1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 */ 9 #include <linux/kernel.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/mm.h> 13 #include <linux/elf.h> 14 #include <linux/smp.h> 15 #include <linux/ptrace.h> 16 #include <linux/user.h> 17 #include <linux/security.h> 18 #include <linux/init.h> 19 #include <linux/signal.h> 20 #include <linux/uaccess.h> 21 #include <linux/perf_event.h> 22 #include <linux/hw_breakpoint.h> 23 #include <linux/regset.h> 24 #include <linux/audit.h> 25 #include <linux/tracehook.h> 26 #include <linux/unistd.h> 27 28 #include <asm/pgtable.h> 29 #include <asm/traps.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/syscalls.h> 33 34 #define REG_PC 15 35 #define REG_PSR 16 36 /* 37 * does not yet catch signals sent when the child dies. 38 * in exit.c or in signal.c. 39 */ 40 41 #if 0 42 /* 43 * Breakpoint SWI instruction: SWI &9F0001 44 */ 45 #define BREAKINST_ARM 0xef9f0001 46 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 47 #else 48 /* 49 * New breakpoints - use an undefined instruction. The ARM architecture 50 * reference manual guarantees that the following instruction space 51 * will produce an undefined instruction exception on all CPUs: 52 * 53 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 54 * Thumb: 1101 1110 xxxx xxxx 55 */ 56 #define BREAKINST_ARM 0xe7f001f0 57 #define BREAKINST_THUMB 0xde01 58 #endif 59 60 struct pt_regs_offset { 61 const char *name; 62 int offset; 63 }; 64 65 #define REG_OFFSET_NAME(r) \ 66 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 67 #define REG_OFFSET_END {.name = NULL, .offset = 0} 68 69 static const struct pt_regs_offset regoffset_table[] = { 70 REG_OFFSET_NAME(r0), 71 REG_OFFSET_NAME(r1), 72 REG_OFFSET_NAME(r2), 73 REG_OFFSET_NAME(r3), 74 REG_OFFSET_NAME(r4), 75 REG_OFFSET_NAME(r5), 76 REG_OFFSET_NAME(r6), 77 REG_OFFSET_NAME(r7), 78 REG_OFFSET_NAME(r8), 79 REG_OFFSET_NAME(r9), 80 REG_OFFSET_NAME(r10), 81 REG_OFFSET_NAME(fp), 82 REG_OFFSET_NAME(ip), 83 REG_OFFSET_NAME(sp), 84 REG_OFFSET_NAME(lr), 85 REG_OFFSET_NAME(pc), 86 REG_OFFSET_NAME(cpsr), 87 REG_OFFSET_NAME(ORIG_r0), 88 REG_OFFSET_END, 89 }; 90 91 /** 92 * regs_query_register_offset() - query register offset from its name 93 * @name: the name of a register 94 * 95 * regs_query_register_offset() returns the offset of a register in struct 96 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 97 */ 98 int regs_query_register_offset(const char *name) 99 { 100 const struct pt_regs_offset *roff; 101 for (roff = regoffset_table; roff->name != NULL; roff++) 102 if (!strcmp(roff->name, name)) 103 return roff->offset; 104 return -EINVAL; 105 } 106 107 /** 108 * regs_query_register_name() - query register name from its offset 109 * @offset: the offset of a register in struct pt_regs. 110 * 111 * regs_query_register_name() returns the name of a register from its 112 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 113 */ 114 const char *regs_query_register_name(unsigned int offset) 115 { 116 const struct pt_regs_offset *roff; 117 for (roff = regoffset_table; roff->name != NULL; roff++) 118 if (roff->offset == offset) 119 return roff->name; 120 return NULL; 121 } 122 123 /** 124 * regs_within_kernel_stack() - check the address in the stack 125 * @regs: pt_regs which contains kernel stack pointer. 126 * @addr: address which is checked. 127 * 128 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 129 * If @addr is within the kernel stack, it returns true. If not, returns false. 130 */ 131 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 132 { 133 return ((addr & ~(THREAD_SIZE - 1)) == 134 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 135 } 136 137 /** 138 * regs_get_kernel_stack_nth() - get Nth entry of the stack 139 * @regs: pt_regs which contains kernel stack pointer. 140 * @n: stack entry number. 141 * 142 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 143 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 144 * this returns 0. 145 */ 146 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 147 { 148 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 149 addr += n; 150 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 151 return *addr; 152 else 153 return 0; 154 } 155 156 /* 157 * this routine will get a word off of the processes privileged stack. 158 * the offset is how far from the base addr as stored in the THREAD. 159 * this routine assumes that all the privileged stacks are in our 160 * data space. 161 */ 162 static inline long get_user_reg(struct task_struct *task, int offset) 163 { 164 return task_pt_regs(task)->uregs[offset]; 165 } 166 167 /* 168 * this routine will put a word on the processes privileged stack. 169 * the offset is how far from the base addr as stored in the THREAD. 170 * this routine assumes that all the privileged stacks are in our 171 * data space. 172 */ 173 static inline int 174 put_user_reg(struct task_struct *task, int offset, long data) 175 { 176 struct pt_regs newregs, *regs = task_pt_regs(task); 177 int ret = -EINVAL; 178 179 newregs = *regs; 180 newregs.uregs[offset] = data; 181 182 if (valid_user_regs(&newregs)) { 183 regs->uregs[offset] = data; 184 ret = 0; 185 } 186 187 return ret; 188 } 189 190 /* 191 * Called by kernel/ptrace.c when detaching.. 192 */ 193 void ptrace_disable(struct task_struct *child) 194 { 195 /* Nothing to do. */ 196 } 197 198 /* 199 * Handle hitting a breakpoint. 200 */ 201 void ptrace_break(struct pt_regs *regs) 202 { 203 force_sig_fault(SIGTRAP, TRAP_BRKPT, 204 (void __user *)instruction_pointer(regs)); 205 } 206 207 static int break_trap(struct pt_regs *regs, unsigned int instr) 208 { 209 ptrace_break(regs); 210 return 0; 211 } 212 213 static struct undef_hook arm_break_hook = { 214 .instr_mask = 0x0fffffff, 215 .instr_val = 0x07f001f0, 216 .cpsr_mask = PSR_T_BIT, 217 .cpsr_val = 0, 218 .fn = break_trap, 219 }; 220 221 static struct undef_hook thumb_break_hook = { 222 .instr_mask = 0xffff, 223 .instr_val = 0xde01, 224 .cpsr_mask = PSR_T_BIT, 225 .cpsr_val = PSR_T_BIT, 226 .fn = break_trap, 227 }; 228 229 static struct undef_hook thumb2_break_hook = { 230 .instr_mask = 0xffffffff, 231 .instr_val = 0xf7f0a000, 232 .cpsr_mask = PSR_T_BIT, 233 .cpsr_val = PSR_T_BIT, 234 .fn = break_trap, 235 }; 236 237 static int __init ptrace_break_init(void) 238 { 239 register_undef_hook(&arm_break_hook); 240 register_undef_hook(&thumb_break_hook); 241 register_undef_hook(&thumb2_break_hook); 242 return 0; 243 } 244 245 core_initcall(ptrace_break_init); 246 247 /* 248 * Read the word at offset "off" into the "struct user". We 249 * actually access the pt_regs stored on the kernel stack. 250 */ 251 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 252 unsigned long __user *ret) 253 { 254 unsigned long tmp; 255 256 if (off & 3) 257 return -EIO; 258 259 tmp = 0; 260 if (off == PT_TEXT_ADDR) 261 tmp = tsk->mm->start_code; 262 else if (off == PT_DATA_ADDR) 263 tmp = tsk->mm->start_data; 264 else if (off == PT_TEXT_END_ADDR) 265 tmp = tsk->mm->end_code; 266 else if (off < sizeof(struct pt_regs)) 267 tmp = get_user_reg(tsk, off >> 2); 268 else if (off >= sizeof(struct user)) 269 return -EIO; 270 271 return put_user(tmp, ret); 272 } 273 274 /* 275 * Write the word at offset "off" into "struct user". We 276 * actually access the pt_regs stored on the kernel stack. 277 */ 278 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 279 unsigned long val) 280 { 281 if (off & 3 || off >= sizeof(struct user)) 282 return -EIO; 283 284 if (off >= sizeof(struct pt_regs)) 285 return 0; 286 287 return put_user_reg(tsk, off >> 2, val); 288 } 289 290 #ifdef CONFIG_IWMMXT 291 292 /* 293 * Get the child iWMMXt state. 294 */ 295 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 296 { 297 struct thread_info *thread = task_thread_info(tsk); 298 299 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 300 return -ENODATA; 301 iwmmxt_task_disable(thread); /* force it to ram */ 302 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 303 ? -EFAULT : 0; 304 } 305 306 /* 307 * Set the child iWMMXt state. 308 */ 309 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 310 { 311 struct thread_info *thread = task_thread_info(tsk); 312 313 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 314 return -EACCES; 315 iwmmxt_task_release(thread); /* force a reload */ 316 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 317 ? -EFAULT : 0; 318 } 319 320 #endif 321 322 #ifdef CONFIG_CRUNCH 323 /* 324 * Get the child Crunch state. 325 */ 326 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 327 { 328 struct thread_info *thread = task_thread_info(tsk); 329 330 crunch_task_disable(thread); /* force it to ram */ 331 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 332 ? -EFAULT : 0; 333 } 334 335 /* 336 * Set the child Crunch state. 337 */ 338 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 339 { 340 struct thread_info *thread = task_thread_info(tsk); 341 342 crunch_task_release(thread); /* force a reload */ 343 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 344 ? -EFAULT : 0; 345 } 346 #endif 347 348 #ifdef CONFIG_HAVE_HW_BREAKPOINT 349 /* 350 * Convert a virtual register number into an index for a thread_info 351 * breakpoint array. Breakpoints are identified using positive numbers 352 * whilst watchpoints are negative. The registers are laid out as pairs 353 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 354 * Register 0 is reserved for describing resource information. 355 */ 356 static int ptrace_hbp_num_to_idx(long num) 357 { 358 if (num < 0) 359 num = (ARM_MAX_BRP << 1) - num; 360 return (num - 1) >> 1; 361 } 362 363 /* 364 * Returns the virtual register number for the address of the 365 * breakpoint at index idx. 366 */ 367 static long ptrace_hbp_idx_to_num(int idx) 368 { 369 long mid = ARM_MAX_BRP << 1; 370 long num = (idx << 1) + 1; 371 return num > mid ? mid - num : num; 372 } 373 374 /* 375 * Handle hitting a HW-breakpoint. 376 */ 377 static void ptrace_hbptriggered(struct perf_event *bp, 378 struct perf_sample_data *data, 379 struct pt_regs *regs) 380 { 381 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 382 long num; 383 int i; 384 385 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 386 if (current->thread.debug.hbp[i] == bp) 387 break; 388 389 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 390 391 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger)); 392 } 393 394 /* 395 * Set ptrace breakpoint pointers to zero for this task. 396 * This is required in order to prevent child processes from unregistering 397 * breakpoints held by their parent. 398 */ 399 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 400 { 401 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 402 } 403 404 /* 405 * Unregister breakpoints from this task and reset the pointers in 406 * the thread_struct. 407 */ 408 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 409 { 410 int i; 411 struct thread_struct *t = &tsk->thread; 412 413 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 414 if (t->debug.hbp[i]) { 415 unregister_hw_breakpoint(t->debug.hbp[i]); 416 t->debug.hbp[i] = NULL; 417 } 418 } 419 } 420 421 static u32 ptrace_get_hbp_resource_info(void) 422 { 423 u8 num_brps, num_wrps, debug_arch, wp_len; 424 u32 reg = 0; 425 426 num_brps = hw_breakpoint_slots(TYPE_INST); 427 num_wrps = hw_breakpoint_slots(TYPE_DATA); 428 debug_arch = arch_get_debug_arch(); 429 wp_len = arch_get_max_wp_len(); 430 431 reg |= debug_arch; 432 reg <<= 8; 433 reg |= wp_len; 434 reg <<= 8; 435 reg |= num_wrps; 436 reg <<= 8; 437 reg |= num_brps; 438 439 return reg; 440 } 441 442 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 443 { 444 struct perf_event_attr attr; 445 446 ptrace_breakpoint_init(&attr); 447 448 /* Initialise fields to sane defaults. */ 449 attr.bp_addr = 0; 450 attr.bp_len = HW_BREAKPOINT_LEN_4; 451 attr.bp_type = type; 452 attr.disabled = 1; 453 454 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 455 tsk); 456 } 457 458 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 459 unsigned long __user *data) 460 { 461 u32 reg; 462 int idx, ret = 0; 463 struct perf_event *bp; 464 struct arch_hw_breakpoint_ctrl arch_ctrl; 465 466 if (num == 0) { 467 reg = ptrace_get_hbp_resource_info(); 468 } else { 469 idx = ptrace_hbp_num_to_idx(num); 470 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 471 ret = -EINVAL; 472 goto out; 473 } 474 475 bp = tsk->thread.debug.hbp[idx]; 476 if (!bp) { 477 reg = 0; 478 goto put; 479 } 480 481 arch_ctrl = counter_arch_bp(bp)->ctrl; 482 483 /* 484 * Fix up the len because we may have adjusted it 485 * to compensate for an unaligned address. 486 */ 487 while (!(arch_ctrl.len & 0x1)) 488 arch_ctrl.len >>= 1; 489 490 if (num & 0x1) 491 reg = bp->attr.bp_addr; 492 else 493 reg = encode_ctrl_reg(arch_ctrl); 494 } 495 496 put: 497 if (put_user(reg, data)) 498 ret = -EFAULT; 499 500 out: 501 return ret; 502 } 503 504 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 505 unsigned long __user *data) 506 { 507 int idx, gen_len, gen_type, implied_type, ret = 0; 508 u32 user_val; 509 struct perf_event *bp; 510 struct arch_hw_breakpoint_ctrl ctrl; 511 struct perf_event_attr attr; 512 513 if (num == 0) 514 goto out; 515 else if (num < 0) 516 implied_type = HW_BREAKPOINT_RW; 517 else 518 implied_type = HW_BREAKPOINT_X; 519 520 idx = ptrace_hbp_num_to_idx(num); 521 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 522 ret = -EINVAL; 523 goto out; 524 } 525 526 if (get_user(user_val, data)) { 527 ret = -EFAULT; 528 goto out; 529 } 530 531 bp = tsk->thread.debug.hbp[idx]; 532 if (!bp) { 533 bp = ptrace_hbp_create(tsk, implied_type); 534 if (IS_ERR(bp)) { 535 ret = PTR_ERR(bp); 536 goto out; 537 } 538 tsk->thread.debug.hbp[idx] = bp; 539 } 540 541 attr = bp->attr; 542 543 if (num & 0x1) { 544 /* Address */ 545 attr.bp_addr = user_val; 546 } else { 547 /* Control */ 548 decode_ctrl_reg(user_val, &ctrl); 549 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 550 if (ret) 551 goto out; 552 553 if ((gen_type & implied_type) != gen_type) { 554 ret = -EINVAL; 555 goto out; 556 } 557 558 attr.bp_len = gen_len; 559 attr.bp_type = gen_type; 560 attr.disabled = !ctrl.enabled; 561 } 562 563 ret = modify_user_hw_breakpoint(bp, &attr); 564 out: 565 return ret; 566 } 567 #endif 568 569 /* regset get/set implementations */ 570 571 static int gpr_get(struct task_struct *target, 572 const struct user_regset *regset, 573 unsigned int pos, unsigned int count, 574 void *kbuf, void __user *ubuf) 575 { 576 struct pt_regs *regs = task_pt_regs(target); 577 578 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 579 regs, 580 0, sizeof(*regs)); 581 } 582 583 static int gpr_set(struct task_struct *target, 584 const struct user_regset *regset, 585 unsigned int pos, unsigned int count, 586 const void *kbuf, const void __user *ubuf) 587 { 588 int ret; 589 struct pt_regs newregs = *task_pt_regs(target); 590 591 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 592 &newregs, 593 0, sizeof(newregs)); 594 if (ret) 595 return ret; 596 597 if (!valid_user_regs(&newregs)) 598 return -EINVAL; 599 600 *task_pt_regs(target) = newregs; 601 return 0; 602 } 603 604 static int fpa_get(struct task_struct *target, 605 const struct user_regset *regset, 606 unsigned int pos, unsigned int count, 607 void *kbuf, void __user *ubuf) 608 { 609 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 610 &task_thread_info(target)->fpstate, 611 0, sizeof(struct user_fp)); 612 } 613 614 static int fpa_set(struct task_struct *target, 615 const struct user_regset *regset, 616 unsigned int pos, unsigned int count, 617 const void *kbuf, const void __user *ubuf) 618 { 619 struct thread_info *thread = task_thread_info(target); 620 621 thread->used_cp[1] = thread->used_cp[2] = 1; 622 623 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 624 &thread->fpstate, 625 0, sizeof(struct user_fp)); 626 } 627 628 #ifdef CONFIG_VFP 629 /* 630 * VFP register get/set implementations. 631 * 632 * With respect to the kernel, struct user_fp is divided into three chunks: 633 * 16 or 32 real VFP registers (d0-d15 or d0-31) 634 * These are transferred to/from the real registers in the task's 635 * vfp_hard_struct. The number of registers depends on the kernel 636 * configuration. 637 * 638 * 16 or 0 fake VFP registers (d16-d31 or empty) 639 * i.e., the user_vfp structure has space for 32 registers even if 640 * the kernel doesn't have them all. 641 * 642 * vfp_get() reads this chunk as zero where applicable 643 * vfp_set() ignores this chunk 644 * 645 * 1 word for the FPSCR 646 * 647 * The bounds-checking logic built into user_regset_copyout and friends 648 * means that we can make a simple sequence of calls to map the relevant data 649 * to/from the specified slice of the user regset structure. 650 */ 651 static int vfp_get(struct task_struct *target, 652 const struct user_regset *regset, 653 unsigned int pos, unsigned int count, 654 void *kbuf, void __user *ubuf) 655 { 656 int ret; 657 struct thread_info *thread = task_thread_info(target); 658 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 659 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 660 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 661 662 vfp_sync_hwstate(thread); 663 664 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 665 &vfp->fpregs, 666 user_fpregs_offset, 667 user_fpregs_offset + sizeof(vfp->fpregs)); 668 if (ret) 669 return ret; 670 671 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 672 user_fpregs_offset + sizeof(vfp->fpregs), 673 user_fpscr_offset); 674 if (ret) 675 return ret; 676 677 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 678 &vfp->fpscr, 679 user_fpscr_offset, 680 user_fpscr_offset + sizeof(vfp->fpscr)); 681 } 682 683 /* 684 * For vfp_set() a read-modify-write is done on the VFP registers, 685 * in order to avoid writing back a half-modified set of registers on 686 * failure. 687 */ 688 static int vfp_set(struct task_struct *target, 689 const struct user_regset *regset, 690 unsigned int pos, unsigned int count, 691 const void *kbuf, const void __user *ubuf) 692 { 693 int ret; 694 struct thread_info *thread = task_thread_info(target); 695 struct vfp_hard_struct new_vfp; 696 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 697 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 698 699 vfp_sync_hwstate(thread); 700 new_vfp = thread->vfpstate.hard; 701 702 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 703 &new_vfp.fpregs, 704 user_fpregs_offset, 705 user_fpregs_offset + sizeof(new_vfp.fpregs)); 706 if (ret) 707 return ret; 708 709 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 710 user_fpregs_offset + sizeof(new_vfp.fpregs), 711 user_fpscr_offset); 712 if (ret) 713 return ret; 714 715 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 716 &new_vfp.fpscr, 717 user_fpscr_offset, 718 user_fpscr_offset + sizeof(new_vfp.fpscr)); 719 if (ret) 720 return ret; 721 722 thread->vfpstate.hard = new_vfp; 723 vfp_flush_hwstate(thread); 724 725 return 0; 726 } 727 #endif /* CONFIG_VFP */ 728 729 enum arm_regset { 730 REGSET_GPR, 731 REGSET_FPR, 732 #ifdef CONFIG_VFP 733 REGSET_VFP, 734 #endif 735 }; 736 737 static const struct user_regset arm_regsets[] = { 738 [REGSET_GPR] = { 739 .core_note_type = NT_PRSTATUS, 740 .n = ELF_NGREG, 741 .size = sizeof(u32), 742 .align = sizeof(u32), 743 .get = gpr_get, 744 .set = gpr_set 745 }, 746 [REGSET_FPR] = { 747 /* 748 * For the FPA regs in fpstate, the real fields are a mixture 749 * of sizes, so pretend that the registers are word-sized: 750 */ 751 .core_note_type = NT_PRFPREG, 752 .n = sizeof(struct user_fp) / sizeof(u32), 753 .size = sizeof(u32), 754 .align = sizeof(u32), 755 .get = fpa_get, 756 .set = fpa_set 757 }, 758 #ifdef CONFIG_VFP 759 [REGSET_VFP] = { 760 /* 761 * Pretend that the VFP regs are word-sized, since the FPSCR is 762 * a single word dangling at the end of struct user_vfp: 763 */ 764 .core_note_type = NT_ARM_VFP, 765 .n = ARM_VFPREGS_SIZE / sizeof(u32), 766 .size = sizeof(u32), 767 .align = sizeof(u32), 768 .get = vfp_get, 769 .set = vfp_set 770 }, 771 #endif /* CONFIG_VFP */ 772 }; 773 774 static const struct user_regset_view user_arm_view = { 775 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 776 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 777 }; 778 779 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 780 { 781 return &user_arm_view; 782 } 783 784 long arch_ptrace(struct task_struct *child, long request, 785 unsigned long addr, unsigned long data) 786 { 787 int ret; 788 unsigned long __user *datap = (unsigned long __user *) data; 789 790 switch (request) { 791 case PTRACE_PEEKUSR: 792 ret = ptrace_read_user(child, addr, datap); 793 break; 794 795 case PTRACE_POKEUSR: 796 ret = ptrace_write_user(child, addr, data); 797 break; 798 799 case PTRACE_GETREGS: 800 ret = copy_regset_to_user(child, 801 &user_arm_view, REGSET_GPR, 802 0, sizeof(struct pt_regs), 803 datap); 804 break; 805 806 case PTRACE_SETREGS: 807 ret = copy_regset_from_user(child, 808 &user_arm_view, REGSET_GPR, 809 0, sizeof(struct pt_regs), 810 datap); 811 break; 812 813 case PTRACE_GETFPREGS: 814 ret = copy_regset_to_user(child, 815 &user_arm_view, REGSET_FPR, 816 0, sizeof(union fp_state), 817 datap); 818 break; 819 820 case PTRACE_SETFPREGS: 821 ret = copy_regset_from_user(child, 822 &user_arm_view, REGSET_FPR, 823 0, sizeof(union fp_state), 824 datap); 825 break; 826 827 #ifdef CONFIG_IWMMXT 828 case PTRACE_GETWMMXREGS: 829 ret = ptrace_getwmmxregs(child, datap); 830 break; 831 832 case PTRACE_SETWMMXREGS: 833 ret = ptrace_setwmmxregs(child, datap); 834 break; 835 #endif 836 837 case PTRACE_GET_THREAD_AREA: 838 ret = put_user(task_thread_info(child)->tp_value[0], 839 datap); 840 break; 841 842 case PTRACE_SET_SYSCALL: 843 task_thread_info(child)->syscall = data; 844 ret = 0; 845 break; 846 847 #ifdef CONFIG_CRUNCH 848 case PTRACE_GETCRUNCHREGS: 849 ret = ptrace_getcrunchregs(child, datap); 850 break; 851 852 case PTRACE_SETCRUNCHREGS: 853 ret = ptrace_setcrunchregs(child, datap); 854 break; 855 #endif 856 857 #ifdef CONFIG_VFP 858 case PTRACE_GETVFPREGS: 859 ret = copy_regset_to_user(child, 860 &user_arm_view, REGSET_VFP, 861 0, ARM_VFPREGS_SIZE, 862 datap); 863 break; 864 865 case PTRACE_SETVFPREGS: 866 ret = copy_regset_from_user(child, 867 &user_arm_view, REGSET_VFP, 868 0, ARM_VFPREGS_SIZE, 869 datap); 870 break; 871 #endif 872 873 #ifdef CONFIG_HAVE_HW_BREAKPOINT 874 case PTRACE_GETHBPREGS: 875 ret = ptrace_gethbpregs(child, addr, 876 (unsigned long __user *)data); 877 break; 878 case PTRACE_SETHBPREGS: 879 ret = ptrace_sethbpregs(child, addr, 880 (unsigned long __user *)data); 881 break; 882 #endif 883 884 default: 885 ret = ptrace_request(child, request, addr, data); 886 break; 887 } 888 889 return ret; 890 } 891 892 enum ptrace_syscall_dir { 893 PTRACE_SYSCALL_ENTER = 0, 894 PTRACE_SYSCALL_EXIT, 895 }; 896 897 static void tracehook_report_syscall(struct pt_regs *regs, 898 enum ptrace_syscall_dir dir) 899 { 900 unsigned long ip; 901 902 /* 903 * IP is used to denote syscall entry/exit: 904 * IP = 0 -> entry, =1 -> exit 905 */ 906 ip = regs->ARM_ip; 907 regs->ARM_ip = dir; 908 909 if (dir == PTRACE_SYSCALL_EXIT) 910 tracehook_report_syscall_exit(regs, 0); 911 else if (tracehook_report_syscall_entry(regs)) 912 current_thread_info()->syscall = -1; 913 914 regs->ARM_ip = ip; 915 } 916 917 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno) 918 { 919 current_thread_info()->syscall = scno; 920 921 if (test_thread_flag(TIF_SYSCALL_TRACE)) 922 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER); 923 924 /* Do seccomp after ptrace; syscall may have changed. */ 925 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 926 if (secure_computing(NULL) == -1) 927 return -1; 928 #else 929 /* XXX: remove this once OABI gets fixed */ 930 secure_computing_strict(current_thread_info()->syscall); 931 #endif 932 933 /* Tracer or seccomp may have changed syscall. */ 934 scno = current_thread_info()->syscall; 935 936 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 937 trace_sys_enter(regs, scno); 938 939 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, 940 regs->ARM_r3); 941 942 return scno; 943 } 944 945 asmlinkage void syscall_trace_exit(struct pt_regs *regs) 946 { 947 /* 948 * Audit the syscall before anything else, as a debugger may 949 * come in and change the current registers. 950 */ 951 audit_syscall_exit(regs); 952 953 /* 954 * Note that we haven't updated the ->syscall field for the 955 * current thread. This isn't a problem because it will have 956 * been set on syscall entry and there hasn't been an opportunity 957 * for a PTRACE_SET_SYSCALL since then. 958 */ 959 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 960 trace_sys_exit(regs, regs_return_value(regs)); 961 962 if (test_thread_flag(TIF_SYSCALL_TRACE)) 963 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT); 964 } 965