1 /* 2 * linux/arch/arm/kernel/ptrace.c 3 * 4 * By Ross Biro 1/23/92 5 * edited by Linus Torvalds 6 * ARM modifications Copyright (C) 2000 Russell King 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/mm.h> 16 #include <linux/elf.h> 17 #include <linux/smp.h> 18 #include <linux/ptrace.h> 19 #include <linux/user.h> 20 #include <linux/security.h> 21 #include <linux/init.h> 22 #include <linux/signal.h> 23 #include <linux/uaccess.h> 24 #include <linux/perf_event.h> 25 #include <linux/hw_breakpoint.h> 26 #include <linux/regset.h> 27 #include <linux/audit.h> 28 #include <linux/tracehook.h> 29 #include <linux/unistd.h> 30 31 #include <asm/pgtable.h> 32 #include <asm/traps.h> 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/syscalls.h> 36 37 #define REG_PC 15 38 #define REG_PSR 16 39 /* 40 * does not yet catch signals sent when the child dies. 41 * in exit.c or in signal.c. 42 */ 43 44 #if 0 45 /* 46 * Breakpoint SWI instruction: SWI &9F0001 47 */ 48 #define BREAKINST_ARM 0xef9f0001 49 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 50 #else 51 /* 52 * New breakpoints - use an undefined instruction. The ARM architecture 53 * reference manual guarantees that the following instruction space 54 * will produce an undefined instruction exception on all CPUs: 55 * 56 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 57 * Thumb: 1101 1110 xxxx xxxx 58 */ 59 #define BREAKINST_ARM 0xe7f001f0 60 #define BREAKINST_THUMB 0xde01 61 #endif 62 63 struct pt_regs_offset { 64 const char *name; 65 int offset; 66 }; 67 68 #define REG_OFFSET_NAME(r) \ 69 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 70 #define REG_OFFSET_END {.name = NULL, .offset = 0} 71 72 static const struct pt_regs_offset regoffset_table[] = { 73 REG_OFFSET_NAME(r0), 74 REG_OFFSET_NAME(r1), 75 REG_OFFSET_NAME(r2), 76 REG_OFFSET_NAME(r3), 77 REG_OFFSET_NAME(r4), 78 REG_OFFSET_NAME(r5), 79 REG_OFFSET_NAME(r6), 80 REG_OFFSET_NAME(r7), 81 REG_OFFSET_NAME(r8), 82 REG_OFFSET_NAME(r9), 83 REG_OFFSET_NAME(r10), 84 REG_OFFSET_NAME(fp), 85 REG_OFFSET_NAME(ip), 86 REG_OFFSET_NAME(sp), 87 REG_OFFSET_NAME(lr), 88 REG_OFFSET_NAME(pc), 89 REG_OFFSET_NAME(cpsr), 90 REG_OFFSET_NAME(ORIG_r0), 91 REG_OFFSET_END, 92 }; 93 94 /** 95 * regs_query_register_offset() - query register offset from its name 96 * @name: the name of a register 97 * 98 * regs_query_register_offset() returns the offset of a register in struct 99 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 100 */ 101 int regs_query_register_offset(const char *name) 102 { 103 const struct pt_regs_offset *roff; 104 for (roff = regoffset_table; roff->name != NULL; roff++) 105 if (!strcmp(roff->name, name)) 106 return roff->offset; 107 return -EINVAL; 108 } 109 110 /** 111 * regs_query_register_name() - query register name from its offset 112 * @offset: the offset of a register in struct pt_regs. 113 * 114 * regs_query_register_name() returns the name of a register from its 115 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 116 */ 117 const char *regs_query_register_name(unsigned int offset) 118 { 119 const struct pt_regs_offset *roff; 120 for (roff = regoffset_table; roff->name != NULL; roff++) 121 if (roff->offset == offset) 122 return roff->name; 123 return NULL; 124 } 125 126 /** 127 * regs_within_kernel_stack() - check the address in the stack 128 * @regs: pt_regs which contains kernel stack pointer. 129 * @addr: address which is checked. 130 * 131 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 132 * If @addr is within the kernel stack, it returns true. If not, returns false. 133 */ 134 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 135 { 136 return ((addr & ~(THREAD_SIZE - 1)) == 137 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 138 } 139 140 /** 141 * regs_get_kernel_stack_nth() - get Nth entry of the stack 142 * @regs: pt_regs which contains kernel stack pointer. 143 * @n: stack entry number. 144 * 145 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 146 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 147 * this returns 0. 148 */ 149 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 150 { 151 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 152 addr += n; 153 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 154 return *addr; 155 else 156 return 0; 157 } 158 159 /* 160 * this routine will get a word off of the processes privileged stack. 161 * the offset is how far from the base addr as stored in the THREAD. 162 * this routine assumes that all the privileged stacks are in our 163 * data space. 164 */ 165 static inline long get_user_reg(struct task_struct *task, int offset) 166 { 167 return task_pt_regs(task)->uregs[offset]; 168 } 169 170 /* 171 * this routine will put a word on the processes privileged stack. 172 * the offset is how far from the base addr as stored in the THREAD. 173 * this routine assumes that all the privileged stacks are in our 174 * data space. 175 */ 176 static inline int 177 put_user_reg(struct task_struct *task, int offset, long data) 178 { 179 struct pt_regs newregs, *regs = task_pt_regs(task); 180 int ret = -EINVAL; 181 182 newregs = *regs; 183 newregs.uregs[offset] = data; 184 185 if (valid_user_regs(&newregs)) { 186 regs->uregs[offset] = data; 187 ret = 0; 188 } 189 190 return ret; 191 } 192 193 /* 194 * Called by kernel/ptrace.c when detaching.. 195 */ 196 void ptrace_disable(struct task_struct *child) 197 { 198 /* Nothing to do. */ 199 } 200 201 /* 202 * Handle hitting a breakpoint. 203 */ 204 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) 205 { 206 siginfo_t info; 207 208 clear_siginfo(&info); 209 info.si_signo = SIGTRAP; 210 info.si_errno = 0; 211 info.si_code = TRAP_BRKPT; 212 info.si_addr = (void __user *)instruction_pointer(regs); 213 214 force_sig_info(SIGTRAP, &info, tsk); 215 } 216 217 static int break_trap(struct pt_regs *regs, unsigned int instr) 218 { 219 ptrace_break(current, regs); 220 return 0; 221 } 222 223 static struct undef_hook arm_break_hook = { 224 .instr_mask = 0x0fffffff, 225 .instr_val = 0x07f001f0, 226 .cpsr_mask = PSR_T_BIT, 227 .cpsr_val = 0, 228 .fn = break_trap, 229 }; 230 231 static struct undef_hook thumb_break_hook = { 232 .instr_mask = 0xffff, 233 .instr_val = 0xde01, 234 .cpsr_mask = PSR_T_BIT, 235 .cpsr_val = PSR_T_BIT, 236 .fn = break_trap, 237 }; 238 239 static struct undef_hook thumb2_break_hook = { 240 .instr_mask = 0xffffffff, 241 .instr_val = 0xf7f0a000, 242 .cpsr_mask = PSR_T_BIT, 243 .cpsr_val = PSR_T_BIT, 244 .fn = break_trap, 245 }; 246 247 static int __init ptrace_break_init(void) 248 { 249 register_undef_hook(&arm_break_hook); 250 register_undef_hook(&thumb_break_hook); 251 register_undef_hook(&thumb2_break_hook); 252 return 0; 253 } 254 255 core_initcall(ptrace_break_init); 256 257 /* 258 * Read the word at offset "off" into the "struct user". We 259 * actually access the pt_regs stored on the kernel stack. 260 */ 261 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 262 unsigned long __user *ret) 263 { 264 unsigned long tmp; 265 266 if (off & 3) 267 return -EIO; 268 269 tmp = 0; 270 if (off == PT_TEXT_ADDR) 271 tmp = tsk->mm->start_code; 272 else if (off == PT_DATA_ADDR) 273 tmp = tsk->mm->start_data; 274 else if (off == PT_TEXT_END_ADDR) 275 tmp = tsk->mm->end_code; 276 else if (off < sizeof(struct pt_regs)) 277 tmp = get_user_reg(tsk, off >> 2); 278 else if (off >= sizeof(struct user)) 279 return -EIO; 280 281 return put_user(tmp, ret); 282 } 283 284 /* 285 * Write the word at offset "off" into "struct user". We 286 * actually access the pt_regs stored on the kernel stack. 287 */ 288 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 289 unsigned long val) 290 { 291 if (off & 3 || off >= sizeof(struct user)) 292 return -EIO; 293 294 if (off >= sizeof(struct pt_regs)) 295 return 0; 296 297 return put_user_reg(tsk, off >> 2, val); 298 } 299 300 #ifdef CONFIG_IWMMXT 301 302 /* 303 * Get the child iWMMXt state. 304 */ 305 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 306 { 307 struct thread_info *thread = task_thread_info(tsk); 308 309 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 310 return -ENODATA; 311 iwmmxt_task_disable(thread); /* force it to ram */ 312 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 313 ? -EFAULT : 0; 314 } 315 316 /* 317 * Set the child iWMMXt state. 318 */ 319 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 320 { 321 struct thread_info *thread = task_thread_info(tsk); 322 323 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 324 return -EACCES; 325 iwmmxt_task_release(thread); /* force a reload */ 326 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 327 ? -EFAULT : 0; 328 } 329 330 #endif 331 332 #ifdef CONFIG_CRUNCH 333 /* 334 * Get the child Crunch state. 335 */ 336 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 337 { 338 struct thread_info *thread = task_thread_info(tsk); 339 340 crunch_task_disable(thread); /* force it to ram */ 341 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 342 ? -EFAULT : 0; 343 } 344 345 /* 346 * Set the child Crunch state. 347 */ 348 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 349 { 350 struct thread_info *thread = task_thread_info(tsk); 351 352 crunch_task_release(thread); /* force a reload */ 353 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 354 ? -EFAULT : 0; 355 } 356 #endif 357 358 #ifdef CONFIG_HAVE_HW_BREAKPOINT 359 /* 360 * Convert a virtual register number into an index for a thread_info 361 * breakpoint array. Breakpoints are identified using positive numbers 362 * whilst watchpoints are negative. The registers are laid out as pairs 363 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 364 * Register 0 is reserved for describing resource information. 365 */ 366 static int ptrace_hbp_num_to_idx(long num) 367 { 368 if (num < 0) 369 num = (ARM_MAX_BRP << 1) - num; 370 return (num - 1) >> 1; 371 } 372 373 /* 374 * Returns the virtual register number for the address of the 375 * breakpoint at index idx. 376 */ 377 static long ptrace_hbp_idx_to_num(int idx) 378 { 379 long mid = ARM_MAX_BRP << 1; 380 long num = (idx << 1) + 1; 381 return num > mid ? mid - num : num; 382 } 383 384 /* 385 * Handle hitting a HW-breakpoint. 386 */ 387 static void ptrace_hbptriggered(struct perf_event *bp, 388 struct perf_sample_data *data, 389 struct pt_regs *regs) 390 { 391 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 392 long num; 393 int i; 394 395 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 396 if (current->thread.debug.hbp[i] == bp) 397 break; 398 399 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 400 401 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger)); 402 } 403 404 /* 405 * Set ptrace breakpoint pointers to zero for this task. 406 * This is required in order to prevent child processes from unregistering 407 * breakpoints held by their parent. 408 */ 409 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 410 { 411 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 412 } 413 414 /* 415 * Unregister breakpoints from this task and reset the pointers in 416 * the thread_struct. 417 */ 418 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 419 { 420 int i; 421 struct thread_struct *t = &tsk->thread; 422 423 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 424 if (t->debug.hbp[i]) { 425 unregister_hw_breakpoint(t->debug.hbp[i]); 426 t->debug.hbp[i] = NULL; 427 } 428 } 429 } 430 431 static u32 ptrace_get_hbp_resource_info(void) 432 { 433 u8 num_brps, num_wrps, debug_arch, wp_len; 434 u32 reg = 0; 435 436 num_brps = hw_breakpoint_slots(TYPE_INST); 437 num_wrps = hw_breakpoint_slots(TYPE_DATA); 438 debug_arch = arch_get_debug_arch(); 439 wp_len = arch_get_max_wp_len(); 440 441 reg |= debug_arch; 442 reg <<= 8; 443 reg |= wp_len; 444 reg <<= 8; 445 reg |= num_wrps; 446 reg <<= 8; 447 reg |= num_brps; 448 449 return reg; 450 } 451 452 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 453 { 454 struct perf_event_attr attr; 455 456 ptrace_breakpoint_init(&attr); 457 458 /* Initialise fields to sane defaults. */ 459 attr.bp_addr = 0; 460 attr.bp_len = HW_BREAKPOINT_LEN_4; 461 attr.bp_type = type; 462 attr.disabled = 1; 463 464 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 465 tsk); 466 } 467 468 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 469 unsigned long __user *data) 470 { 471 u32 reg; 472 int idx, ret = 0; 473 struct perf_event *bp; 474 struct arch_hw_breakpoint_ctrl arch_ctrl; 475 476 if (num == 0) { 477 reg = ptrace_get_hbp_resource_info(); 478 } else { 479 idx = ptrace_hbp_num_to_idx(num); 480 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 481 ret = -EINVAL; 482 goto out; 483 } 484 485 bp = tsk->thread.debug.hbp[idx]; 486 if (!bp) { 487 reg = 0; 488 goto put; 489 } 490 491 arch_ctrl = counter_arch_bp(bp)->ctrl; 492 493 /* 494 * Fix up the len because we may have adjusted it 495 * to compensate for an unaligned address. 496 */ 497 while (!(arch_ctrl.len & 0x1)) 498 arch_ctrl.len >>= 1; 499 500 if (num & 0x1) 501 reg = bp->attr.bp_addr; 502 else 503 reg = encode_ctrl_reg(arch_ctrl); 504 } 505 506 put: 507 if (put_user(reg, data)) 508 ret = -EFAULT; 509 510 out: 511 return ret; 512 } 513 514 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 515 unsigned long __user *data) 516 { 517 int idx, gen_len, gen_type, implied_type, ret = 0; 518 u32 user_val; 519 struct perf_event *bp; 520 struct arch_hw_breakpoint_ctrl ctrl; 521 struct perf_event_attr attr; 522 523 if (num == 0) 524 goto out; 525 else if (num < 0) 526 implied_type = HW_BREAKPOINT_RW; 527 else 528 implied_type = HW_BREAKPOINT_X; 529 530 idx = ptrace_hbp_num_to_idx(num); 531 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 532 ret = -EINVAL; 533 goto out; 534 } 535 536 if (get_user(user_val, data)) { 537 ret = -EFAULT; 538 goto out; 539 } 540 541 bp = tsk->thread.debug.hbp[idx]; 542 if (!bp) { 543 bp = ptrace_hbp_create(tsk, implied_type); 544 if (IS_ERR(bp)) { 545 ret = PTR_ERR(bp); 546 goto out; 547 } 548 tsk->thread.debug.hbp[idx] = bp; 549 } 550 551 attr = bp->attr; 552 553 if (num & 0x1) { 554 /* Address */ 555 attr.bp_addr = user_val; 556 } else { 557 /* Control */ 558 decode_ctrl_reg(user_val, &ctrl); 559 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 560 if (ret) 561 goto out; 562 563 if ((gen_type & implied_type) != gen_type) { 564 ret = -EINVAL; 565 goto out; 566 } 567 568 attr.bp_len = gen_len; 569 attr.bp_type = gen_type; 570 attr.disabled = !ctrl.enabled; 571 } 572 573 ret = modify_user_hw_breakpoint(bp, &attr); 574 out: 575 return ret; 576 } 577 #endif 578 579 /* regset get/set implementations */ 580 581 static int gpr_get(struct task_struct *target, 582 const struct user_regset *regset, 583 unsigned int pos, unsigned int count, 584 void *kbuf, void __user *ubuf) 585 { 586 struct pt_regs *regs = task_pt_regs(target); 587 588 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 589 regs, 590 0, sizeof(*regs)); 591 } 592 593 static int gpr_set(struct task_struct *target, 594 const struct user_regset *regset, 595 unsigned int pos, unsigned int count, 596 const void *kbuf, const void __user *ubuf) 597 { 598 int ret; 599 struct pt_regs newregs = *task_pt_regs(target); 600 601 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 602 &newregs, 603 0, sizeof(newregs)); 604 if (ret) 605 return ret; 606 607 if (!valid_user_regs(&newregs)) 608 return -EINVAL; 609 610 *task_pt_regs(target) = newregs; 611 return 0; 612 } 613 614 static int fpa_get(struct task_struct *target, 615 const struct user_regset *regset, 616 unsigned int pos, unsigned int count, 617 void *kbuf, void __user *ubuf) 618 { 619 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 620 &task_thread_info(target)->fpstate, 621 0, sizeof(struct user_fp)); 622 } 623 624 static int fpa_set(struct task_struct *target, 625 const struct user_regset *regset, 626 unsigned int pos, unsigned int count, 627 const void *kbuf, const void __user *ubuf) 628 { 629 struct thread_info *thread = task_thread_info(target); 630 631 thread->used_cp[1] = thread->used_cp[2] = 1; 632 633 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 634 &thread->fpstate, 635 0, sizeof(struct user_fp)); 636 } 637 638 #ifdef CONFIG_VFP 639 /* 640 * VFP register get/set implementations. 641 * 642 * With respect to the kernel, struct user_fp is divided into three chunks: 643 * 16 or 32 real VFP registers (d0-d15 or d0-31) 644 * These are transferred to/from the real registers in the task's 645 * vfp_hard_struct. The number of registers depends on the kernel 646 * configuration. 647 * 648 * 16 or 0 fake VFP registers (d16-d31 or empty) 649 * i.e., the user_vfp structure has space for 32 registers even if 650 * the kernel doesn't have them all. 651 * 652 * vfp_get() reads this chunk as zero where applicable 653 * vfp_set() ignores this chunk 654 * 655 * 1 word for the FPSCR 656 * 657 * The bounds-checking logic built into user_regset_copyout and friends 658 * means that we can make a simple sequence of calls to map the relevant data 659 * to/from the specified slice of the user regset structure. 660 */ 661 static int vfp_get(struct task_struct *target, 662 const struct user_regset *regset, 663 unsigned int pos, unsigned int count, 664 void *kbuf, void __user *ubuf) 665 { 666 int ret; 667 struct thread_info *thread = task_thread_info(target); 668 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 669 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 670 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 671 672 vfp_sync_hwstate(thread); 673 674 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 675 &vfp->fpregs, 676 user_fpregs_offset, 677 user_fpregs_offset + sizeof(vfp->fpregs)); 678 if (ret) 679 return ret; 680 681 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 682 user_fpregs_offset + sizeof(vfp->fpregs), 683 user_fpscr_offset); 684 if (ret) 685 return ret; 686 687 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 688 &vfp->fpscr, 689 user_fpscr_offset, 690 user_fpscr_offset + sizeof(vfp->fpscr)); 691 } 692 693 /* 694 * For vfp_set() a read-modify-write is done on the VFP registers, 695 * in order to avoid writing back a half-modified set of registers on 696 * failure. 697 */ 698 static int vfp_set(struct task_struct *target, 699 const struct user_regset *regset, 700 unsigned int pos, unsigned int count, 701 const void *kbuf, const void __user *ubuf) 702 { 703 int ret; 704 struct thread_info *thread = task_thread_info(target); 705 struct vfp_hard_struct new_vfp; 706 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 707 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 708 709 vfp_sync_hwstate(thread); 710 new_vfp = thread->vfpstate.hard; 711 712 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 713 &new_vfp.fpregs, 714 user_fpregs_offset, 715 user_fpregs_offset + sizeof(new_vfp.fpregs)); 716 if (ret) 717 return ret; 718 719 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 720 user_fpregs_offset + sizeof(new_vfp.fpregs), 721 user_fpscr_offset); 722 if (ret) 723 return ret; 724 725 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 726 &new_vfp.fpscr, 727 user_fpscr_offset, 728 user_fpscr_offset + sizeof(new_vfp.fpscr)); 729 if (ret) 730 return ret; 731 732 thread->vfpstate.hard = new_vfp; 733 vfp_flush_hwstate(thread); 734 735 return 0; 736 } 737 #endif /* CONFIG_VFP */ 738 739 enum arm_regset { 740 REGSET_GPR, 741 REGSET_FPR, 742 #ifdef CONFIG_VFP 743 REGSET_VFP, 744 #endif 745 }; 746 747 static const struct user_regset arm_regsets[] = { 748 [REGSET_GPR] = { 749 .core_note_type = NT_PRSTATUS, 750 .n = ELF_NGREG, 751 .size = sizeof(u32), 752 .align = sizeof(u32), 753 .get = gpr_get, 754 .set = gpr_set 755 }, 756 [REGSET_FPR] = { 757 /* 758 * For the FPA regs in fpstate, the real fields are a mixture 759 * of sizes, so pretend that the registers are word-sized: 760 */ 761 .core_note_type = NT_PRFPREG, 762 .n = sizeof(struct user_fp) / sizeof(u32), 763 .size = sizeof(u32), 764 .align = sizeof(u32), 765 .get = fpa_get, 766 .set = fpa_set 767 }, 768 #ifdef CONFIG_VFP 769 [REGSET_VFP] = { 770 /* 771 * Pretend that the VFP regs are word-sized, since the FPSCR is 772 * a single word dangling at the end of struct user_vfp: 773 */ 774 .core_note_type = NT_ARM_VFP, 775 .n = ARM_VFPREGS_SIZE / sizeof(u32), 776 .size = sizeof(u32), 777 .align = sizeof(u32), 778 .get = vfp_get, 779 .set = vfp_set 780 }, 781 #endif /* CONFIG_VFP */ 782 }; 783 784 static const struct user_regset_view user_arm_view = { 785 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 786 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 787 }; 788 789 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 790 { 791 return &user_arm_view; 792 } 793 794 long arch_ptrace(struct task_struct *child, long request, 795 unsigned long addr, unsigned long data) 796 { 797 int ret; 798 unsigned long __user *datap = (unsigned long __user *) data; 799 800 switch (request) { 801 case PTRACE_PEEKUSR: 802 ret = ptrace_read_user(child, addr, datap); 803 break; 804 805 case PTRACE_POKEUSR: 806 ret = ptrace_write_user(child, addr, data); 807 break; 808 809 case PTRACE_GETREGS: 810 ret = copy_regset_to_user(child, 811 &user_arm_view, REGSET_GPR, 812 0, sizeof(struct pt_regs), 813 datap); 814 break; 815 816 case PTRACE_SETREGS: 817 ret = copy_regset_from_user(child, 818 &user_arm_view, REGSET_GPR, 819 0, sizeof(struct pt_regs), 820 datap); 821 break; 822 823 case PTRACE_GETFPREGS: 824 ret = copy_regset_to_user(child, 825 &user_arm_view, REGSET_FPR, 826 0, sizeof(union fp_state), 827 datap); 828 break; 829 830 case PTRACE_SETFPREGS: 831 ret = copy_regset_from_user(child, 832 &user_arm_view, REGSET_FPR, 833 0, sizeof(union fp_state), 834 datap); 835 break; 836 837 #ifdef CONFIG_IWMMXT 838 case PTRACE_GETWMMXREGS: 839 ret = ptrace_getwmmxregs(child, datap); 840 break; 841 842 case PTRACE_SETWMMXREGS: 843 ret = ptrace_setwmmxregs(child, datap); 844 break; 845 #endif 846 847 case PTRACE_GET_THREAD_AREA: 848 ret = put_user(task_thread_info(child)->tp_value[0], 849 datap); 850 break; 851 852 case PTRACE_SET_SYSCALL: 853 task_thread_info(child)->syscall = data; 854 ret = 0; 855 break; 856 857 #ifdef CONFIG_CRUNCH 858 case PTRACE_GETCRUNCHREGS: 859 ret = ptrace_getcrunchregs(child, datap); 860 break; 861 862 case PTRACE_SETCRUNCHREGS: 863 ret = ptrace_setcrunchregs(child, datap); 864 break; 865 #endif 866 867 #ifdef CONFIG_VFP 868 case PTRACE_GETVFPREGS: 869 ret = copy_regset_to_user(child, 870 &user_arm_view, REGSET_VFP, 871 0, ARM_VFPREGS_SIZE, 872 datap); 873 break; 874 875 case PTRACE_SETVFPREGS: 876 ret = copy_regset_from_user(child, 877 &user_arm_view, REGSET_VFP, 878 0, ARM_VFPREGS_SIZE, 879 datap); 880 break; 881 #endif 882 883 #ifdef CONFIG_HAVE_HW_BREAKPOINT 884 case PTRACE_GETHBPREGS: 885 ret = ptrace_gethbpregs(child, addr, 886 (unsigned long __user *)data); 887 break; 888 case PTRACE_SETHBPREGS: 889 ret = ptrace_sethbpregs(child, addr, 890 (unsigned long __user *)data); 891 break; 892 #endif 893 894 default: 895 ret = ptrace_request(child, request, addr, data); 896 break; 897 } 898 899 return ret; 900 } 901 902 enum ptrace_syscall_dir { 903 PTRACE_SYSCALL_ENTER = 0, 904 PTRACE_SYSCALL_EXIT, 905 }; 906 907 static void tracehook_report_syscall(struct pt_regs *regs, 908 enum ptrace_syscall_dir dir) 909 { 910 unsigned long ip; 911 912 /* 913 * IP is used to denote syscall entry/exit: 914 * IP = 0 -> entry, =1 -> exit 915 */ 916 ip = regs->ARM_ip; 917 regs->ARM_ip = dir; 918 919 if (dir == PTRACE_SYSCALL_EXIT) 920 tracehook_report_syscall_exit(regs, 0); 921 else if (tracehook_report_syscall_entry(regs)) 922 current_thread_info()->syscall = -1; 923 924 regs->ARM_ip = ip; 925 } 926 927 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno) 928 { 929 current_thread_info()->syscall = scno; 930 931 if (test_thread_flag(TIF_SYSCALL_TRACE)) 932 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER); 933 934 /* Do seccomp after ptrace; syscall may have changed. */ 935 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 936 if (secure_computing(NULL) == -1) 937 return -1; 938 #else 939 /* XXX: remove this once OABI gets fixed */ 940 secure_computing_strict(current_thread_info()->syscall); 941 #endif 942 943 /* Tracer or seccomp may have changed syscall. */ 944 scno = current_thread_info()->syscall; 945 946 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 947 trace_sys_enter(regs, scno); 948 949 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, 950 regs->ARM_r3); 951 952 return scno; 953 } 954 955 asmlinkage void syscall_trace_exit(struct pt_regs *regs) 956 { 957 /* 958 * Audit the syscall before anything else, as a debugger may 959 * come in and change the current registers. 960 */ 961 audit_syscall_exit(regs); 962 963 /* 964 * Note that we haven't updated the ->syscall field for the 965 * current thread. This isn't a problem because it will have 966 * been set on syscall entry and there hasn't been an opportunity 967 * for a PTRACE_SET_SYSCALL since then. 968 */ 969 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 970 trace_sys_exit(regs, regs_return_value(regs)); 971 972 if (test_thread_flag(TIF_SYSCALL_TRACE)) 973 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT); 974 } 975