xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision de6da33e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/ptrace.c
4  *
5  *  By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  */
9 #include <linux/kernel.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/elf.h>
14 #include <linux/smp.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/uaccess.h>
21 #include <linux/perf_event.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/regset.h>
24 #include <linux/audit.h>
25 #include <linux/tracehook.h>
26 #include <linux/unistd.h>
27 
28 #include <asm/syscall.h>
29 #include <asm/traps.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/syscalls.h>
33 
34 #define REG_PC	15
35 #define REG_PSR	16
36 /*
37  * does not yet catch signals sent when the child dies.
38  * in exit.c or in signal.c.
39  */
40 
41 #if 0
42 /*
43  * Breakpoint SWI instruction: SWI &9F0001
44  */
45 #define BREAKINST_ARM	0xef9f0001
46 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
47 #else
48 /*
49  * New breakpoints - use an undefined instruction.  The ARM architecture
50  * reference manual guarantees that the following instruction space
51  * will produce an undefined instruction exception on all CPUs:
52  *
53  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
54  *  Thumb: 1101 1110 xxxx xxxx
55  */
56 #define BREAKINST_ARM	0xe7f001f0
57 #define BREAKINST_THUMB	0xde01
58 #endif
59 
60 struct pt_regs_offset {
61 	const char *name;
62 	int offset;
63 };
64 
65 #define REG_OFFSET_NAME(r) \
66 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68 
69 static const struct pt_regs_offset regoffset_table[] = {
70 	REG_OFFSET_NAME(r0),
71 	REG_OFFSET_NAME(r1),
72 	REG_OFFSET_NAME(r2),
73 	REG_OFFSET_NAME(r3),
74 	REG_OFFSET_NAME(r4),
75 	REG_OFFSET_NAME(r5),
76 	REG_OFFSET_NAME(r6),
77 	REG_OFFSET_NAME(r7),
78 	REG_OFFSET_NAME(r8),
79 	REG_OFFSET_NAME(r9),
80 	REG_OFFSET_NAME(r10),
81 	REG_OFFSET_NAME(fp),
82 	REG_OFFSET_NAME(ip),
83 	REG_OFFSET_NAME(sp),
84 	REG_OFFSET_NAME(lr),
85 	REG_OFFSET_NAME(pc),
86 	REG_OFFSET_NAME(cpsr),
87 	REG_OFFSET_NAME(ORIG_r0),
88 	REG_OFFSET_END,
89 };
90 
91 /**
92  * regs_query_register_offset() - query register offset from its name
93  * @name:	the name of a register
94  *
95  * regs_query_register_offset() returns the offset of a register in struct
96  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
97  */
98 int regs_query_register_offset(const char *name)
99 {
100 	const struct pt_regs_offset *roff;
101 	for (roff = regoffset_table; roff->name != NULL; roff++)
102 		if (!strcmp(roff->name, name))
103 			return roff->offset;
104 	return -EINVAL;
105 }
106 
107 /**
108  * regs_query_register_name() - query register name from its offset
109  * @offset:	the offset of a register in struct pt_regs.
110  *
111  * regs_query_register_name() returns the name of a register from its
112  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
113  */
114 const char *regs_query_register_name(unsigned int offset)
115 {
116 	const struct pt_regs_offset *roff;
117 	for (roff = regoffset_table; roff->name != NULL; roff++)
118 		if (roff->offset == offset)
119 			return roff->name;
120 	return NULL;
121 }
122 
123 /**
124  * regs_within_kernel_stack() - check the address in the stack
125  * @regs:      pt_regs which contains kernel stack pointer.
126  * @addr:      address which is checked.
127  *
128  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
129  * If @addr is within the kernel stack, it returns true. If not, returns false.
130  */
131 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
132 {
133 	return ((addr & ~(THREAD_SIZE - 1))  ==
134 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
135 }
136 
137 /**
138  * regs_get_kernel_stack_nth() - get Nth entry of the stack
139  * @regs:	pt_regs which contains kernel stack pointer.
140  * @n:		stack entry number.
141  *
142  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
143  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
144  * this returns 0.
145  */
146 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
147 {
148 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
149 	addr += n;
150 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
151 		return *addr;
152 	else
153 		return 0;
154 }
155 
156 /*
157  * this routine will get a word off of the processes privileged stack.
158  * the offset is how far from the base addr as stored in the THREAD.
159  * this routine assumes that all the privileged stacks are in our
160  * data space.
161  */
162 static inline long get_user_reg(struct task_struct *task, int offset)
163 {
164 	return task_pt_regs(task)->uregs[offset];
165 }
166 
167 /*
168  * this routine will put a word on the processes privileged stack.
169  * the offset is how far from the base addr as stored in the THREAD.
170  * this routine assumes that all the privileged stacks are in our
171  * data space.
172  */
173 static inline int
174 put_user_reg(struct task_struct *task, int offset, long data)
175 {
176 	struct pt_regs newregs, *regs = task_pt_regs(task);
177 	int ret = -EINVAL;
178 
179 	newregs = *regs;
180 	newregs.uregs[offset] = data;
181 
182 	if (valid_user_regs(&newregs)) {
183 		regs->uregs[offset] = data;
184 		ret = 0;
185 	}
186 
187 	return ret;
188 }
189 
190 /*
191  * Called by kernel/ptrace.c when detaching..
192  */
193 void ptrace_disable(struct task_struct *child)
194 {
195 	/* Nothing to do. */
196 }
197 
198 /*
199  * Handle hitting a breakpoint.
200  */
201 void ptrace_break(struct pt_regs *regs)
202 {
203 	force_sig_fault(SIGTRAP, TRAP_BRKPT,
204 			(void __user *)instruction_pointer(regs));
205 }
206 
207 static int break_trap(struct pt_regs *regs, unsigned int instr)
208 {
209 	ptrace_break(regs);
210 	return 0;
211 }
212 
213 static struct undef_hook arm_break_hook = {
214 	.instr_mask	= 0x0fffffff,
215 	.instr_val	= 0x07f001f0,
216 	.cpsr_mask	= PSR_T_BIT,
217 	.cpsr_val	= 0,
218 	.fn		= break_trap,
219 };
220 
221 static struct undef_hook thumb_break_hook = {
222 	.instr_mask	= 0xffffffff,
223 	.instr_val	= 0x0000de01,
224 	.cpsr_mask	= PSR_T_BIT,
225 	.cpsr_val	= PSR_T_BIT,
226 	.fn		= break_trap,
227 };
228 
229 static struct undef_hook thumb2_break_hook = {
230 	.instr_mask	= 0xffffffff,
231 	.instr_val	= 0xf7f0a000,
232 	.cpsr_mask	= PSR_T_BIT,
233 	.cpsr_val	= PSR_T_BIT,
234 	.fn		= break_trap,
235 };
236 
237 static int __init ptrace_break_init(void)
238 {
239 	register_undef_hook(&arm_break_hook);
240 	register_undef_hook(&thumb_break_hook);
241 	register_undef_hook(&thumb2_break_hook);
242 	return 0;
243 }
244 
245 core_initcall(ptrace_break_init);
246 
247 /*
248  * Read the word at offset "off" into the "struct user".  We
249  * actually access the pt_regs stored on the kernel stack.
250  */
251 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
252 			    unsigned long __user *ret)
253 {
254 	unsigned long tmp;
255 
256 	if (off & 3)
257 		return -EIO;
258 
259 	tmp = 0;
260 	if (off == PT_TEXT_ADDR)
261 		tmp = tsk->mm->start_code;
262 	else if (off == PT_DATA_ADDR)
263 		tmp = tsk->mm->start_data;
264 	else if (off == PT_TEXT_END_ADDR)
265 		tmp = tsk->mm->end_code;
266 	else if (off < sizeof(struct pt_regs))
267 		tmp = get_user_reg(tsk, off >> 2);
268 	else if (off >= sizeof(struct user))
269 		return -EIO;
270 
271 	return put_user(tmp, ret);
272 }
273 
274 /*
275  * Write the word at offset "off" into "struct user".  We
276  * actually access the pt_regs stored on the kernel stack.
277  */
278 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
279 			     unsigned long val)
280 {
281 	if (off & 3 || off >= sizeof(struct user))
282 		return -EIO;
283 
284 	if (off >= sizeof(struct pt_regs))
285 		return 0;
286 
287 	return put_user_reg(tsk, off >> 2, val);
288 }
289 
290 #ifdef CONFIG_IWMMXT
291 
292 /*
293  * Get the child iWMMXt state.
294  */
295 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
296 {
297 	struct thread_info *thread = task_thread_info(tsk);
298 
299 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
300 		return -ENODATA;
301 	iwmmxt_task_disable(thread);  /* force it to ram */
302 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
303 		? -EFAULT : 0;
304 }
305 
306 /*
307  * Set the child iWMMXt state.
308  */
309 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
310 {
311 	struct thread_info *thread = task_thread_info(tsk);
312 
313 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
314 		return -EACCES;
315 	iwmmxt_task_release(thread);  /* force a reload */
316 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
317 		? -EFAULT : 0;
318 }
319 
320 #endif
321 
322 #ifdef CONFIG_HAVE_HW_BREAKPOINT
323 /*
324  * Convert a virtual register number into an index for a thread_info
325  * breakpoint array. Breakpoints are identified using positive numbers
326  * whilst watchpoints are negative. The registers are laid out as pairs
327  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
328  * Register 0 is reserved for describing resource information.
329  */
330 static int ptrace_hbp_num_to_idx(long num)
331 {
332 	if (num < 0)
333 		num = (ARM_MAX_BRP << 1) - num;
334 	return (num - 1) >> 1;
335 }
336 
337 /*
338  * Returns the virtual register number for the address of the
339  * breakpoint at index idx.
340  */
341 static long ptrace_hbp_idx_to_num(int idx)
342 {
343 	long mid = ARM_MAX_BRP << 1;
344 	long num = (idx << 1) + 1;
345 	return num > mid ? mid - num : num;
346 }
347 
348 /*
349  * Handle hitting a HW-breakpoint.
350  */
351 static void ptrace_hbptriggered(struct perf_event *bp,
352 				     struct perf_sample_data *data,
353 				     struct pt_regs *regs)
354 {
355 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
356 	long num;
357 	int i;
358 
359 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
360 		if (current->thread.debug.hbp[i] == bp)
361 			break;
362 
363 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
364 
365 	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
366 }
367 
368 /*
369  * Set ptrace breakpoint pointers to zero for this task.
370  * This is required in order to prevent child processes from unregistering
371  * breakpoints held by their parent.
372  */
373 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
374 {
375 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
376 }
377 
378 /*
379  * Unregister breakpoints from this task and reset the pointers in
380  * the thread_struct.
381  */
382 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
383 {
384 	int i;
385 	struct thread_struct *t = &tsk->thread;
386 
387 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
388 		if (t->debug.hbp[i]) {
389 			unregister_hw_breakpoint(t->debug.hbp[i]);
390 			t->debug.hbp[i] = NULL;
391 		}
392 	}
393 }
394 
395 static u32 ptrace_get_hbp_resource_info(void)
396 {
397 	u8 num_brps, num_wrps, debug_arch, wp_len;
398 	u32 reg = 0;
399 
400 	num_brps	= hw_breakpoint_slots(TYPE_INST);
401 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
402 	debug_arch	= arch_get_debug_arch();
403 	wp_len		= arch_get_max_wp_len();
404 
405 	reg		|= debug_arch;
406 	reg		<<= 8;
407 	reg		|= wp_len;
408 	reg		<<= 8;
409 	reg		|= num_wrps;
410 	reg		<<= 8;
411 	reg		|= num_brps;
412 
413 	return reg;
414 }
415 
416 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
417 {
418 	struct perf_event_attr attr;
419 
420 	ptrace_breakpoint_init(&attr);
421 
422 	/* Initialise fields to sane defaults. */
423 	attr.bp_addr	= 0;
424 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
425 	attr.bp_type	= type;
426 	attr.disabled	= 1;
427 
428 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
429 					   tsk);
430 }
431 
432 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
433 			     unsigned long  __user *data)
434 {
435 	u32 reg;
436 	int idx, ret = 0;
437 	struct perf_event *bp;
438 	struct arch_hw_breakpoint_ctrl arch_ctrl;
439 
440 	if (num == 0) {
441 		reg = ptrace_get_hbp_resource_info();
442 	} else {
443 		idx = ptrace_hbp_num_to_idx(num);
444 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
445 			ret = -EINVAL;
446 			goto out;
447 		}
448 
449 		bp = tsk->thread.debug.hbp[idx];
450 		if (!bp) {
451 			reg = 0;
452 			goto put;
453 		}
454 
455 		arch_ctrl = counter_arch_bp(bp)->ctrl;
456 
457 		/*
458 		 * Fix up the len because we may have adjusted it
459 		 * to compensate for an unaligned address.
460 		 */
461 		while (!(arch_ctrl.len & 0x1))
462 			arch_ctrl.len >>= 1;
463 
464 		if (num & 0x1)
465 			reg = bp->attr.bp_addr;
466 		else
467 			reg = encode_ctrl_reg(arch_ctrl);
468 	}
469 
470 put:
471 	if (put_user(reg, data))
472 		ret = -EFAULT;
473 
474 out:
475 	return ret;
476 }
477 
478 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
479 			     unsigned long __user *data)
480 {
481 	int idx, gen_len, gen_type, implied_type, ret = 0;
482 	u32 user_val;
483 	struct perf_event *bp;
484 	struct arch_hw_breakpoint_ctrl ctrl;
485 	struct perf_event_attr attr;
486 
487 	if (num == 0)
488 		goto out;
489 	else if (num < 0)
490 		implied_type = HW_BREAKPOINT_RW;
491 	else
492 		implied_type = HW_BREAKPOINT_X;
493 
494 	idx = ptrace_hbp_num_to_idx(num);
495 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
496 		ret = -EINVAL;
497 		goto out;
498 	}
499 
500 	if (get_user(user_val, data)) {
501 		ret = -EFAULT;
502 		goto out;
503 	}
504 
505 	bp = tsk->thread.debug.hbp[idx];
506 	if (!bp) {
507 		bp = ptrace_hbp_create(tsk, implied_type);
508 		if (IS_ERR(bp)) {
509 			ret = PTR_ERR(bp);
510 			goto out;
511 		}
512 		tsk->thread.debug.hbp[idx] = bp;
513 	}
514 
515 	attr = bp->attr;
516 
517 	if (num & 0x1) {
518 		/* Address */
519 		attr.bp_addr	= user_val;
520 	} else {
521 		/* Control */
522 		decode_ctrl_reg(user_val, &ctrl);
523 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
524 		if (ret)
525 			goto out;
526 
527 		if ((gen_type & implied_type) != gen_type) {
528 			ret = -EINVAL;
529 			goto out;
530 		}
531 
532 		attr.bp_len	= gen_len;
533 		attr.bp_type	= gen_type;
534 		attr.disabled	= !ctrl.enabled;
535 	}
536 
537 	ret = modify_user_hw_breakpoint(bp, &attr);
538 out:
539 	return ret;
540 }
541 #endif
542 
543 /* regset get/set implementations */
544 
545 static int gpr_get(struct task_struct *target,
546 		   const struct user_regset *regset,
547 		   struct membuf to)
548 {
549 	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
550 }
551 
552 static int gpr_set(struct task_struct *target,
553 		   const struct user_regset *regset,
554 		   unsigned int pos, unsigned int count,
555 		   const void *kbuf, const void __user *ubuf)
556 {
557 	int ret;
558 	struct pt_regs newregs = *task_pt_regs(target);
559 
560 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
561 				 &newregs,
562 				 0, sizeof(newregs));
563 	if (ret)
564 		return ret;
565 
566 	if (!valid_user_regs(&newregs))
567 		return -EINVAL;
568 
569 	*task_pt_regs(target) = newregs;
570 	return 0;
571 }
572 
573 static int fpa_get(struct task_struct *target,
574 		   const struct user_regset *regset,
575 		   struct membuf to)
576 {
577 	return membuf_write(&to, &task_thread_info(target)->fpstate,
578 				 sizeof(struct user_fp));
579 }
580 
581 static int fpa_set(struct task_struct *target,
582 		   const struct user_regset *regset,
583 		   unsigned int pos, unsigned int count,
584 		   const void *kbuf, const void __user *ubuf)
585 {
586 	struct thread_info *thread = task_thread_info(target);
587 
588 	thread->used_cp[1] = thread->used_cp[2] = 1;
589 
590 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
591 		&thread->fpstate,
592 		0, sizeof(struct user_fp));
593 }
594 
595 #ifdef CONFIG_VFP
596 /*
597  * VFP register get/set implementations.
598  *
599  * With respect to the kernel, struct user_fp is divided into three chunks:
600  * 16 or 32 real VFP registers (d0-d15 or d0-31)
601  *	These are transferred to/from the real registers in the task's
602  *	vfp_hard_struct.  The number of registers depends on the kernel
603  *	configuration.
604  *
605  * 16 or 0 fake VFP registers (d16-d31 or empty)
606  *	i.e., the user_vfp structure has space for 32 registers even if
607  *	the kernel doesn't have them all.
608  *
609  *	vfp_get() reads this chunk as zero where applicable
610  *	vfp_set() ignores this chunk
611  *
612  * 1 word for the FPSCR
613  */
614 static int vfp_get(struct task_struct *target,
615 		   const struct user_regset *regset,
616 		   struct membuf to)
617 {
618 	struct thread_info *thread = task_thread_info(target);
619 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
620 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
621 
622 	vfp_sync_hwstate(thread);
623 
624 	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
625 	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
626 	return membuf_store(&to, vfp->fpscr);
627 }
628 
629 /*
630  * For vfp_set() a read-modify-write is done on the VFP registers,
631  * in order to avoid writing back a half-modified set of registers on
632  * failure.
633  */
634 static int vfp_set(struct task_struct *target,
635 			  const struct user_regset *regset,
636 			  unsigned int pos, unsigned int count,
637 			  const void *kbuf, const void __user *ubuf)
638 {
639 	int ret;
640 	struct thread_info *thread = task_thread_info(target);
641 	struct vfp_hard_struct new_vfp;
642 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
643 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
644 
645 	vfp_sync_hwstate(thread);
646 	new_vfp = thread->vfpstate.hard;
647 
648 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
649 				  &new_vfp.fpregs,
650 				  user_fpregs_offset,
651 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
652 	if (ret)
653 		return ret;
654 
655 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
656 				user_fpregs_offset + sizeof(new_vfp.fpregs),
657 				user_fpscr_offset);
658 	if (ret)
659 		return ret;
660 
661 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
662 				 &new_vfp.fpscr,
663 				 user_fpscr_offset,
664 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
665 	if (ret)
666 		return ret;
667 
668 	thread->vfpstate.hard = new_vfp;
669 	vfp_flush_hwstate(thread);
670 
671 	return 0;
672 }
673 #endif /* CONFIG_VFP */
674 
675 enum arm_regset {
676 	REGSET_GPR,
677 	REGSET_FPR,
678 #ifdef CONFIG_VFP
679 	REGSET_VFP,
680 #endif
681 };
682 
683 static const struct user_regset arm_regsets[] = {
684 	[REGSET_GPR] = {
685 		.core_note_type = NT_PRSTATUS,
686 		.n = ELF_NGREG,
687 		.size = sizeof(u32),
688 		.align = sizeof(u32),
689 		.regset_get = gpr_get,
690 		.set = gpr_set
691 	},
692 	[REGSET_FPR] = {
693 		/*
694 		 * For the FPA regs in fpstate, the real fields are a mixture
695 		 * of sizes, so pretend that the registers are word-sized:
696 		 */
697 		.core_note_type = NT_PRFPREG,
698 		.n = sizeof(struct user_fp) / sizeof(u32),
699 		.size = sizeof(u32),
700 		.align = sizeof(u32),
701 		.regset_get = fpa_get,
702 		.set = fpa_set
703 	},
704 #ifdef CONFIG_VFP
705 	[REGSET_VFP] = {
706 		/*
707 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
708 		 * a single word dangling at the end of struct user_vfp:
709 		 */
710 		.core_note_type = NT_ARM_VFP,
711 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
712 		.size = sizeof(u32),
713 		.align = sizeof(u32),
714 		.regset_get = vfp_get,
715 		.set = vfp_set
716 	},
717 #endif /* CONFIG_VFP */
718 };
719 
720 static const struct user_regset_view user_arm_view = {
721 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
722 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
723 };
724 
725 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
726 {
727 	return &user_arm_view;
728 }
729 
730 long arch_ptrace(struct task_struct *child, long request,
731 		 unsigned long addr, unsigned long data)
732 {
733 	int ret;
734 	unsigned long __user *datap = (unsigned long __user *) data;
735 
736 	switch (request) {
737 		case PTRACE_PEEKUSR:
738 			ret = ptrace_read_user(child, addr, datap);
739 			break;
740 
741 		case PTRACE_POKEUSR:
742 			ret = ptrace_write_user(child, addr, data);
743 			break;
744 
745 		case PTRACE_GETREGS:
746 			ret = copy_regset_to_user(child,
747 						  &user_arm_view, REGSET_GPR,
748 						  0, sizeof(struct pt_regs),
749 						  datap);
750 			break;
751 
752 		case PTRACE_SETREGS:
753 			ret = copy_regset_from_user(child,
754 						    &user_arm_view, REGSET_GPR,
755 						    0, sizeof(struct pt_regs),
756 						    datap);
757 			break;
758 
759 		case PTRACE_GETFPREGS:
760 			ret = copy_regset_to_user(child,
761 						  &user_arm_view, REGSET_FPR,
762 						  0, sizeof(union fp_state),
763 						  datap);
764 			break;
765 
766 		case PTRACE_SETFPREGS:
767 			ret = copy_regset_from_user(child,
768 						    &user_arm_view, REGSET_FPR,
769 						    0, sizeof(union fp_state),
770 						    datap);
771 			break;
772 
773 #ifdef CONFIG_IWMMXT
774 		case PTRACE_GETWMMXREGS:
775 			ret = ptrace_getwmmxregs(child, datap);
776 			break;
777 
778 		case PTRACE_SETWMMXREGS:
779 			ret = ptrace_setwmmxregs(child, datap);
780 			break;
781 #endif
782 
783 		case PTRACE_GET_THREAD_AREA:
784 			ret = put_user(task_thread_info(child)->tp_value[0],
785 				       datap);
786 			break;
787 
788 		case PTRACE_SET_SYSCALL:
789 			task_thread_info(child)->abi_syscall = data &
790 							__NR_SYSCALL_MASK;
791 			ret = 0;
792 			break;
793 
794 #ifdef CONFIG_VFP
795 		case PTRACE_GETVFPREGS:
796 			ret = copy_regset_to_user(child,
797 						  &user_arm_view, REGSET_VFP,
798 						  0, ARM_VFPREGS_SIZE,
799 						  datap);
800 			break;
801 
802 		case PTRACE_SETVFPREGS:
803 			ret = copy_regset_from_user(child,
804 						    &user_arm_view, REGSET_VFP,
805 						    0, ARM_VFPREGS_SIZE,
806 						    datap);
807 			break;
808 #endif
809 
810 #ifdef CONFIG_HAVE_HW_BREAKPOINT
811 		case PTRACE_GETHBPREGS:
812 			ret = ptrace_gethbpregs(child, addr,
813 						(unsigned long __user *)data);
814 			break;
815 		case PTRACE_SETHBPREGS:
816 			ret = ptrace_sethbpregs(child, addr,
817 						(unsigned long __user *)data);
818 			break;
819 #endif
820 
821 		default:
822 			ret = ptrace_request(child, request, addr, data);
823 			break;
824 	}
825 
826 	return ret;
827 }
828 
829 enum ptrace_syscall_dir {
830 	PTRACE_SYSCALL_ENTER = 0,
831 	PTRACE_SYSCALL_EXIT,
832 };
833 
834 static void tracehook_report_syscall(struct pt_regs *regs,
835 				    enum ptrace_syscall_dir dir)
836 {
837 	unsigned long ip;
838 
839 	/*
840 	 * IP is used to denote syscall entry/exit:
841 	 * IP = 0 -> entry, =1 -> exit
842 	 */
843 	ip = regs->ARM_ip;
844 	regs->ARM_ip = dir;
845 
846 	if (dir == PTRACE_SYSCALL_EXIT)
847 		tracehook_report_syscall_exit(regs, 0);
848 	else if (tracehook_report_syscall_entry(regs))
849 		current_thread_info()->abi_syscall = -1;
850 
851 	regs->ARM_ip = ip;
852 }
853 
854 asmlinkage int syscall_trace_enter(struct pt_regs *regs)
855 {
856 	int scno;
857 
858 	if (test_thread_flag(TIF_SYSCALL_TRACE))
859 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
860 
861 	/* Do seccomp after ptrace; syscall may have changed. */
862 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
863 	if (secure_computing() == -1)
864 		return -1;
865 #else
866 	/* XXX: remove this once OABI gets fixed */
867 	secure_computing_strict(syscall_get_nr(current, regs));
868 #endif
869 
870 	/* Tracer or seccomp may have changed syscall. */
871 	scno = syscall_get_nr(current, regs);
872 
873 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
874 		trace_sys_enter(regs, scno);
875 
876 	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
877 			    regs->ARM_r3);
878 
879 	return scno;
880 }
881 
882 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
883 {
884 	/*
885 	 * Audit the syscall before anything else, as a debugger may
886 	 * come in and change the current registers.
887 	 */
888 	audit_syscall_exit(regs);
889 
890 	/*
891 	 * Note that we haven't updated the ->syscall field for the
892 	 * current thread. This isn't a problem because it will have
893 	 * been set on syscall entry and there hasn't been an opportunity
894 	 * for a PTRACE_SET_SYSCALL since then.
895 	 */
896 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
897 		trace_sys_exit(regs, regs_return_value(regs));
898 
899 	if (test_thread_flag(TIF_SYSCALL_TRACE))
900 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
901 }
902