1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 */ 9 #include <linux/kernel.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/mm.h> 13 #include <linux/elf.h> 14 #include <linux/smp.h> 15 #include <linux/ptrace.h> 16 #include <linux/user.h> 17 #include <linux/security.h> 18 #include <linux/init.h> 19 #include <linux/signal.h> 20 #include <linux/uaccess.h> 21 #include <linux/perf_event.h> 22 #include <linux/hw_breakpoint.h> 23 #include <linux/regset.h> 24 #include <linux/audit.h> 25 #include <linux/unistd.h> 26 27 #include <asm/syscall.h> 28 #include <asm/traps.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/syscalls.h> 32 33 #define REG_PC 15 34 #define REG_PSR 16 35 /* 36 * does not yet catch signals sent when the child dies. 37 * in exit.c or in signal.c. 38 */ 39 40 #if 0 41 /* 42 * Breakpoint SWI instruction: SWI &9F0001 43 */ 44 #define BREAKINST_ARM 0xef9f0001 45 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 46 #else 47 /* 48 * New breakpoints - use an undefined instruction. The ARM architecture 49 * reference manual guarantees that the following instruction space 50 * will produce an undefined instruction exception on all CPUs: 51 * 52 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 53 * Thumb: 1101 1110 xxxx xxxx 54 */ 55 #define BREAKINST_ARM 0xe7f001f0 56 #define BREAKINST_THUMB 0xde01 57 #endif 58 59 struct pt_regs_offset { 60 const char *name; 61 int offset; 62 }; 63 64 #define REG_OFFSET_NAME(r) \ 65 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 66 #define REG_OFFSET_END {.name = NULL, .offset = 0} 67 68 static const struct pt_regs_offset regoffset_table[] = { 69 REG_OFFSET_NAME(r0), 70 REG_OFFSET_NAME(r1), 71 REG_OFFSET_NAME(r2), 72 REG_OFFSET_NAME(r3), 73 REG_OFFSET_NAME(r4), 74 REG_OFFSET_NAME(r5), 75 REG_OFFSET_NAME(r6), 76 REG_OFFSET_NAME(r7), 77 REG_OFFSET_NAME(r8), 78 REG_OFFSET_NAME(r9), 79 REG_OFFSET_NAME(r10), 80 REG_OFFSET_NAME(fp), 81 REG_OFFSET_NAME(ip), 82 REG_OFFSET_NAME(sp), 83 REG_OFFSET_NAME(lr), 84 REG_OFFSET_NAME(pc), 85 REG_OFFSET_NAME(cpsr), 86 REG_OFFSET_NAME(ORIG_r0), 87 REG_OFFSET_END, 88 }; 89 90 /** 91 * regs_query_register_offset() - query register offset from its name 92 * @name: the name of a register 93 * 94 * regs_query_register_offset() returns the offset of a register in struct 95 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 96 */ 97 int regs_query_register_offset(const char *name) 98 { 99 const struct pt_regs_offset *roff; 100 for (roff = regoffset_table; roff->name != NULL; roff++) 101 if (!strcmp(roff->name, name)) 102 return roff->offset; 103 return -EINVAL; 104 } 105 106 /** 107 * regs_query_register_name() - query register name from its offset 108 * @offset: the offset of a register in struct pt_regs. 109 * 110 * regs_query_register_name() returns the name of a register from its 111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 112 */ 113 const char *regs_query_register_name(unsigned int offset) 114 { 115 const struct pt_regs_offset *roff; 116 for (roff = regoffset_table; roff->name != NULL; roff++) 117 if (roff->offset == offset) 118 return roff->name; 119 return NULL; 120 } 121 122 /** 123 * regs_within_kernel_stack() - check the address in the stack 124 * @regs: pt_regs which contains kernel stack pointer. 125 * @addr: address which is checked. 126 * 127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 128 * If @addr is within the kernel stack, it returns true. If not, returns false. 129 */ 130 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 131 { 132 return ((addr & ~(THREAD_SIZE - 1)) == 133 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 134 } 135 136 /** 137 * regs_get_kernel_stack_nth() - get Nth entry of the stack 138 * @regs: pt_regs which contains kernel stack pointer. 139 * @n: stack entry number. 140 * 141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 142 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 143 * this returns 0. 144 */ 145 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 146 { 147 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 148 addr += n; 149 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 150 return *addr; 151 else 152 return 0; 153 } 154 155 /* 156 * this routine will get a word off of the processes privileged stack. 157 * the offset is how far from the base addr as stored in the THREAD. 158 * this routine assumes that all the privileged stacks are in our 159 * data space. 160 */ 161 static inline long get_user_reg(struct task_struct *task, int offset) 162 { 163 return task_pt_regs(task)->uregs[offset]; 164 } 165 166 /* 167 * this routine will put a word on the processes privileged stack. 168 * the offset is how far from the base addr as stored in the THREAD. 169 * this routine assumes that all the privileged stacks are in our 170 * data space. 171 */ 172 static inline int 173 put_user_reg(struct task_struct *task, int offset, long data) 174 { 175 struct pt_regs newregs, *regs = task_pt_regs(task); 176 int ret = -EINVAL; 177 178 newregs = *regs; 179 newregs.uregs[offset] = data; 180 181 if (valid_user_regs(&newregs)) { 182 regs->uregs[offset] = data; 183 ret = 0; 184 } 185 186 return ret; 187 } 188 189 /* 190 * Called by kernel/ptrace.c when detaching.. 191 */ 192 void ptrace_disable(struct task_struct *child) 193 { 194 /* Nothing to do. */ 195 } 196 197 /* 198 * Handle hitting a breakpoint. 199 */ 200 void ptrace_break(struct pt_regs *regs) 201 { 202 force_sig_fault(SIGTRAP, TRAP_BRKPT, 203 (void __user *)instruction_pointer(regs)); 204 } 205 206 static int break_trap(struct pt_regs *regs, unsigned int instr) 207 { 208 ptrace_break(regs); 209 return 0; 210 } 211 212 static struct undef_hook arm_break_hook = { 213 .instr_mask = 0x0fffffff, 214 .instr_val = 0x07f001f0, 215 .cpsr_mask = PSR_T_BIT, 216 .cpsr_val = 0, 217 .fn = break_trap, 218 }; 219 220 static struct undef_hook thumb_break_hook = { 221 .instr_mask = 0xffffffff, 222 .instr_val = 0x0000de01, 223 .cpsr_mask = PSR_T_BIT, 224 .cpsr_val = PSR_T_BIT, 225 .fn = break_trap, 226 }; 227 228 static struct undef_hook thumb2_break_hook = { 229 .instr_mask = 0xffffffff, 230 .instr_val = 0xf7f0a000, 231 .cpsr_mask = PSR_T_BIT, 232 .cpsr_val = PSR_T_BIT, 233 .fn = break_trap, 234 }; 235 236 static int __init ptrace_break_init(void) 237 { 238 register_undef_hook(&arm_break_hook); 239 register_undef_hook(&thumb_break_hook); 240 register_undef_hook(&thumb2_break_hook); 241 return 0; 242 } 243 244 core_initcall(ptrace_break_init); 245 246 /* 247 * Read the word at offset "off" into the "struct user". We 248 * actually access the pt_regs stored on the kernel stack. 249 */ 250 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 251 unsigned long __user *ret) 252 { 253 unsigned long tmp; 254 255 if (off & 3) 256 return -EIO; 257 258 tmp = 0; 259 if (off == PT_TEXT_ADDR) 260 tmp = tsk->mm->start_code; 261 else if (off == PT_DATA_ADDR) 262 tmp = tsk->mm->start_data; 263 else if (off == PT_TEXT_END_ADDR) 264 tmp = tsk->mm->end_code; 265 else if (off < sizeof(struct pt_regs)) 266 tmp = get_user_reg(tsk, off >> 2); 267 else if (off >= sizeof(struct user)) 268 return -EIO; 269 270 return put_user(tmp, ret); 271 } 272 273 /* 274 * Write the word at offset "off" into "struct user". We 275 * actually access the pt_regs stored on the kernel stack. 276 */ 277 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 278 unsigned long val) 279 { 280 if (off & 3 || off >= sizeof(struct user)) 281 return -EIO; 282 283 if (off >= sizeof(struct pt_regs)) 284 return 0; 285 286 return put_user_reg(tsk, off >> 2, val); 287 } 288 289 #ifdef CONFIG_IWMMXT 290 291 /* 292 * Get the child iWMMXt state. 293 */ 294 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 295 { 296 struct thread_info *thread = task_thread_info(tsk); 297 298 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 299 return -ENODATA; 300 iwmmxt_task_disable(thread); /* force it to ram */ 301 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 302 ? -EFAULT : 0; 303 } 304 305 /* 306 * Set the child iWMMXt state. 307 */ 308 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 309 { 310 struct thread_info *thread = task_thread_info(tsk); 311 312 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 313 return -EACCES; 314 iwmmxt_task_release(thread); /* force a reload */ 315 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 316 ? -EFAULT : 0; 317 } 318 319 #endif 320 321 #ifdef CONFIG_HAVE_HW_BREAKPOINT 322 /* 323 * Convert a virtual register number into an index for a thread_info 324 * breakpoint array. Breakpoints are identified using positive numbers 325 * whilst watchpoints are negative. The registers are laid out as pairs 326 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 327 * Register 0 is reserved for describing resource information. 328 */ 329 static int ptrace_hbp_num_to_idx(long num) 330 { 331 if (num < 0) 332 num = (ARM_MAX_BRP << 1) - num; 333 return (num - 1) >> 1; 334 } 335 336 /* 337 * Returns the virtual register number for the address of the 338 * breakpoint at index idx. 339 */ 340 static long ptrace_hbp_idx_to_num(int idx) 341 { 342 long mid = ARM_MAX_BRP << 1; 343 long num = (idx << 1) + 1; 344 return num > mid ? mid - num : num; 345 } 346 347 /* 348 * Handle hitting a HW-breakpoint. 349 */ 350 static void ptrace_hbptriggered(struct perf_event *bp, 351 struct perf_sample_data *data, 352 struct pt_regs *regs) 353 { 354 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 355 long num; 356 int i; 357 358 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 359 if (current->thread.debug.hbp[i] == bp) 360 break; 361 362 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 363 364 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger)); 365 } 366 367 /* 368 * Set ptrace breakpoint pointers to zero for this task. 369 * This is required in order to prevent child processes from unregistering 370 * breakpoints held by their parent. 371 */ 372 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 373 { 374 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 375 } 376 377 /* 378 * Unregister breakpoints from this task and reset the pointers in 379 * the thread_struct. 380 */ 381 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 382 { 383 int i; 384 struct thread_struct *t = &tsk->thread; 385 386 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 387 if (t->debug.hbp[i]) { 388 unregister_hw_breakpoint(t->debug.hbp[i]); 389 t->debug.hbp[i] = NULL; 390 } 391 } 392 } 393 394 static u32 ptrace_get_hbp_resource_info(void) 395 { 396 u8 num_brps, num_wrps, debug_arch, wp_len; 397 u32 reg = 0; 398 399 num_brps = hw_breakpoint_slots(TYPE_INST); 400 num_wrps = hw_breakpoint_slots(TYPE_DATA); 401 debug_arch = arch_get_debug_arch(); 402 wp_len = arch_get_max_wp_len(); 403 404 reg |= debug_arch; 405 reg <<= 8; 406 reg |= wp_len; 407 reg <<= 8; 408 reg |= num_wrps; 409 reg <<= 8; 410 reg |= num_brps; 411 412 return reg; 413 } 414 415 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 416 { 417 struct perf_event_attr attr; 418 419 ptrace_breakpoint_init(&attr); 420 421 /* Initialise fields to sane defaults. */ 422 attr.bp_addr = 0; 423 attr.bp_len = HW_BREAKPOINT_LEN_4; 424 attr.bp_type = type; 425 attr.disabled = 1; 426 427 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 428 tsk); 429 } 430 431 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 432 unsigned long __user *data) 433 { 434 u32 reg; 435 int idx, ret = 0; 436 struct perf_event *bp; 437 struct arch_hw_breakpoint_ctrl arch_ctrl; 438 439 if (num == 0) { 440 reg = ptrace_get_hbp_resource_info(); 441 } else { 442 idx = ptrace_hbp_num_to_idx(num); 443 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 444 ret = -EINVAL; 445 goto out; 446 } 447 448 bp = tsk->thread.debug.hbp[idx]; 449 if (!bp) { 450 reg = 0; 451 goto put; 452 } 453 454 arch_ctrl = counter_arch_bp(bp)->ctrl; 455 456 /* 457 * Fix up the len because we may have adjusted it 458 * to compensate for an unaligned address. 459 */ 460 while (!(arch_ctrl.len & 0x1)) 461 arch_ctrl.len >>= 1; 462 463 if (num & 0x1) 464 reg = bp->attr.bp_addr; 465 else 466 reg = encode_ctrl_reg(arch_ctrl); 467 } 468 469 put: 470 if (put_user(reg, data)) 471 ret = -EFAULT; 472 473 out: 474 return ret; 475 } 476 477 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 478 unsigned long __user *data) 479 { 480 int idx, gen_len, gen_type, implied_type, ret = 0; 481 u32 user_val; 482 struct perf_event *bp; 483 struct arch_hw_breakpoint_ctrl ctrl; 484 struct perf_event_attr attr; 485 486 if (num == 0) 487 goto out; 488 else if (num < 0) 489 implied_type = HW_BREAKPOINT_RW; 490 else 491 implied_type = HW_BREAKPOINT_X; 492 493 idx = ptrace_hbp_num_to_idx(num); 494 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 495 ret = -EINVAL; 496 goto out; 497 } 498 499 if (get_user(user_val, data)) { 500 ret = -EFAULT; 501 goto out; 502 } 503 504 bp = tsk->thread.debug.hbp[idx]; 505 if (!bp) { 506 bp = ptrace_hbp_create(tsk, implied_type); 507 if (IS_ERR(bp)) { 508 ret = PTR_ERR(bp); 509 goto out; 510 } 511 tsk->thread.debug.hbp[idx] = bp; 512 } 513 514 attr = bp->attr; 515 516 if (num & 0x1) { 517 /* Address */ 518 attr.bp_addr = user_val; 519 } else { 520 /* Control */ 521 decode_ctrl_reg(user_val, &ctrl); 522 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 523 if (ret) 524 goto out; 525 526 if ((gen_type & implied_type) != gen_type) { 527 ret = -EINVAL; 528 goto out; 529 } 530 531 attr.bp_len = gen_len; 532 attr.bp_type = gen_type; 533 attr.disabled = !ctrl.enabled; 534 } 535 536 ret = modify_user_hw_breakpoint(bp, &attr); 537 out: 538 return ret; 539 } 540 #endif 541 542 /* regset get/set implementations */ 543 544 static int gpr_get(struct task_struct *target, 545 const struct user_regset *regset, 546 struct membuf to) 547 { 548 return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs)); 549 } 550 551 static int gpr_set(struct task_struct *target, 552 const struct user_regset *regset, 553 unsigned int pos, unsigned int count, 554 const void *kbuf, const void __user *ubuf) 555 { 556 int ret; 557 struct pt_regs newregs = *task_pt_regs(target); 558 559 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 560 &newregs, 561 0, sizeof(newregs)); 562 if (ret) 563 return ret; 564 565 if (!valid_user_regs(&newregs)) 566 return -EINVAL; 567 568 *task_pt_regs(target) = newregs; 569 return 0; 570 } 571 572 static int fpa_get(struct task_struct *target, 573 const struct user_regset *regset, 574 struct membuf to) 575 { 576 return membuf_write(&to, &task_thread_info(target)->fpstate, 577 sizeof(struct user_fp)); 578 } 579 580 static int fpa_set(struct task_struct *target, 581 const struct user_regset *regset, 582 unsigned int pos, unsigned int count, 583 const void *kbuf, const void __user *ubuf) 584 { 585 struct thread_info *thread = task_thread_info(target); 586 587 thread->used_cp[1] = thread->used_cp[2] = 1; 588 589 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 590 &thread->fpstate, 591 0, sizeof(struct user_fp)); 592 } 593 594 #ifdef CONFIG_VFP 595 /* 596 * VFP register get/set implementations. 597 * 598 * With respect to the kernel, struct user_fp is divided into three chunks: 599 * 16 or 32 real VFP registers (d0-d15 or d0-31) 600 * These are transferred to/from the real registers in the task's 601 * vfp_hard_struct. The number of registers depends on the kernel 602 * configuration. 603 * 604 * 16 or 0 fake VFP registers (d16-d31 or empty) 605 * i.e., the user_vfp structure has space for 32 registers even if 606 * the kernel doesn't have them all. 607 * 608 * vfp_get() reads this chunk as zero where applicable 609 * vfp_set() ignores this chunk 610 * 611 * 1 word for the FPSCR 612 */ 613 static int vfp_get(struct task_struct *target, 614 const struct user_regset *regset, 615 struct membuf to) 616 { 617 struct thread_info *thread = task_thread_info(target); 618 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 619 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 620 621 vfp_sync_hwstate(thread); 622 623 membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs)); 624 membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs)); 625 return membuf_store(&to, vfp->fpscr); 626 } 627 628 /* 629 * For vfp_set() a read-modify-write is done on the VFP registers, 630 * in order to avoid writing back a half-modified set of registers on 631 * failure. 632 */ 633 static int vfp_set(struct task_struct *target, 634 const struct user_regset *regset, 635 unsigned int pos, unsigned int count, 636 const void *kbuf, const void __user *ubuf) 637 { 638 int ret; 639 struct thread_info *thread = task_thread_info(target); 640 struct vfp_hard_struct new_vfp; 641 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 642 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 643 644 vfp_sync_hwstate(thread); 645 new_vfp = thread->vfpstate.hard; 646 647 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 648 &new_vfp.fpregs, 649 user_fpregs_offset, 650 user_fpregs_offset + sizeof(new_vfp.fpregs)); 651 if (ret) 652 return ret; 653 654 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 655 user_fpregs_offset + sizeof(new_vfp.fpregs), 656 user_fpscr_offset); 657 if (ret) 658 return ret; 659 660 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 661 &new_vfp.fpscr, 662 user_fpscr_offset, 663 user_fpscr_offset + sizeof(new_vfp.fpscr)); 664 if (ret) 665 return ret; 666 667 thread->vfpstate.hard = new_vfp; 668 vfp_flush_hwstate(thread); 669 670 return 0; 671 } 672 #endif /* CONFIG_VFP */ 673 674 enum arm_regset { 675 REGSET_GPR, 676 REGSET_FPR, 677 #ifdef CONFIG_VFP 678 REGSET_VFP, 679 #endif 680 }; 681 682 static const struct user_regset arm_regsets[] = { 683 [REGSET_GPR] = { 684 .core_note_type = NT_PRSTATUS, 685 .n = ELF_NGREG, 686 .size = sizeof(u32), 687 .align = sizeof(u32), 688 .regset_get = gpr_get, 689 .set = gpr_set 690 }, 691 [REGSET_FPR] = { 692 /* 693 * For the FPA regs in fpstate, the real fields are a mixture 694 * of sizes, so pretend that the registers are word-sized: 695 */ 696 .core_note_type = NT_PRFPREG, 697 .n = sizeof(struct user_fp) / sizeof(u32), 698 .size = sizeof(u32), 699 .align = sizeof(u32), 700 .regset_get = fpa_get, 701 .set = fpa_set 702 }, 703 #ifdef CONFIG_VFP 704 [REGSET_VFP] = { 705 /* 706 * Pretend that the VFP regs are word-sized, since the FPSCR is 707 * a single word dangling at the end of struct user_vfp: 708 */ 709 .core_note_type = NT_ARM_VFP, 710 .n = ARM_VFPREGS_SIZE / sizeof(u32), 711 .size = sizeof(u32), 712 .align = sizeof(u32), 713 .regset_get = vfp_get, 714 .set = vfp_set 715 }, 716 #endif /* CONFIG_VFP */ 717 }; 718 719 static const struct user_regset_view user_arm_view = { 720 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 721 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 722 }; 723 724 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 725 { 726 return &user_arm_view; 727 } 728 729 long arch_ptrace(struct task_struct *child, long request, 730 unsigned long addr, unsigned long data) 731 { 732 int ret; 733 unsigned long __user *datap = (unsigned long __user *) data; 734 735 switch (request) { 736 case PTRACE_PEEKUSR: 737 ret = ptrace_read_user(child, addr, datap); 738 break; 739 740 case PTRACE_POKEUSR: 741 ret = ptrace_write_user(child, addr, data); 742 break; 743 744 case PTRACE_GETREGS: 745 ret = copy_regset_to_user(child, 746 &user_arm_view, REGSET_GPR, 747 0, sizeof(struct pt_regs), 748 datap); 749 break; 750 751 case PTRACE_SETREGS: 752 ret = copy_regset_from_user(child, 753 &user_arm_view, REGSET_GPR, 754 0, sizeof(struct pt_regs), 755 datap); 756 break; 757 758 case PTRACE_GETFPREGS: 759 ret = copy_regset_to_user(child, 760 &user_arm_view, REGSET_FPR, 761 0, sizeof(union fp_state), 762 datap); 763 break; 764 765 case PTRACE_SETFPREGS: 766 ret = copy_regset_from_user(child, 767 &user_arm_view, REGSET_FPR, 768 0, sizeof(union fp_state), 769 datap); 770 break; 771 772 #ifdef CONFIG_IWMMXT 773 case PTRACE_GETWMMXREGS: 774 ret = ptrace_getwmmxregs(child, datap); 775 break; 776 777 case PTRACE_SETWMMXREGS: 778 ret = ptrace_setwmmxregs(child, datap); 779 break; 780 #endif 781 782 case PTRACE_GET_THREAD_AREA: 783 ret = put_user(task_thread_info(child)->tp_value[0], 784 datap); 785 break; 786 787 case PTRACE_SET_SYSCALL: 788 task_thread_info(child)->abi_syscall = data & 789 __NR_SYSCALL_MASK; 790 ret = 0; 791 break; 792 793 #ifdef CONFIG_VFP 794 case PTRACE_GETVFPREGS: 795 ret = copy_regset_to_user(child, 796 &user_arm_view, REGSET_VFP, 797 0, ARM_VFPREGS_SIZE, 798 datap); 799 break; 800 801 case PTRACE_SETVFPREGS: 802 ret = copy_regset_from_user(child, 803 &user_arm_view, REGSET_VFP, 804 0, ARM_VFPREGS_SIZE, 805 datap); 806 break; 807 #endif 808 809 #ifdef CONFIG_HAVE_HW_BREAKPOINT 810 case PTRACE_GETHBPREGS: 811 ret = ptrace_gethbpregs(child, addr, 812 (unsigned long __user *)data); 813 break; 814 case PTRACE_SETHBPREGS: 815 ret = ptrace_sethbpregs(child, addr, 816 (unsigned long __user *)data); 817 break; 818 #endif 819 820 default: 821 ret = ptrace_request(child, request, addr, data); 822 break; 823 } 824 825 return ret; 826 } 827 828 enum ptrace_syscall_dir { 829 PTRACE_SYSCALL_ENTER = 0, 830 PTRACE_SYSCALL_EXIT, 831 }; 832 833 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir) 834 { 835 unsigned long ip; 836 837 /* 838 * IP is used to denote syscall entry/exit: 839 * IP = 0 -> entry, =1 -> exit 840 */ 841 ip = regs->ARM_ip; 842 regs->ARM_ip = dir; 843 844 if (dir == PTRACE_SYSCALL_EXIT) 845 ptrace_report_syscall_exit(regs, 0); 846 else if (ptrace_report_syscall_entry(regs)) 847 current_thread_info()->abi_syscall = -1; 848 849 regs->ARM_ip = ip; 850 } 851 852 asmlinkage int syscall_trace_enter(struct pt_regs *regs) 853 { 854 int scno; 855 856 if (test_thread_flag(TIF_SYSCALL_TRACE)) 857 report_syscall(regs, PTRACE_SYSCALL_ENTER); 858 859 /* Do seccomp after ptrace; syscall may have changed. */ 860 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 861 if (secure_computing() == -1) 862 return -1; 863 #else 864 /* XXX: remove this once OABI gets fixed */ 865 secure_computing_strict(syscall_get_nr(current, regs)); 866 #endif 867 868 /* Tracer or seccomp may have changed syscall. */ 869 scno = syscall_get_nr(current, regs); 870 871 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 872 trace_sys_enter(regs, scno); 873 874 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, 875 regs->ARM_r3); 876 877 return scno; 878 } 879 880 asmlinkage void syscall_trace_exit(struct pt_regs *regs) 881 { 882 /* 883 * Audit the syscall before anything else, as a debugger may 884 * come in and change the current registers. 885 */ 886 audit_syscall_exit(regs); 887 888 /* 889 * Note that we haven't updated the ->syscall field for the 890 * current thread. This isn't a problem because it will have 891 * been set on syscall entry and there hasn't been an opportunity 892 * for a PTRACE_SET_SYSCALL since then. 893 */ 894 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 895 trace_sys_exit(regs, regs_return_value(regs)); 896 897 if (test_thread_flag(TIF_SYSCALL_TRACE)) 898 report_syscall(regs, PTRACE_SYSCALL_EXIT); 899 } 900