1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 */ 9 #include <linux/kernel.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/mm.h> 13 #include <linux/elf.h> 14 #include <linux/smp.h> 15 #include <linux/ptrace.h> 16 #include <linux/user.h> 17 #include <linux/security.h> 18 #include <linux/init.h> 19 #include <linux/signal.h> 20 #include <linux/uaccess.h> 21 #include <linux/perf_event.h> 22 #include <linux/hw_breakpoint.h> 23 #include <linux/regset.h> 24 #include <linux/audit.h> 25 #include <linux/tracehook.h> 26 #include <linux/unistd.h> 27 28 #include <asm/syscall.h> 29 #include <asm/traps.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/syscalls.h> 33 34 #define REG_PC 15 35 #define REG_PSR 16 36 /* 37 * does not yet catch signals sent when the child dies. 38 * in exit.c or in signal.c. 39 */ 40 41 #if 0 42 /* 43 * Breakpoint SWI instruction: SWI &9F0001 44 */ 45 #define BREAKINST_ARM 0xef9f0001 46 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 47 #else 48 /* 49 * New breakpoints - use an undefined instruction. The ARM architecture 50 * reference manual guarantees that the following instruction space 51 * will produce an undefined instruction exception on all CPUs: 52 * 53 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 54 * Thumb: 1101 1110 xxxx xxxx 55 */ 56 #define BREAKINST_ARM 0xe7f001f0 57 #define BREAKINST_THUMB 0xde01 58 #endif 59 60 struct pt_regs_offset { 61 const char *name; 62 int offset; 63 }; 64 65 #define REG_OFFSET_NAME(r) \ 66 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 67 #define REG_OFFSET_END {.name = NULL, .offset = 0} 68 69 static const struct pt_regs_offset regoffset_table[] = { 70 REG_OFFSET_NAME(r0), 71 REG_OFFSET_NAME(r1), 72 REG_OFFSET_NAME(r2), 73 REG_OFFSET_NAME(r3), 74 REG_OFFSET_NAME(r4), 75 REG_OFFSET_NAME(r5), 76 REG_OFFSET_NAME(r6), 77 REG_OFFSET_NAME(r7), 78 REG_OFFSET_NAME(r8), 79 REG_OFFSET_NAME(r9), 80 REG_OFFSET_NAME(r10), 81 REG_OFFSET_NAME(fp), 82 REG_OFFSET_NAME(ip), 83 REG_OFFSET_NAME(sp), 84 REG_OFFSET_NAME(lr), 85 REG_OFFSET_NAME(pc), 86 REG_OFFSET_NAME(cpsr), 87 REG_OFFSET_NAME(ORIG_r0), 88 REG_OFFSET_END, 89 }; 90 91 /** 92 * regs_query_register_offset() - query register offset from its name 93 * @name: the name of a register 94 * 95 * regs_query_register_offset() returns the offset of a register in struct 96 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 97 */ 98 int regs_query_register_offset(const char *name) 99 { 100 const struct pt_regs_offset *roff; 101 for (roff = regoffset_table; roff->name != NULL; roff++) 102 if (!strcmp(roff->name, name)) 103 return roff->offset; 104 return -EINVAL; 105 } 106 107 /** 108 * regs_query_register_name() - query register name from its offset 109 * @offset: the offset of a register in struct pt_regs. 110 * 111 * regs_query_register_name() returns the name of a register from its 112 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 113 */ 114 const char *regs_query_register_name(unsigned int offset) 115 { 116 const struct pt_regs_offset *roff; 117 for (roff = regoffset_table; roff->name != NULL; roff++) 118 if (roff->offset == offset) 119 return roff->name; 120 return NULL; 121 } 122 123 /** 124 * regs_within_kernel_stack() - check the address in the stack 125 * @regs: pt_regs which contains kernel stack pointer. 126 * @addr: address which is checked. 127 * 128 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 129 * If @addr is within the kernel stack, it returns true. If not, returns false. 130 */ 131 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 132 { 133 return ((addr & ~(THREAD_SIZE - 1)) == 134 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 135 } 136 137 /** 138 * regs_get_kernel_stack_nth() - get Nth entry of the stack 139 * @regs: pt_regs which contains kernel stack pointer. 140 * @n: stack entry number. 141 * 142 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 143 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 144 * this returns 0. 145 */ 146 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 147 { 148 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 149 addr += n; 150 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 151 return *addr; 152 else 153 return 0; 154 } 155 156 /* 157 * this routine will get a word off of the processes privileged stack. 158 * the offset is how far from the base addr as stored in the THREAD. 159 * this routine assumes that all the privileged stacks are in our 160 * data space. 161 */ 162 static inline long get_user_reg(struct task_struct *task, int offset) 163 { 164 return task_pt_regs(task)->uregs[offset]; 165 } 166 167 /* 168 * this routine will put a word on the processes privileged stack. 169 * the offset is how far from the base addr as stored in the THREAD. 170 * this routine assumes that all the privileged stacks are in our 171 * data space. 172 */ 173 static inline int 174 put_user_reg(struct task_struct *task, int offset, long data) 175 { 176 struct pt_regs newregs, *regs = task_pt_regs(task); 177 int ret = -EINVAL; 178 179 newregs = *regs; 180 newregs.uregs[offset] = data; 181 182 if (valid_user_regs(&newregs)) { 183 regs->uregs[offset] = data; 184 ret = 0; 185 } 186 187 return ret; 188 } 189 190 /* 191 * Called by kernel/ptrace.c when detaching.. 192 */ 193 void ptrace_disable(struct task_struct *child) 194 { 195 /* Nothing to do. */ 196 } 197 198 /* 199 * Handle hitting a breakpoint. 200 */ 201 void ptrace_break(struct pt_regs *regs) 202 { 203 force_sig_fault(SIGTRAP, TRAP_BRKPT, 204 (void __user *)instruction_pointer(regs)); 205 } 206 207 static int break_trap(struct pt_regs *regs, unsigned int instr) 208 { 209 ptrace_break(regs); 210 return 0; 211 } 212 213 static struct undef_hook arm_break_hook = { 214 .instr_mask = 0x0fffffff, 215 .instr_val = 0x07f001f0, 216 .cpsr_mask = PSR_T_BIT, 217 .cpsr_val = 0, 218 .fn = break_trap, 219 }; 220 221 static struct undef_hook thumb_break_hook = { 222 .instr_mask = 0xffffffff, 223 .instr_val = 0x0000de01, 224 .cpsr_mask = PSR_T_BIT, 225 .cpsr_val = PSR_T_BIT, 226 .fn = break_trap, 227 }; 228 229 static struct undef_hook thumb2_break_hook = { 230 .instr_mask = 0xffffffff, 231 .instr_val = 0xf7f0a000, 232 .cpsr_mask = PSR_T_BIT, 233 .cpsr_val = PSR_T_BIT, 234 .fn = break_trap, 235 }; 236 237 static int __init ptrace_break_init(void) 238 { 239 register_undef_hook(&arm_break_hook); 240 register_undef_hook(&thumb_break_hook); 241 register_undef_hook(&thumb2_break_hook); 242 return 0; 243 } 244 245 core_initcall(ptrace_break_init); 246 247 /* 248 * Read the word at offset "off" into the "struct user". We 249 * actually access the pt_regs stored on the kernel stack. 250 */ 251 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 252 unsigned long __user *ret) 253 { 254 unsigned long tmp; 255 256 if (off & 3) 257 return -EIO; 258 259 tmp = 0; 260 if (off == PT_TEXT_ADDR) 261 tmp = tsk->mm->start_code; 262 else if (off == PT_DATA_ADDR) 263 tmp = tsk->mm->start_data; 264 else if (off == PT_TEXT_END_ADDR) 265 tmp = tsk->mm->end_code; 266 else if (off < sizeof(struct pt_regs)) 267 tmp = get_user_reg(tsk, off >> 2); 268 else if (off >= sizeof(struct user)) 269 return -EIO; 270 271 return put_user(tmp, ret); 272 } 273 274 /* 275 * Write the word at offset "off" into "struct user". We 276 * actually access the pt_regs stored on the kernel stack. 277 */ 278 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 279 unsigned long val) 280 { 281 if (off & 3 || off >= sizeof(struct user)) 282 return -EIO; 283 284 if (off >= sizeof(struct pt_regs)) 285 return 0; 286 287 return put_user_reg(tsk, off >> 2, val); 288 } 289 290 #ifdef CONFIG_IWMMXT 291 292 /* 293 * Get the child iWMMXt state. 294 */ 295 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 296 { 297 struct thread_info *thread = task_thread_info(tsk); 298 299 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 300 return -ENODATA; 301 iwmmxt_task_disable(thread); /* force it to ram */ 302 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 303 ? -EFAULT : 0; 304 } 305 306 /* 307 * Set the child iWMMXt state. 308 */ 309 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 310 { 311 struct thread_info *thread = task_thread_info(tsk); 312 313 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 314 return -EACCES; 315 iwmmxt_task_release(thread); /* force a reload */ 316 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 317 ? -EFAULT : 0; 318 } 319 320 #endif 321 322 #ifdef CONFIG_HAVE_HW_BREAKPOINT 323 /* 324 * Convert a virtual register number into an index for a thread_info 325 * breakpoint array. Breakpoints are identified using positive numbers 326 * whilst watchpoints are negative. The registers are laid out as pairs 327 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 328 * Register 0 is reserved for describing resource information. 329 */ 330 static int ptrace_hbp_num_to_idx(long num) 331 { 332 if (num < 0) 333 num = (ARM_MAX_BRP << 1) - num; 334 return (num - 1) >> 1; 335 } 336 337 /* 338 * Returns the virtual register number for the address of the 339 * breakpoint at index idx. 340 */ 341 static long ptrace_hbp_idx_to_num(int idx) 342 { 343 long mid = ARM_MAX_BRP << 1; 344 long num = (idx << 1) + 1; 345 return num > mid ? mid - num : num; 346 } 347 348 /* 349 * Handle hitting a HW-breakpoint. 350 */ 351 static void ptrace_hbptriggered(struct perf_event *bp, 352 struct perf_sample_data *data, 353 struct pt_regs *regs) 354 { 355 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 356 long num; 357 int i; 358 359 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 360 if (current->thread.debug.hbp[i] == bp) 361 break; 362 363 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 364 365 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger)); 366 } 367 368 /* 369 * Set ptrace breakpoint pointers to zero for this task. 370 * This is required in order to prevent child processes from unregistering 371 * breakpoints held by their parent. 372 */ 373 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 374 { 375 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 376 } 377 378 /* 379 * Unregister breakpoints from this task and reset the pointers in 380 * the thread_struct. 381 */ 382 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 383 { 384 int i; 385 struct thread_struct *t = &tsk->thread; 386 387 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 388 if (t->debug.hbp[i]) { 389 unregister_hw_breakpoint(t->debug.hbp[i]); 390 t->debug.hbp[i] = NULL; 391 } 392 } 393 } 394 395 static u32 ptrace_get_hbp_resource_info(void) 396 { 397 u8 num_brps, num_wrps, debug_arch, wp_len; 398 u32 reg = 0; 399 400 num_brps = hw_breakpoint_slots(TYPE_INST); 401 num_wrps = hw_breakpoint_slots(TYPE_DATA); 402 debug_arch = arch_get_debug_arch(); 403 wp_len = arch_get_max_wp_len(); 404 405 reg |= debug_arch; 406 reg <<= 8; 407 reg |= wp_len; 408 reg <<= 8; 409 reg |= num_wrps; 410 reg <<= 8; 411 reg |= num_brps; 412 413 return reg; 414 } 415 416 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 417 { 418 struct perf_event_attr attr; 419 420 ptrace_breakpoint_init(&attr); 421 422 /* Initialise fields to sane defaults. */ 423 attr.bp_addr = 0; 424 attr.bp_len = HW_BREAKPOINT_LEN_4; 425 attr.bp_type = type; 426 attr.disabled = 1; 427 428 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 429 tsk); 430 } 431 432 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 433 unsigned long __user *data) 434 { 435 u32 reg; 436 int idx, ret = 0; 437 struct perf_event *bp; 438 struct arch_hw_breakpoint_ctrl arch_ctrl; 439 440 if (num == 0) { 441 reg = ptrace_get_hbp_resource_info(); 442 } else { 443 idx = ptrace_hbp_num_to_idx(num); 444 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 445 ret = -EINVAL; 446 goto out; 447 } 448 449 bp = tsk->thread.debug.hbp[idx]; 450 if (!bp) { 451 reg = 0; 452 goto put; 453 } 454 455 arch_ctrl = counter_arch_bp(bp)->ctrl; 456 457 /* 458 * Fix up the len because we may have adjusted it 459 * to compensate for an unaligned address. 460 */ 461 while (!(arch_ctrl.len & 0x1)) 462 arch_ctrl.len >>= 1; 463 464 if (num & 0x1) 465 reg = bp->attr.bp_addr; 466 else 467 reg = encode_ctrl_reg(arch_ctrl); 468 } 469 470 put: 471 if (put_user(reg, data)) 472 ret = -EFAULT; 473 474 out: 475 return ret; 476 } 477 478 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 479 unsigned long __user *data) 480 { 481 int idx, gen_len, gen_type, implied_type, ret = 0; 482 u32 user_val; 483 struct perf_event *bp; 484 struct arch_hw_breakpoint_ctrl ctrl; 485 struct perf_event_attr attr; 486 487 if (num == 0) 488 goto out; 489 else if (num < 0) 490 implied_type = HW_BREAKPOINT_RW; 491 else 492 implied_type = HW_BREAKPOINT_X; 493 494 idx = ptrace_hbp_num_to_idx(num); 495 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 496 ret = -EINVAL; 497 goto out; 498 } 499 500 if (get_user(user_val, data)) { 501 ret = -EFAULT; 502 goto out; 503 } 504 505 bp = tsk->thread.debug.hbp[idx]; 506 if (!bp) { 507 bp = ptrace_hbp_create(tsk, implied_type); 508 if (IS_ERR(bp)) { 509 ret = PTR_ERR(bp); 510 goto out; 511 } 512 tsk->thread.debug.hbp[idx] = bp; 513 } 514 515 attr = bp->attr; 516 517 if (num & 0x1) { 518 /* Address */ 519 attr.bp_addr = user_val; 520 } else { 521 /* Control */ 522 decode_ctrl_reg(user_val, &ctrl); 523 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 524 if (ret) 525 goto out; 526 527 if ((gen_type & implied_type) != gen_type) { 528 ret = -EINVAL; 529 goto out; 530 } 531 532 attr.bp_len = gen_len; 533 attr.bp_type = gen_type; 534 attr.disabled = !ctrl.enabled; 535 } 536 537 ret = modify_user_hw_breakpoint(bp, &attr); 538 out: 539 return ret; 540 } 541 #endif 542 543 /* regset get/set implementations */ 544 545 static int gpr_get(struct task_struct *target, 546 const struct user_regset *regset, 547 struct membuf to) 548 { 549 return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs)); 550 } 551 552 static int gpr_set(struct task_struct *target, 553 const struct user_regset *regset, 554 unsigned int pos, unsigned int count, 555 const void *kbuf, const void __user *ubuf) 556 { 557 int ret; 558 struct pt_regs newregs = *task_pt_regs(target); 559 560 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 561 &newregs, 562 0, sizeof(newregs)); 563 if (ret) 564 return ret; 565 566 if (!valid_user_regs(&newregs)) 567 return -EINVAL; 568 569 *task_pt_regs(target) = newregs; 570 return 0; 571 } 572 573 static int fpa_get(struct task_struct *target, 574 const struct user_regset *regset, 575 struct membuf to) 576 { 577 return membuf_write(&to, &task_thread_info(target)->fpstate, 578 sizeof(struct user_fp)); 579 } 580 581 static int fpa_set(struct task_struct *target, 582 const struct user_regset *regset, 583 unsigned int pos, unsigned int count, 584 const void *kbuf, const void __user *ubuf) 585 { 586 struct thread_info *thread = task_thread_info(target); 587 588 thread->used_cp[1] = thread->used_cp[2] = 1; 589 590 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 591 &thread->fpstate, 592 0, sizeof(struct user_fp)); 593 } 594 595 #ifdef CONFIG_VFP 596 /* 597 * VFP register get/set implementations. 598 * 599 * With respect to the kernel, struct user_fp is divided into three chunks: 600 * 16 or 32 real VFP registers (d0-d15 or d0-31) 601 * These are transferred to/from the real registers in the task's 602 * vfp_hard_struct. The number of registers depends on the kernel 603 * configuration. 604 * 605 * 16 or 0 fake VFP registers (d16-d31 or empty) 606 * i.e., the user_vfp structure has space for 32 registers even if 607 * the kernel doesn't have them all. 608 * 609 * vfp_get() reads this chunk as zero where applicable 610 * vfp_set() ignores this chunk 611 * 612 * 1 word for the FPSCR 613 */ 614 static int vfp_get(struct task_struct *target, 615 const struct user_regset *regset, 616 struct membuf to) 617 { 618 struct thread_info *thread = task_thread_info(target); 619 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 620 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 621 622 vfp_sync_hwstate(thread); 623 624 membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs)); 625 membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs)); 626 return membuf_store(&to, vfp->fpscr); 627 } 628 629 /* 630 * For vfp_set() a read-modify-write is done on the VFP registers, 631 * in order to avoid writing back a half-modified set of registers on 632 * failure. 633 */ 634 static int vfp_set(struct task_struct *target, 635 const struct user_regset *regset, 636 unsigned int pos, unsigned int count, 637 const void *kbuf, const void __user *ubuf) 638 { 639 int ret; 640 struct thread_info *thread = task_thread_info(target); 641 struct vfp_hard_struct new_vfp; 642 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 643 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 644 645 vfp_sync_hwstate(thread); 646 new_vfp = thread->vfpstate.hard; 647 648 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 649 &new_vfp.fpregs, 650 user_fpregs_offset, 651 user_fpregs_offset + sizeof(new_vfp.fpregs)); 652 if (ret) 653 return ret; 654 655 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 656 user_fpregs_offset + sizeof(new_vfp.fpregs), 657 user_fpscr_offset); 658 if (ret) 659 return ret; 660 661 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 662 &new_vfp.fpscr, 663 user_fpscr_offset, 664 user_fpscr_offset + sizeof(new_vfp.fpscr)); 665 if (ret) 666 return ret; 667 668 thread->vfpstate.hard = new_vfp; 669 vfp_flush_hwstate(thread); 670 671 return 0; 672 } 673 #endif /* CONFIG_VFP */ 674 675 enum arm_regset { 676 REGSET_GPR, 677 REGSET_FPR, 678 #ifdef CONFIG_VFP 679 REGSET_VFP, 680 #endif 681 }; 682 683 static const struct user_regset arm_regsets[] = { 684 [REGSET_GPR] = { 685 .core_note_type = NT_PRSTATUS, 686 .n = ELF_NGREG, 687 .size = sizeof(u32), 688 .align = sizeof(u32), 689 .regset_get = gpr_get, 690 .set = gpr_set 691 }, 692 [REGSET_FPR] = { 693 /* 694 * For the FPA regs in fpstate, the real fields are a mixture 695 * of sizes, so pretend that the registers are word-sized: 696 */ 697 .core_note_type = NT_PRFPREG, 698 .n = sizeof(struct user_fp) / sizeof(u32), 699 .size = sizeof(u32), 700 .align = sizeof(u32), 701 .regset_get = fpa_get, 702 .set = fpa_set 703 }, 704 #ifdef CONFIG_VFP 705 [REGSET_VFP] = { 706 /* 707 * Pretend that the VFP regs are word-sized, since the FPSCR is 708 * a single word dangling at the end of struct user_vfp: 709 */ 710 .core_note_type = NT_ARM_VFP, 711 .n = ARM_VFPREGS_SIZE / sizeof(u32), 712 .size = sizeof(u32), 713 .align = sizeof(u32), 714 .regset_get = vfp_get, 715 .set = vfp_set 716 }, 717 #endif /* CONFIG_VFP */ 718 }; 719 720 static const struct user_regset_view user_arm_view = { 721 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 722 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 723 }; 724 725 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 726 { 727 return &user_arm_view; 728 } 729 730 long arch_ptrace(struct task_struct *child, long request, 731 unsigned long addr, unsigned long data) 732 { 733 int ret; 734 unsigned long __user *datap = (unsigned long __user *) data; 735 736 switch (request) { 737 case PTRACE_PEEKUSR: 738 ret = ptrace_read_user(child, addr, datap); 739 break; 740 741 case PTRACE_POKEUSR: 742 ret = ptrace_write_user(child, addr, data); 743 break; 744 745 case PTRACE_GETREGS: 746 ret = copy_regset_to_user(child, 747 &user_arm_view, REGSET_GPR, 748 0, sizeof(struct pt_regs), 749 datap); 750 break; 751 752 case PTRACE_SETREGS: 753 ret = copy_regset_from_user(child, 754 &user_arm_view, REGSET_GPR, 755 0, sizeof(struct pt_regs), 756 datap); 757 break; 758 759 case PTRACE_GETFPREGS: 760 ret = copy_regset_to_user(child, 761 &user_arm_view, REGSET_FPR, 762 0, sizeof(union fp_state), 763 datap); 764 break; 765 766 case PTRACE_SETFPREGS: 767 ret = copy_regset_from_user(child, 768 &user_arm_view, REGSET_FPR, 769 0, sizeof(union fp_state), 770 datap); 771 break; 772 773 #ifdef CONFIG_IWMMXT 774 case PTRACE_GETWMMXREGS: 775 ret = ptrace_getwmmxregs(child, datap); 776 break; 777 778 case PTRACE_SETWMMXREGS: 779 ret = ptrace_setwmmxregs(child, datap); 780 break; 781 #endif 782 783 case PTRACE_GET_THREAD_AREA: 784 ret = put_user(task_thread_info(child)->tp_value[0], 785 datap); 786 break; 787 788 case PTRACE_SET_SYSCALL: 789 task_thread_info(child)->abi_syscall = data & 790 __NR_SYSCALL_MASK; 791 ret = 0; 792 break; 793 794 #ifdef CONFIG_VFP 795 case PTRACE_GETVFPREGS: 796 ret = copy_regset_to_user(child, 797 &user_arm_view, REGSET_VFP, 798 0, ARM_VFPREGS_SIZE, 799 datap); 800 break; 801 802 case PTRACE_SETVFPREGS: 803 ret = copy_regset_from_user(child, 804 &user_arm_view, REGSET_VFP, 805 0, ARM_VFPREGS_SIZE, 806 datap); 807 break; 808 #endif 809 810 #ifdef CONFIG_HAVE_HW_BREAKPOINT 811 case PTRACE_GETHBPREGS: 812 ret = ptrace_gethbpregs(child, addr, 813 (unsigned long __user *)data); 814 break; 815 case PTRACE_SETHBPREGS: 816 ret = ptrace_sethbpregs(child, addr, 817 (unsigned long __user *)data); 818 break; 819 #endif 820 821 default: 822 ret = ptrace_request(child, request, addr, data); 823 break; 824 } 825 826 return ret; 827 } 828 829 enum ptrace_syscall_dir { 830 PTRACE_SYSCALL_ENTER = 0, 831 PTRACE_SYSCALL_EXIT, 832 }; 833 834 static void tracehook_report_syscall(struct pt_regs *regs, 835 enum ptrace_syscall_dir dir) 836 { 837 unsigned long ip; 838 839 /* 840 * IP is used to denote syscall entry/exit: 841 * IP = 0 -> entry, =1 -> exit 842 */ 843 ip = regs->ARM_ip; 844 regs->ARM_ip = dir; 845 846 if (dir == PTRACE_SYSCALL_EXIT) 847 tracehook_report_syscall_exit(regs, 0); 848 else if (tracehook_report_syscall_entry(regs)) 849 current_thread_info()->abi_syscall = -1; 850 851 regs->ARM_ip = ip; 852 } 853 854 asmlinkage int syscall_trace_enter(struct pt_regs *regs) 855 { 856 int scno; 857 858 if (test_thread_flag(TIF_SYSCALL_TRACE)) 859 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER); 860 861 /* Do seccomp after ptrace; syscall may have changed. */ 862 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 863 if (secure_computing() == -1) 864 return -1; 865 #else 866 /* XXX: remove this once OABI gets fixed */ 867 secure_computing_strict(syscall_get_nr(current, regs)); 868 #endif 869 870 /* Tracer or seccomp may have changed syscall. */ 871 scno = syscall_get_nr(current, regs); 872 873 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 874 trace_sys_enter(regs, scno); 875 876 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, 877 regs->ARM_r3); 878 879 return scno; 880 } 881 882 asmlinkage void syscall_trace_exit(struct pt_regs *regs) 883 { 884 /* 885 * Audit the syscall before anything else, as a debugger may 886 * come in and change the current registers. 887 */ 888 audit_syscall_exit(regs); 889 890 /* 891 * Note that we haven't updated the ->syscall field for the 892 * current thread. This isn't a problem because it will have 893 * been set on syscall entry and there hasn't been an opportunity 894 * for a PTRACE_SET_SYSCALL since then. 895 */ 896 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 897 trace_sys_exit(regs, regs_return_value(regs)); 898 899 if (test_thread_flag(TIF_SYSCALL_TRACE)) 900 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT); 901 } 902