xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision 831334cbbbdc2b2923513104e6e70c80dda0bff0)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/uaccess.h>
22 
23 #include <asm/pgtable.h>
24 #include <asm/system.h>
25 #include <asm/traps.h>
26 
27 #include "ptrace.h"
28 
29 #define REG_PC	15
30 #define REG_PSR	16
31 /*
32  * does not yet catch signals sent when the child dies.
33  * in exit.c or in signal.c.
34  */
35 
36 #if 0
37 /*
38  * Breakpoint SWI instruction: SWI &9F0001
39  */
40 #define BREAKINST_ARM	0xef9f0001
41 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
42 #else
43 /*
44  * New breakpoints - use an undefined instruction.  The ARM architecture
45  * reference manual guarantees that the following instruction space
46  * will produce an undefined instruction exception on all CPUs:
47  *
48  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
49  *  Thumb: 1101 1110 xxxx xxxx
50  */
51 #define BREAKINST_ARM	0xe7f001f0
52 #define BREAKINST_THUMB	0xde01
53 #endif
54 
55 /*
56  * this routine will get a word off of the processes privileged stack.
57  * the offset is how far from the base addr as stored in the THREAD.
58  * this routine assumes that all the privileged stacks are in our
59  * data space.
60  */
61 static inline long get_user_reg(struct task_struct *task, int offset)
62 {
63 	return task_pt_regs(task)->uregs[offset];
64 }
65 
66 /*
67  * this routine will put a word on the processes privileged stack.
68  * the offset is how far from the base addr as stored in the THREAD.
69  * this routine assumes that all the privileged stacks are in our
70  * data space.
71  */
72 static inline int
73 put_user_reg(struct task_struct *task, int offset, long data)
74 {
75 	struct pt_regs newregs, *regs = task_pt_regs(task);
76 	int ret = -EINVAL;
77 
78 	newregs = *regs;
79 	newregs.uregs[offset] = data;
80 
81 	if (valid_user_regs(&newregs)) {
82 		regs->uregs[offset] = data;
83 		ret = 0;
84 	}
85 
86 	return ret;
87 }
88 
89 static inline int
90 read_u32(struct task_struct *task, unsigned long addr, u32 *res)
91 {
92 	int ret;
93 
94 	ret = access_process_vm(task, addr, res, sizeof(*res), 0);
95 
96 	return ret == sizeof(*res) ? 0 : -EIO;
97 }
98 
99 static inline int
100 read_instr(struct task_struct *task, unsigned long addr, u32 *res)
101 {
102 	int ret;
103 
104 	if (addr & 1) {
105 		u16 val;
106 		ret = access_process_vm(task, addr & ~1, &val, sizeof(val), 0);
107 		ret = ret == sizeof(val) ? 0 : -EIO;
108 		*res = val;
109 	} else {
110 		u32 val;
111 		ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0);
112 		ret = ret == sizeof(val) ? 0 : -EIO;
113 		*res = val;
114 	}
115 	return ret;
116 }
117 
118 /*
119  * Get value of register `rn' (in the instruction)
120  */
121 static unsigned long
122 ptrace_getrn(struct task_struct *child, unsigned long insn)
123 {
124 	unsigned int reg = (insn >> 16) & 15;
125 	unsigned long val;
126 
127 	val = get_user_reg(child, reg);
128 	if (reg == 15)
129 		val += 8;
130 
131 	return val;
132 }
133 
134 /*
135  * Get value of operand 2 (in an ALU instruction)
136  */
137 static unsigned long
138 ptrace_getaluop2(struct task_struct *child, unsigned long insn)
139 {
140 	unsigned long val;
141 	int shift;
142 	int type;
143 
144 	if (insn & 1 << 25) {
145 		val = insn & 255;
146 		shift = (insn >> 8) & 15;
147 		type = 3;
148 	} else {
149 		val = get_user_reg (child, insn & 15);
150 
151 		if (insn & (1 << 4))
152 			shift = (int)get_user_reg (child, (insn >> 8) & 15);
153 		else
154 			shift = (insn >> 7) & 31;
155 
156 		type = (insn >> 5) & 3;
157 	}
158 
159 	switch (type) {
160 	case 0:	val <<= shift;	break;
161 	case 1:	val >>= shift;	break;
162 	case 2:
163 		val = (((signed long)val) >> shift);
164 		break;
165 	case 3:
166  		val = (val >> shift) | (val << (32 - shift));
167 		break;
168 	}
169 	return val;
170 }
171 
172 /*
173  * Get value of operand 2 (in a LDR instruction)
174  */
175 static unsigned long
176 ptrace_getldrop2(struct task_struct *child, unsigned long insn)
177 {
178 	unsigned long val;
179 	int shift;
180 	int type;
181 
182 	val = get_user_reg(child, insn & 15);
183 	shift = (insn >> 7) & 31;
184 	type = (insn >> 5) & 3;
185 
186 	switch (type) {
187 	case 0:	val <<= shift;	break;
188 	case 1:	val >>= shift;	break;
189 	case 2:
190 		val = (((signed long)val) >> shift);
191 		break;
192 	case 3:
193  		val = (val >> shift) | (val << (32 - shift));
194 		break;
195 	}
196 	return val;
197 }
198 
199 #define OP_MASK	0x01e00000
200 #define OP_AND	0x00000000
201 #define OP_EOR	0x00200000
202 #define OP_SUB	0x00400000
203 #define OP_RSB	0x00600000
204 #define OP_ADD	0x00800000
205 #define OP_ADC	0x00a00000
206 #define OP_SBC	0x00c00000
207 #define OP_RSC	0x00e00000
208 #define OP_ORR	0x01800000
209 #define OP_MOV	0x01a00000
210 #define OP_BIC	0x01c00000
211 #define OP_MVN	0x01e00000
212 
213 static unsigned long
214 get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn)
215 {
216 	u32 alt = 0;
217 
218 	switch (insn & 0x0e000000) {
219 	case 0x00000000:
220 	case 0x02000000: {
221 		/*
222 		 * data processing
223 		 */
224 		long aluop1, aluop2, ccbit;
225 
226 	        if ((insn & 0x0fffffd0) == 0x012fff10) {
227 		        /*
228 			 * bx or blx
229 			 */
230 			alt = get_user_reg(child, insn & 15);
231 			break;
232 		}
233 
234 
235 		if ((insn & 0xf000) != 0xf000)
236 			break;
237 
238 		aluop1 = ptrace_getrn(child, insn);
239 		aluop2 = ptrace_getaluop2(child, insn);
240 		ccbit  = get_user_reg(child, REG_PSR) & PSR_C_BIT ? 1 : 0;
241 
242 		switch (insn & OP_MASK) {
243 		case OP_AND: alt = aluop1 & aluop2;		break;
244 		case OP_EOR: alt = aluop1 ^ aluop2;		break;
245 		case OP_SUB: alt = aluop1 - aluop2;		break;
246 		case OP_RSB: alt = aluop2 - aluop1;		break;
247 		case OP_ADD: alt = aluop1 + aluop2;		break;
248 		case OP_ADC: alt = aluop1 + aluop2 + ccbit;	break;
249 		case OP_SBC: alt = aluop1 - aluop2 + ccbit;	break;
250 		case OP_RSC: alt = aluop2 - aluop1 + ccbit;	break;
251 		case OP_ORR: alt = aluop1 | aluop2;		break;
252 		case OP_MOV: alt = aluop2;			break;
253 		case OP_BIC: alt = aluop1 & ~aluop2;		break;
254 		case OP_MVN: alt = ~aluop2;			break;
255 		}
256 		break;
257 	}
258 
259 	case 0x04000000:
260 	case 0x06000000:
261 		/*
262 		 * ldr
263 		 */
264 		if ((insn & 0x0010f000) == 0x0010f000) {
265 			unsigned long base;
266 
267 			base = ptrace_getrn(child, insn);
268 			if (insn & 1 << 24) {
269 				long aluop2;
270 
271 				if (insn & 0x02000000)
272 					aluop2 = ptrace_getldrop2(child, insn);
273 				else
274 					aluop2 = insn & 0xfff;
275 
276 				if (insn & 1 << 23)
277 					base += aluop2;
278 				else
279 					base -= aluop2;
280 			}
281 			read_u32(child, base, &alt);
282 		}
283 		break;
284 
285 	case 0x08000000:
286 		/*
287 		 * ldm
288 		 */
289 		if ((insn & 0x00108000) == 0x00108000) {
290 			unsigned long base;
291 			unsigned int nr_regs;
292 
293 			if (insn & (1 << 23)) {
294 				nr_regs = hweight16(insn & 65535) << 2;
295 
296 				if (!(insn & (1 << 24)))
297 					nr_regs -= 4;
298 			} else {
299 				if (insn & (1 << 24))
300 					nr_regs = -4;
301 				else
302 					nr_regs = 0;
303 			}
304 
305 			base = ptrace_getrn(child, insn);
306 
307 			read_u32(child, base + nr_regs, &alt);
308 			break;
309 		}
310 		break;
311 
312 	case 0x0a000000: {
313 		/*
314 		 * bl or b
315 		 */
316 		signed long displ;
317 		/* It's a branch/branch link: instead of trying to
318 		 * figure out whether the branch will be taken or not,
319 		 * we'll put a breakpoint at both locations.  This is
320 		 * simpler, more reliable, and probably not a whole lot
321 		 * slower than the alternative approach of emulating the
322 		 * branch.
323 		 */
324 		displ = (insn & 0x00ffffff) << 8;
325 		displ = (displ >> 6) + 8;
326 		if (displ != 0 && displ != 4)
327 			alt = pc + displ;
328 	    }
329 	    break;
330 	}
331 
332 	return alt;
333 }
334 
335 static int
336 swap_insn(struct task_struct *task, unsigned long addr,
337 	  void *old_insn, void *new_insn, int size)
338 {
339 	int ret;
340 
341 	ret = access_process_vm(task, addr, old_insn, size, 0);
342 	if (ret == size)
343 		ret = access_process_vm(task, addr, new_insn, size, 1);
344 	return ret;
345 }
346 
347 static void
348 add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr)
349 {
350 	int nr = dbg->nsaved;
351 
352 	if (nr < 2) {
353 		u32 new_insn = BREAKINST_ARM;
354 		int res;
355 
356 		res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4);
357 
358 		if (res == 4) {
359 			dbg->bp[nr].address = addr;
360 			dbg->nsaved += 1;
361 		}
362 	} else
363 		printk(KERN_ERR "ptrace: too many breakpoints\n");
364 }
365 
366 /*
367  * Clear one breakpoint in the user program.  We copy what the hardware
368  * does and use bit 0 of the address to indicate whether this is a Thumb
369  * breakpoint or an ARM breakpoint.
370  */
371 static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp)
372 {
373 	unsigned long addr = bp->address;
374 	union debug_insn old_insn;
375 	int ret;
376 
377 	if (addr & 1) {
378 		ret = swap_insn(task, addr & ~1, &old_insn.thumb,
379 				&bp->insn.thumb, 2);
380 
381 		if (ret != 2 || old_insn.thumb != BREAKINST_THUMB)
382 			printk(KERN_ERR "%s:%d: corrupted Thumb breakpoint at "
383 				"0x%08lx (0x%04x)\n", task->comm,
384 				task_pid_nr(task), addr, old_insn.thumb);
385 	} else {
386 		ret = swap_insn(task, addr & ~3, &old_insn.arm,
387 				&bp->insn.arm, 4);
388 
389 		if (ret != 4 || old_insn.arm != BREAKINST_ARM)
390 			printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at "
391 				"0x%08lx (0x%08x)\n", task->comm,
392 				task_pid_nr(task), addr, old_insn.arm);
393 	}
394 }
395 
396 void ptrace_set_bpt(struct task_struct *child)
397 {
398 	struct pt_regs *regs;
399 	unsigned long pc;
400 	u32 insn;
401 	int res;
402 
403 	regs = task_pt_regs(child);
404 	pc = instruction_pointer(regs);
405 
406 	if (thumb_mode(regs)) {
407 		printk(KERN_WARNING "ptrace: can't handle thumb mode\n");
408 		return;
409 	}
410 
411 	res = read_instr(child, pc, &insn);
412 	if (!res) {
413 		struct debug_info *dbg = &child->thread.debug;
414 		unsigned long alt;
415 
416 		dbg->nsaved = 0;
417 
418 		alt = get_branch_address(child, pc, insn);
419 		if (alt)
420 			add_breakpoint(child, dbg, alt);
421 
422 		/*
423 		 * Note that we ignore the result of setting the above
424 		 * breakpoint since it may fail.  When it does, this is
425 		 * not so much an error, but a forewarning that we may
426 		 * be receiving a prefetch abort shortly.
427 		 *
428 		 * If we don't set this breakpoint here, then we can
429 		 * lose control of the thread during single stepping.
430 		 */
431 		if (!alt || predicate(insn) != PREDICATE_ALWAYS)
432 			add_breakpoint(child, dbg, pc + 4);
433 	}
434 }
435 
436 /*
437  * Ensure no single-step breakpoint is pending.  Returns non-zero
438  * value if child was being single-stepped.
439  */
440 void ptrace_cancel_bpt(struct task_struct *child)
441 {
442 	int i, nsaved = child->thread.debug.nsaved;
443 
444 	child->thread.debug.nsaved = 0;
445 
446 	if (nsaved > 2) {
447 		printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
448 		nsaved = 2;
449 	}
450 
451 	for (i = 0; i < nsaved; i++)
452 		clear_breakpoint(child, &child->thread.debug.bp[i]);
453 }
454 
455 void user_disable_single_step(struct task_struct *task)
456 {
457 	task->ptrace &= ~PT_SINGLESTEP;
458 	ptrace_cancel_bpt(task);
459 }
460 
461 void user_enable_single_step(struct task_struct *task)
462 {
463 	task->ptrace |= PT_SINGLESTEP;
464 }
465 
466 /*
467  * Called by kernel/ptrace.c when detaching..
468  */
469 void ptrace_disable(struct task_struct *child)
470 {
471 	user_disable_single_step(child);
472 }
473 
474 /*
475  * Handle hitting a breakpoint.
476  */
477 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
478 {
479 	siginfo_t info;
480 
481 	ptrace_cancel_bpt(tsk);
482 
483 	info.si_signo = SIGTRAP;
484 	info.si_errno = 0;
485 	info.si_code  = TRAP_BRKPT;
486 	info.si_addr  = (void __user *)instruction_pointer(regs);
487 
488 	force_sig_info(SIGTRAP, &info, tsk);
489 }
490 
491 static int break_trap(struct pt_regs *regs, unsigned int instr)
492 {
493 	ptrace_break(current, regs);
494 	return 0;
495 }
496 
497 static struct undef_hook arm_break_hook = {
498 	.instr_mask	= 0x0fffffff,
499 	.instr_val	= 0x07f001f0,
500 	.cpsr_mask	= PSR_T_BIT,
501 	.cpsr_val	= 0,
502 	.fn		= break_trap,
503 };
504 
505 static struct undef_hook thumb_break_hook = {
506 	.instr_mask	= 0xffff,
507 	.instr_val	= 0xde01,
508 	.cpsr_mask	= PSR_T_BIT,
509 	.cpsr_val	= PSR_T_BIT,
510 	.fn		= break_trap,
511 };
512 
513 static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr)
514 {
515 	unsigned int instr2;
516 	void __user *pc;
517 
518 	/* Check the second half of the instruction.  */
519 	pc = (void __user *)(instruction_pointer(regs) + 2);
520 
521 	if (processor_mode(regs) == SVC_MODE) {
522 		instr2 = *(u16 *) pc;
523 	} else {
524 		get_user(instr2, (u16 __user *)pc);
525 	}
526 
527 	if (instr2 == 0xa000) {
528 		ptrace_break(current, regs);
529 		return 0;
530 	} else {
531 		return 1;
532 	}
533 }
534 
535 static struct undef_hook thumb2_break_hook = {
536 	.instr_mask	= 0xffff,
537 	.instr_val	= 0xf7f0,
538 	.cpsr_mask	= PSR_T_BIT,
539 	.cpsr_val	= PSR_T_BIT,
540 	.fn		= thumb2_break_trap,
541 };
542 
543 static int __init ptrace_break_init(void)
544 {
545 	register_undef_hook(&arm_break_hook);
546 	register_undef_hook(&thumb_break_hook);
547 	register_undef_hook(&thumb2_break_hook);
548 	return 0;
549 }
550 
551 core_initcall(ptrace_break_init);
552 
553 /*
554  * Read the word at offset "off" into the "struct user".  We
555  * actually access the pt_regs stored on the kernel stack.
556  */
557 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
558 			    unsigned long __user *ret)
559 {
560 	unsigned long tmp;
561 
562 	if (off & 3 || off >= sizeof(struct user))
563 		return -EIO;
564 
565 	tmp = 0;
566 	if (off == PT_TEXT_ADDR)
567 		tmp = tsk->mm->start_code;
568 	else if (off == PT_DATA_ADDR)
569 		tmp = tsk->mm->start_data;
570 	else if (off == PT_TEXT_END_ADDR)
571 		tmp = tsk->mm->end_code;
572 	else if (off < sizeof(struct pt_regs))
573 		tmp = get_user_reg(tsk, off >> 2);
574 
575 	return put_user(tmp, ret);
576 }
577 
578 /*
579  * Write the word at offset "off" into "struct user".  We
580  * actually access the pt_regs stored on the kernel stack.
581  */
582 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
583 			     unsigned long val)
584 {
585 	if (off & 3 || off >= sizeof(struct user))
586 		return -EIO;
587 
588 	if (off >= sizeof(struct pt_regs))
589 		return 0;
590 
591 	return put_user_reg(tsk, off >> 2, val);
592 }
593 
594 /*
595  * Get all user integer registers.
596  */
597 static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
598 {
599 	struct pt_regs *regs = task_pt_regs(tsk);
600 
601 	return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
602 }
603 
604 /*
605  * Set all user integer registers.
606  */
607 static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
608 {
609 	struct pt_regs newregs;
610 	int ret;
611 
612 	ret = -EFAULT;
613 	if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
614 		struct pt_regs *regs = task_pt_regs(tsk);
615 
616 		ret = -EINVAL;
617 		if (valid_user_regs(&newregs)) {
618 			*regs = newregs;
619 			ret = 0;
620 		}
621 	}
622 
623 	return ret;
624 }
625 
626 /*
627  * Get the child FPU state.
628  */
629 static int ptrace_getfpregs(struct task_struct *tsk, void __user *ufp)
630 {
631 	return copy_to_user(ufp, &task_thread_info(tsk)->fpstate,
632 			    sizeof(struct user_fp)) ? -EFAULT : 0;
633 }
634 
635 /*
636  * Set the child FPU state.
637  */
638 static int ptrace_setfpregs(struct task_struct *tsk, void __user *ufp)
639 {
640 	struct thread_info *thread = task_thread_info(tsk);
641 	thread->used_cp[1] = thread->used_cp[2] = 1;
642 	return copy_from_user(&thread->fpstate, ufp,
643 			      sizeof(struct user_fp)) ? -EFAULT : 0;
644 }
645 
646 #ifdef CONFIG_IWMMXT
647 
648 /*
649  * Get the child iWMMXt state.
650  */
651 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
652 {
653 	struct thread_info *thread = task_thread_info(tsk);
654 
655 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
656 		return -ENODATA;
657 	iwmmxt_task_disable(thread);  /* force it to ram */
658 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
659 		? -EFAULT : 0;
660 }
661 
662 /*
663  * Set the child iWMMXt state.
664  */
665 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
666 {
667 	struct thread_info *thread = task_thread_info(tsk);
668 
669 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
670 		return -EACCES;
671 	iwmmxt_task_release(thread);  /* force a reload */
672 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
673 		? -EFAULT : 0;
674 }
675 
676 #endif
677 
678 #ifdef CONFIG_CRUNCH
679 /*
680  * Get the child Crunch state.
681  */
682 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
683 {
684 	struct thread_info *thread = task_thread_info(tsk);
685 
686 	crunch_task_disable(thread);  /* force it to ram */
687 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
688 		? -EFAULT : 0;
689 }
690 
691 /*
692  * Set the child Crunch state.
693  */
694 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
695 {
696 	struct thread_info *thread = task_thread_info(tsk);
697 
698 	crunch_task_release(thread);  /* force a reload */
699 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
700 		? -EFAULT : 0;
701 }
702 #endif
703 
704 #ifdef CONFIG_VFP
705 /*
706  * Get the child VFP state.
707  */
708 static int ptrace_getvfpregs(struct task_struct *tsk, void __user *data)
709 {
710 	struct thread_info *thread = task_thread_info(tsk);
711 	union vfp_state *vfp = &thread->vfpstate;
712 	struct user_vfp __user *ufp = data;
713 
714 	vfp_sync_hwstate(thread);
715 
716 	/* copy the floating point registers */
717 	if (copy_to_user(&ufp->fpregs, &vfp->hard.fpregs,
718 			 sizeof(vfp->hard.fpregs)))
719 		return -EFAULT;
720 
721 	/* copy the status and control register */
722 	if (put_user(vfp->hard.fpscr, &ufp->fpscr))
723 		return -EFAULT;
724 
725 	return 0;
726 }
727 
728 /*
729  * Set the child VFP state.
730  */
731 static int ptrace_setvfpregs(struct task_struct *tsk, void __user *data)
732 {
733 	struct thread_info *thread = task_thread_info(tsk);
734 	union vfp_state *vfp = &thread->vfpstate;
735 	struct user_vfp __user *ufp = data;
736 
737 	vfp_sync_hwstate(thread);
738 
739 	/* copy the floating point registers */
740 	if (copy_from_user(&vfp->hard.fpregs, &ufp->fpregs,
741 			   sizeof(vfp->hard.fpregs)))
742 		return -EFAULT;
743 
744 	/* copy the status and control register */
745 	if (get_user(vfp->hard.fpscr, &ufp->fpscr))
746 		return -EFAULT;
747 
748 	vfp_flush_hwstate(thread);
749 
750 	return 0;
751 }
752 #endif
753 
754 long arch_ptrace(struct task_struct *child, long request, long addr, long data)
755 {
756 	int ret;
757 
758 	switch (request) {
759 		case PTRACE_PEEKUSR:
760 			ret = ptrace_read_user(child, addr, (unsigned long __user *)data);
761 			break;
762 
763 		case PTRACE_POKEUSR:
764 			ret = ptrace_write_user(child, addr, data);
765 			break;
766 
767 		case PTRACE_GETREGS:
768 			ret = ptrace_getregs(child, (void __user *)data);
769 			break;
770 
771 		case PTRACE_SETREGS:
772 			ret = ptrace_setregs(child, (void __user *)data);
773 			break;
774 
775 		case PTRACE_GETFPREGS:
776 			ret = ptrace_getfpregs(child, (void __user *)data);
777 			break;
778 
779 		case PTRACE_SETFPREGS:
780 			ret = ptrace_setfpregs(child, (void __user *)data);
781 			break;
782 
783 #ifdef CONFIG_IWMMXT
784 		case PTRACE_GETWMMXREGS:
785 			ret = ptrace_getwmmxregs(child, (void __user *)data);
786 			break;
787 
788 		case PTRACE_SETWMMXREGS:
789 			ret = ptrace_setwmmxregs(child, (void __user *)data);
790 			break;
791 #endif
792 
793 		case PTRACE_GET_THREAD_AREA:
794 			ret = put_user(task_thread_info(child)->tp_value,
795 				       (unsigned long __user *) data);
796 			break;
797 
798 		case PTRACE_SET_SYSCALL:
799 			task_thread_info(child)->syscall = data;
800 			ret = 0;
801 			break;
802 
803 #ifdef CONFIG_CRUNCH
804 		case PTRACE_GETCRUNCHREGS:
805 			ret = ptrace_getcrunchregs(child, (void __user *)data);
806 			break;
807 
808 		case PTRACE_SETCRUNCHREGS:
809 			ret = ptrace_setcrunchregs(child, (void __user *)data);
810 			break;
811 #endif
812 
813 #ifdef CONFIG_VFP
814 		case PTRACE_GETVFPREGS:
815 			ret = ptrace_getvfpregs(child, (void __user *)data);
816 			break;
817 
818 		case PTRACE_SETVFPREGS:
819 			ret = ptrace_setvfpregs(child, (void __user *)data);
820 			break;
821 #endif
822 
823 		default:
824 			ret = ptrace_request(child, request, addr, data);
825 			break;
826 	}
827 
828 	return ret;
829 }
830 
831 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
832 {
833 	unsigned long ip;
834 
835 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
836 		return scno;
837 	if (!(current->ptrace & PT_PTRACED))
838 		return scno;
839 
840 	/*
841 	 * Save IP.  IP is used to denote syscall entry/exit:
842 	 *  IP = 0 -> entry, = 1 -> exit
843 	 */
844 	ip = regs->ARM_ip;
845 	regs->ARM_ip = why;
846 
847 	current_thread_info()->syscall = scno;
848 
849 	/* the 0x80 provides a way for the tracing parent to distinguish
850 	   between a syscall stop and SIGTRAP delivery */
851 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
852 				 ? 0x80 : 0));
853 	/*
854 	 * this isn't the same as continuing with a signal, but it will do
855 	 * for normal use.  strace only continues with a signal if the
856 	 * stopping signal is not SIGTRAP.  -brl
857 	 */
858 	if (current->exit_code) {
859 		send_sig(current->exit_code, current, 1);
860 		current->exit_code = 0;
861 	}
862 	regs->ARM_ip = ip;
863 
864 	return current_thread_info()->syscall;
865 }
866