_data.end = virt_to_phys(_end - 1); 853 854 for_each_memblock(memory, region) { 855 phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); 856 phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; 857 unsigned long boot_alias_start; 858 859 /* 860 * Some systems have a special memory alias which is only 861 * used for booting. We need to advertise this region to 862 * kexec-tools so they know where bootable RAM is located. 863 */ 864 boot_alias_start = phys_to_idmap(start); 865 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) { 866 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES); 867 if (!res) 868 panic("%s: Failed to allocate %zu bytes\n", 869 __func__, sizeof(*res)); 870 res->name = "System RAM (boot alias)"; 871 res->start = boot_alias_start; 872 res->end = phys_to_idmap(end); 873 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 874 request_resource(&iomem_resource, res); 875 } 876 877 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES); 878 if (!res) 879 panic("%s: Failed to allocate %zu bytes\n", __func__, 880 sizeof(*res)); 881 res->name = "System RAM"; 882 res->start = start; 883 res->end = end; 884 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 885 886 request_resource(&iomem_resource, res); 887 888 if (kernel_code.start >= res->start && 889 kernel_code.end <= res->end) 890 request_resource(res, &kernel_code); 891 if (kernel_data.start >= res->start && 892 kernel_data.end <= res->end) 893 request_resource(res, &kernel_data); 894 } 895 896 if (mdesc->video_start) { 897 video_ram.start = mdesc->video_start; 898 video_ram.end = mdesc->video_end; 899 request_resource(&iomem_resource, &video_ram); 900 } 901 902 /* 903 * Some machines don't have the possibility of ever 904 * possessing lp0, lp1 or lp2 905 */ 906 if (mdesc->reserve_lp0) 907 request_resource(&ioport_resource, &lp0); 908 if (mdesc->reserve_lp1) 909 request_resource(&ioport_resource, &lp1); 910 if (mdesc->reserve_lp2) 911 request_resource(&ioport_resource, &lp2); 912 } 913 914 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \ 915 defined(CONFIG_EFI) 916 struct screen_info screen_info = { 917 .orig_video_lines = 30, 918 .orig_video_cols = 80, 919 .orig_video_mode = 0, 920 .orig_video_ega_bx = 0, 921 .orig_video_isVGA = 1, 922 .orig_video_points = 8 923 }; 924 #endif 925 926 static int __init customize_machine(void) 927 { 928 /* 929 * customizes platform devices, or adds new ones 930 * On DT based machines, we fall back to populating the 931 * machine from the device tree, if no callback is provided, 932 * otherwise we would always need an init_machine callback. 933 */ 934 if (machine_desc->init_machine) 935 machine_desc->init_machine(); 936 937 return 0; 938 } 939 arch_initcall(customize_machine); 940 941 static int __init init_machine_late(void) 942 { 943 struct device_node *root; 944 int ret; 945 946 if (machine_desc->init_late) 947 machine_desc->init_late(); 948 949 root = of_find_node_by_path("/"); 950 if (root) { 951 ret = of_property_read_string(root, "serial-number", 952 &system_serial); 953 if (ret) 954 system_serial = NULL; 955 } 956 957 if (!system_serial) 958 system_serial = kasprintf(GFP_KERNEL, "%08x%08x", 959 system_serial_high, 960 system_serial_low); 961 962 return 0; 963 } 964 late_initcall(init_machine_late); 965 966 #ifdef CONFIG_KEXEC 967 /* 968 * The crash region must be aligned to 128MB to avoid 969 * zImage relocating below the reserved region. 970 */ 971 #define CRASH_ALIGN (128 << 20) 972 973 static inline unsigned long long get_total_mem(void) 974 { 975 unsigned long total; 976 977 total = max_low_pfn - min_low_pfn; 978 return total << PAGE_SHIFT; 979 } 980 981 /** 982 * reserve_crashkernel() - reserves memory are for crash kernel 983 * 984 * This function reserves memory area given in "crashkernel=" kernel command 985 * line parameter. The memory reserved is used by a dump capture kernel when 986 * primary kernel is crashing. 987 */ 988 static void __init reserve_crashkernel(void) 989 { 990 unsigned long long crash_size, crash_base; 991 unsigned long long total_mem; 992 int ret; 993 994 total_mem = get_total_mem(); 995 ret = parse_crashkernel(boot_command_line, total_mem, 996 &crash_size, &crash_base); 997 if (ret) 998 return; 999 1000 if (crash_base <= 0) { 1001 unsigned long long crash_max = idmap_to_phys((u32)~0); 1002 unsigned long long lowmem_max = __pa(high_memory - 1) + 1; 1003 if (crash_max > lowmem_max) 1004 crash_max = lowmem_max; 1005 crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max, 1006 crash_size, CRASH_ALIGN); 1007 if (!crash_base) { 1008 pr_err("crashkernel reservation failed - No suitable area found.\n"); 1009 return; 1010 } 1011 } else { 1012 unsigned long long start; 1013 1014 start = memblock_find_in_range(crash_base, 1015 crash_base + crash_size, 1016 crash_size, SECTION_SIZE); 1017 if (start != crash_base) { 1018 pr_err("crashkernel reservation failed - memory is in use.\n"); 1019 return; 1020 } 1021 } 1022 1023 ret = memblock_reserve(crash_base, crash_size); 1024 if (ret < 0) { 1025 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n", 1026 (unsigned long)crash_base); 1027 return; 1028 } 1029 1030 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 1031 (unsigned long)(crash_size >> 20), 1032 (unsigned long)(crash_base >> 20), 1033 (unsigned long)(total_mem >> 20)); 1034 1035 /* The crashk resource must always be located in normal mem */ 1036 crashk_res.start = crash_base; 1037 crashk_res.end = crash_base + crash_size - 1; 1038 insert_resource(&iomem_resource, &crashk_res); 1039 1040 if (arm_has_idmap_alias()) { 1041 /* 1042 * If we have a special RAM alias for use at boot, we 1043 * need to advertise to kexec tools where the alias is. 1044 */ 1045 static struct resource crashk_boot_res = { 1046 .name = "Crash kernel (boot alias)", 1047 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 1048 }; 1049 1050 crashk_boot_res.start = phys_to_idmap(crash_base); 1051 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1; 1052 insert_resource(&iomem_resource, &crashk_boot_res); 1053 } 1054 } 1055 #else 1056 static inline void reserve_crashkernel(void) {} 1057 #endif /* CONFIG_KEXEC */ 1058 1059 void __init hyp_mode_check(void) 1060 { 1061 #ifdef CONFIG_ARM_VIRT_EXT 1062 sync_boot_mode(); 1063 1064 if (is_hyp_mode_available()) { 1065 pr_info("CPU: All CPU(s) started in HYP mode.\n"); 1066 pr_info("CPU: Virtualization extensions available.\n"); 1067 } else if (is_hyp_mode_mismatched()) { 1068 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n", 1069 __boot_cpu_mode & MODE_MASK); 1070 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n"); 1071 } else 1072 pr_info("CPU: All CPU(s) started in SVC mode.\n"); 1073 #endif 1074 } 1075 1076 void __init setup_arch(char **cmdline_p) 1077 { 1078 const struct machine_desc *mdesc; 1079 1080 setup_processor(); 1081 mdesc = setup_machine_fdt(__atags_pointer); 1082 if (!mdesc) 1083 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type); 1084 if (!mdesc) { 1085 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n"); 1086 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type, 1087 __atags_pointer); 1088 if (__atags_pointer) 1089 early_print(" r2[]=%*ph\n", 16, 1090 phys_to_virt(__atags_pointer)); 1091 dump_machine_table(); 1092 } 1093 1094 machine_desc = mdesc; 1095 machine_name = mdesc->name; 1096 dump_stack_set_arch_desc("%s", mdesc->name); 1097 1098 if (mdesc->reboot_mode != REBOOT_HARD) 1099 reboot_mode = mdesc->reboot_mode; 1100 1101 init_mm.start_code = (unsigned long) _text; 1102 init_mm.end_code = (unsigned long) _etext; 1103 init_mm.end_data = (unsigned long) _edata; 1104 init_mm.brk = (unsigned long) _end; 1105 1106 /* populate cmd_line too for later use, preserving boot_command_line */ 1107 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); 1108 *cmdline_p = cmd_line; 1109 1110 early_fixmap_init(); 1111 early_ioremap_init(); 1112 1113 parse_early_param(); 1114 1115 #ifdef CONFIG_MMU 1116 early_mm_init(mdesc); 1117 #endif 1118 setup_dma_zone(mdesc); 1119 xen_early_init(); 1120 efi_init(); 1121 /* 1122 * Make sure the calculation for lowmem/highmem is set appropriately 1123 * before reserving/allocating any mmeory 1124 */ 1125 adjust_lowmem_bounds(); 1126 arm_memblock_init(mdesc); 1127 /* Memory may have been removed so recalculate the bounds. */ 1128 adjust_lowmem_bounds(); 1129 1130 early_ioremap_reset(); 1131 1132 paging_init(mdesc); 1133 request_standard_resources(mdesc); 1134 1135 if (mdesc->restart) 1136 arm_pm_restart = mdesc->restart; 1137 1138 unflatten_device_tree(); 1139 1140 arm_dt_init_cpu_maps(); 1141 psci_dt_init(); 1142 #ifdef CONFIG_SMP 1143 if (is_smp()) { 1144 if (!mdesc->smp_init || !mdesc->smp_init()) { 1145 if (psci_smp_available()) 1146 smp_set_ops(&psci_smp_ops); 1147 else if (mdesc->smp) 1148 smp_set_ops(mdesc->smp); 1149 } 1150 smp_init_cpus(); 1151 smp_build_mpidr_hash(); 1152 } 1153 #endif 1154 1155 if (!is_smp()) 1156 hyp_mode_check(); 1157 1158 reserve_crashkernel(); 1159 1160 #ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER 1161 handle_arch_irq = mdesc->handle_irq; 1162 #endif 1163 1164 #ifdef CONFIG_VT 1165 #if defined(CONFIG_VGA_CONSOLE) 1166 conswitchp = &vga_con; 1167 #endif 1168 #endif 1169 1170 if (mdesc->init_early) 1171 mdesc->init_early(); 1172 } 1173 1174 1175 static int __init topology_init(void) 1176 { 1177 int cpu; 1178 1179 for_each_possible_cpu(cpu) { 1180 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); 1181 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu); 1182 register_cpu(&cpuinfo->cpu, cpu); 1183 } 1184 1185 return 0; 1186 } 1187 subsys_initcall(topology_init); 1188 1189 #ifdef CONFIG_HAVE_PROC_CPU 1190 static int __init proc_cpu_init(void) 1191 { 1192 struct proc_dir_entry *res; 1193 1194 res = proc_mkdir("cpu", NULL); 1195 if (!res) 1196 return -ENOMEM; 1197 return 0; 1198 } 1199 fs_initcall(proc_cpu_init); 1200 #endif 1201 1202 static const char *hwcap_str[] = { 1203 "swp", 1204 "half", 1205 "thumb", 1206 "26bit", 1207 "fastmult", 1208 "fpa", 1209 "vfp", 1210 "edsp", 1211 "java", 1212 "iwmmxt", 1213 "crunch", 1214 "thumbee", 1215 "neon", 1216 "vfpv3", 1217 "vfpv3d16", 1218 "tls", 1219 "vfpv4", 1220 "idiva", 1221 "idivt", 1222 "vfpd32", 1223 "lpae", 1224 "evtstrm", 1225 NULL 1226 }; 1227 1228 static const char *hwcap2_str[] = { 1229 "aes", 1230 "pmull", 1231 "sha1", 1232 "sha2", 1233 "crc32", 1234 NULL 1235 }; 1236 1237 static int c_show(struct seq_file *m, void *v) 1238 { 1239 int i, j; 1240 u32 cpuid; 1241 1242 for_each_online_cpu(i) { 1243 /* 1244 * glibc reads /proc/cpuinfo to determine the number of 1245 * online processors, looking for lines beginning with 1246 * "processor". Give glibc what it expects. 1247 */ 1248 seq_printf(m, "processor\t: %d\n", i); 1249 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id(); 1250 seq_printf(m, "model name\t: %s rev %d (%s)\n", 1251 cpu_name, cpuid & 15, elf_platform); 1252 1253 #if defined(CONFIG_SMP) 1254 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 1255 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), 1256 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); 1257 #else 1258 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", 1259 loops_per_jiffy / (500000/HZ), 1260 (loops_per_jiffy / (5000/HZ)) % 100); 1261 #endif 1262 /* dump out the processor features */ 1263 seq_puts(m, "Features\t: "); 1264 1265 for (j = 0; hwcap_str[j]; j++) 1266 if (elf_hwcap & (1 << j)) 1267 seq_printf(m, "%s ", hwcap_str[j]); 1268 1269 for (j = 0; hwcap2_str[j]; j++) 1270 if (elf_hwcap2 & (1 << j)) 1271 seq_printf(m, "%s ", hwcap2_str[j]); 1272 1273 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24); 1274 seq_printf(m, "CPU architecture: %s\n", 1275 proc_arch[cpu_architecture()]); 1276 1277 if ((cpuid & 0x0008f000) == 0x00000000) { 1278 /* pre-ARM7 */ 1279 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4); 1280 } else { 1281 if ((cpuid & 0x0008f000) == 0x00007000) { 1282 /* ARM7 */ 1283 seq_printf(m, "CPU variant\t: 0x%02x\n", 1284 (cpuid >> 16) & 127); 1285 } else { 1286 /* post-ARM7 */ 1287 seq_printf(m, "CPU variant\t: 0x%x\n", 1288 (cpuid >> 20) & 15); 1289 } 1290 seq_printf(m, "CPU part\t: 0x%03x\n", 1291 (cpuid >> 4) & 0xfff); 1292 } 1293 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15); 1294 } 1295 1296 seq_printf(m, "Hardware\t: %s\n", machine_name); 1297 seq_printf(m, "Revision\t: %04x\n", system_rev); 1298 seq_printf(m, "Serial\t\t: %s\n", system_serial); 1299 1300 return 0; 1301 } 1302 1303 static void *c_start(struct seq_file *m, loff_t *pos) 1304 { 1305 return *pos < 1 ? (void *)1 : NULL; 1306 } 1307 1308 static void *c_next(struct seq_file *m, void *v, loff_t *pos) 1309 { 1310 ++*pos; 1311 return NULL; 1312 } 1313 1314 static void c_stop(struct seq_file *m, void *v) 1315 { 1316 } 1317 1318 const struct seq_operations cpuinfo_op = { 1319 .start = c_start, 1320 .next = c_next, 1321 .stop = c_stop, 1322 .show = c_show 1323 }; 1324