xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision 81d67439)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/init.h>
20 #include <linux/signal.h>
21 #include <linux/uaccess.h>
22 #include <linux/perf_event.h>
23 #include <linux/hw_breakpoint.h>
24 #include <linux/regset.h>
25 
26 #include <asm/pgtable.h>
27 #include <asm/system.h>
28 #include <asm/traps.h>
29 
30 #define REG_PC	15
31 #define REG_PSR	16
32 /*
33  * does not yet catch signals sent when the child dies.
34  * in exit.c or in signal.c.
35  */
36 
37 #if 0
38 /*
39  * Breakpoint SWI instruction: SWI &9F0001
40  */
41 #define BREAKINST_ARM	0xef9f0001
42 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
43 #else
44 /*
45  * New breakpoints - use an undefined instruction.  The ARM architecture
46  * reference manual guarantees that the following instruction space
47  * will produce an undefined instruction exception on all CPUs:
48  *
49  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
50  *  Thumb: 1101 1110 xxxx xxxx
51  */
52 #define BREAKINST_ARM	0xe7f001f0
53 #define BREAKINST_THUMB	0xde01
54 #endif
55 
56 struct pt_regs_offset {
57 	const char *name;
58 	int offset;
59 };
60 
61 #define REG_OFFSET_NAME(r) \
62 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
63 #define REG_OFFSET_END {.name = NULL, .offset = 0}
64 
65 static const struct pt_regs_offset regoffset_table[] = {
66 	REG_OFFSET_NAME(r0),
67 	REG_OFFSET_NAME(r1),
68 	REG_OFFSET_NAME(r2),
69 	REG_OFFSET_NAME(r3),
70 	REG_OFFSET_NAME(r4),
71 	REG_OFFSET_NAME(r5),
72 	REG_OFFSET_NAME(r6),
73 	REG_OFFSET_NAME(r7),
74 	REG_OFFSET_NAME(r8),
75 	REG_OFFSET_NAME(r9),
76 	REG_OFFSET_NAME(r10),
77 	REG_OFFSET_NAME(fp),
78 	REG_OFFSET_NAME(ip),
79 	REG_OFFSET_NAME(sp),
80 	REG_OFFSET_NAME(lr),
81 	REG_OFFSET_NAME(pc),
82 	REG_OFFSET_NAME(cpsr),
83 	REG_OFFSET_NAME(ORIG_r0),
84 	REG_OFFSET_END,
85 };
86 
87 /**
88  * regs_query_register_offset() - query register offset from its name
89  * @name:	the name of a register
90  *
91  * regs_query_register_offset() returns the offset of a register in struct
92  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
93  */
94 int regs_query_register_offset(const char *name)
95 {
96 	const struct pt_regs_offset *roff;
97 	for (roff = regoffset_table; roff->name != NULL; roff++)
98 		if (!strcmp(roff->name, name))
99 			return roff->offset;
100 	return -EINVAL;
101 }
102 
103 /**
104  * regs_query_register_name() - query register name from its offset
105  * @offset:	the offset of a register in struct pt_regs.
106  *
107  * regs_query_register_name() returns the name of a register from its
108  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
109  */
110 const char *regs_query_register_name(unsigned int offset)
111 {
112 	const struct pt_regs_offset *roff;
113 	for (roff = regoffset_table; roff->name != NULL; roff++)
114 		if (roff->offset == offset)
115 			return roff->name;
116 	return NULL;
117 }
118 
119 /**
120  * regs_within_kernel_stack() - check the address in the stack
121  * @regs:      pt_regs which contains kernel stack pointer.
122  * @addr:      address which is checked.
123  *
124  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125  * If @addr is within the kernel stack, it returns true. If not, returns false.
126  */
127 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
128 {
129 	return ((addr & ~(THREAD_SIZE - 1))  ==
130 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
131 }
132 
133 /**
134  * regs_get_kernel_stack_nth() - get Nth entry of the stack
135  * @regs:	pt_regs which contains kernel stack pointer.
136  * @n:		stack entry number.
137  *
138  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
140  * this returns 0.
141  */
142 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
143 {
144 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
145 	addr += n;
146 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
147 		return *addr;
148 	else
149 		return 0;
150 }
151 
152 /*
153  * this routine will get a word off of the processes privileged stack.
154  * the offset is how far from the base addr as stored in the THREAD.
155  * this routine assumes that all the privileged stacks are in our
156  * data space.
157  */
158 static inline long get_user_reg(struct task_struct *task, int offset)
159 {
160 	return task_pt_regs(task)->uregs[offset];
161 }
162 
163 /*
164  * this routine will put a word on the processes privileged stack.
165  * the offset is how far from the base addr as stored in the THREAD.
166  * this routine assumes that all the privileged stacks are in our
167  * data space.
168  */
169 static inline int
170 put_user_reg(struct task_struct *task, int offset, long data)
171 {
172 	struct pt_regs newregs, *regs = task_pt_regs(task);
173 	int ret = -EINVAL;
174 
175 	newregs = *regs;
176 	newregs.uregs[offset] = data;
177 
178 	if (valid_user_regs(&newregs)) {
179 		regs->uregs[offset] = data;
180 		ret = 0;
181 	}
182 
183 	return ret;
184 }
185 
186 /*
187  * Called by kernel/ptrace.c when detaching..
188  */
189 void ptrace_disable(struct task_struct *child)
190 {
191 	/* Nothing to do. */
192 }
193 
194 /*
195  * Handle hitting a breakpoint.
196  */
197 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
198 {
199 	siginfo_t info;
200 
201 	info.si_signo = SIGTRAP;
202 	info.si_errno = 0;
203 	info.si_code  = TRAP_BRKPT;
204 	info.si_addr  = (void __user *)instruction_pointer(regs);
205 
206 	force_sig_info(SIGTRAP, &info, tsk);
207 }
208 
209 static int break_trap(struct pt_regs *regs, unsigned int instr)
210 {
211 	ptrace_break(current, regs);
212 	return 0;
213 }
214 
215 static struct undef_hook arm_break_hook = {
216 	.instr_mask	= 0x0fffffff,
217 	.instr_val	= 0x07f001f0,
218 	.cpsr_mask	= PSR_T_BIT,
219 	.cpsr_val	= 0,
220 	.fn		= break_trap,
221 };
222 
223 static struct undef_hook thumb_break_hook = {
224 	.instr_mask	= 0xffff,
225 	.instr_val	= 0xde01,
226 	.cpsr_mask	= PSR_T_BIT,
227 	.cpsr_val	= PSR_T_BIT,
228 	.fn		= break_trap,
229 };
230 
231 static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr)
232 {
233 	unsigned int instr2;
234 	void __user *pc;
235 
236 	/* Check the second half of the instruction.  */
237 	pc = (void __user *)(instruction_pointer(regs) + 2);
238 
239 	if (processor_mode(regs) == SVC_MODE) {
240 		instr2 = *(u16 *) pc;
241 	} else {
242 		get_user(instr2, (u16 __user *)pc);
243 	}
244 
245 	if (instr2 == 0xa000) {
246 		ptrace_break(current, regs);
247 		return 0;
248 	} else {
249 		return 1;
250 	}
251 }
252 
253 static struct undef_hook thumb2_break_hook = {
254 	.instr_mask	= 0xffff,
255 	.instr_val	= 0xf7f0,
256 	.cpsr_mask	= PSR_T_BIT,
257 	.cpsr_val	= PSR_T_BIT,
258 	.fn		= thumb2_break_trap,
259 };
260 
261 static int __init ptrace_break_init(void)
262 {
263 	register_undef_hook(&arm_break_hook);
264 	register_undef_hook(&thumb_break_hook);
265 	register_undef_hook(&thumb2_break_hook);
266 	return 0;
267 }
268 
269 core_initcall(ptrace_break_init);
270 
271 /*
272  * Read the word at offset "off" into the "struct user".  We
273  * actually access the pt_regs stored on the kernel stack.
274  */
275 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
276 			    unsigned long __user *ret)
277 {
278 	unsigned long tmp;
279 
280 	if (off & 3 || off >= sizeof(struct user))
281 		return -EIO;
282 
283 	tmp = 0;
284 	if (off == PT_TEXT_ADDR)
285 		tmp = tsk->mm->start_code;
286 	else if (off == PT_DATA_ADDR)
287 		tmp = tsk->mm->start_data;
288 	else if (off == PT_TEXT_END_ADDR)
289 		tmp = tsk->mm->end_code;
290 	else if (off < sizeof(struct pt_regs))
291 		tmp = get_user_reg(tsk, off >> 2);
292 
293 	return put_user(tmp, ret);
294 }
295 
296 /*
297  * Write the word at offset "off" into "struct user".  We
298  * actually access the pt_regs stored on the kernel stack.
299  */
300 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
301 			     unsigned long val)
302 {
303 	if (off & 3 || off >= sizeof(struct user))
304 		return -EIO;
305 
306 	if (off >= sizeof(struct pt_regs))
307 		return 0;
308 
309 	return put_user_reg(tsk, off >> 2, val);
310 }
311 
312 #ifdef CONFIG_IWMMXT
313 
314 /*
315  * Get the child iWMMXt state.
316  */
317 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
318 {
319 	struct thread_info *thread = task_thread_info(tsk);
320 
321 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
322 		return -ENODATA;
323 	iwmmxt_task_disable(thread);  /* force it to ram */
324 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
325 		? -EFAULT : 0;
326 }
327 
328 /*
329  * Set the child iWMMXt state.
330  */
331 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
332 {
333 	struct thread_info *thread = task_thread_info(tsk);
334 
335 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
336 		return -EACCES;
337 	iwmmxt_task_release(thread);  /* force a reload */
338 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
339 		? -EFAULT : 0;
340 }
341 
342 #endif
343 
344 #ifdef CONFIG_CRUNCH
345 /*
346  * Get the child Crunch state.
347  */
348 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
349 {
350 	struct thread_info *thread = task_thread_info(tsk);
351 
352 	crunch_task_disable(thread);  /* force it to ram */
353 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
354 		? -EFAULT : 0;
355 }
356 
357 /*
358  * Set the child Crunch state.
359  */
360 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
361 {
362 	struct thread_info *thread = task_thread_info(tsk);
363 
364 	crunch_task_release(thread);  /* force a reload */
365 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
366 		? -EFAULT : 0;
367 }
368 #endif
369 
370 #ifdef CONFIG_HAVE_HW_BREAKPOINT
371 /*
372  * Convert a virtual register number into an index for a thread_info
373  * breakpoint array. Breakpoints are identified using positive numbers
374  * whilst watchpoints are negative. The registers are laid out as pairs
375  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
376  * Register 0 is reserved for describing resource information.
377  */
378 static int ptrace_hbp_num_to_idx(long num)
379 {
380 	if (num < 0)
381 		num = (ARM_MAX_BRP << 1) - num;
382 	return (num - 1) >> 1;
383 }
384 
385 /*
386  * Returns the virtual register number for the address of the
387  * breakpoint at index idx.
388  */
389 static long ptrace_hbp_idx_to_num(int idx)
390 {
391 	long mid = ARM_MAX_BRP << 1;
392 	long num = (idx << 1) + 1;
393 	return num > mid ? mid - num : num;
394 }
395 
396 /*
397  * Handle hitting a HW-breakpoint.
398  */
399 static void ptrace_hbptriggered(struct perf_event *bp,
400 				     struct perf_sample_data *data,
401 				     struct pt_regs *regs)
402 {
403 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
404 	long num;
405 	int i;
406 	siginfo_t info;
407 
408 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
409 		if (current->thread.debug.hbp[i] == bp)
410 			break;
411 
412 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
413 
414 	info.si_signo	= SIGTRAP;
415 	info.si_errno	= (int)num;
416 	info.si_code	= TRAP_HWBKPT;
417 	info.si_addr	= (void __user *)(bkpt->trigger);
418 
419 	force_sig_info(SIGTRAP, &info, current);
420 }
421 
422 /*
423  * Set ptrace breakpoint pointers to zero for this task.
424  * This is required in order to prevent child processes from unregistering
425  * breakpoints held by their parent.
426  */
427 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
428 {
429 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
430 }
431 
432 /*
433  * Unregister breakpoints from this task and reset the pointers in
434  * the thread_struct.
435  */
436 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
437 {
438 	int i;
439 	struct thread_struct *t = &tsk->thread;
440 
441 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
442 		if (t->debug.hbp[i]) {
443 			unregister_hw_breakpoint(t->debug.hbp[i]);
444 			t->debug.hbp[i] = NULL;
445 		}
446 	}
447 }
448 
449 static u32 ptrace_get_hbp_resource_info(void)
450 {
451 	u8 num_brps, num_wrps, debug_arch, wp_len;
452 	u32 reg = 0;
453 
454 	num_brps	= hw_breakpoint_slots(TYPE_INST);
455 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
456 	debug_arch	= arch_get_debug_arch();
457 	wp_len		= arch_get_max_wp_len();
458 
459 	reg		|= debug_arch;
460 	reg		<<= 8;
461 	reg		|= wp_len;
462 	reg		<<= 8;
463 	reg		|= num_wrps;
464 	reg		<<= 8;
465 	reg		|= num_brps;
466 
467 	return reg;
468 }
469 
470 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
471 {
472 	struct perf_event_attr attr;
473 
474 	ptrace_breakpoint_init(&attr);
475 
476 	/* Initialise fields to sane defaults. */
477 	attr.bp_addr	= 0;
478 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
479 	attr.bp_type	= type;
480 	attr.disabled	= 1;
481 
482 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
483 					   tsk);
484 }
485 
486 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
487 			     unsigned long  __user *data)
488 {
489 	u32 reg;
490 	int idx, ret = 0;
491 	struct perf_event *bp;
492 	struct arch_hw_breakpoint_ctrl arch_ctrl;
493 
494 	if (num == 0) {
495 		reg = ptrace_get_hbp_resource_info();
496 	} else {
497 		idx = ptrace_hbp_num_to_idx(num);
498 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
499 			ret = -EINVAL;
500 			goto out;
501 		}
502 
503 		bp = tsk->thread.debug.hbp[idx];
504 		if (!bp) {
505 			reg = 0;
506 			goto put;
507 		}
508 
509 		arch_ctrl = counter_arch_bp(bp)->ctrl;
510 
511 		/*
512 		 * Fix up the len because we may have adjusted it
513 		 * to compensate for an unaligned address.
514 		 */
515 		while (!(arch_ctrl.len & 0x1))
516 			arch_ctrl.len >>= 1;
517 
518 		if (num & 0x1)
519 			reg = bp->attr.bp_addr;
520 		else
521 			reg = encode_ctrl_reg(arch_ctrl);
522 	}
523 
524 put:
525 	if (put_user(reg, data))
526 		ret = -EFAULT;
527 
528 out:
529 	return ret;
530 }
531 
532 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
533 			     unsigned long __user *data)
534 {
535 	int idx, gen_len, gen_type, implied_type, ret = 0;
536 	u32 user_val;
537 	struct perf_event *bp;
538 	struct arch_hw_breakpoint_ctrl ctrl;
539 	struct perf_event_attr attr;
540 
541 	if (num == 0)
542 		goto out;
543 	else if (num < 0)
544 		implied_type = HW_BREAKPOINT_RW;
545 	else
546 		implied_type = HW_BREAKPOINT_X;
547 
548 	idx = ptrace_hbp_num_to_idx(num);
549 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
550 		ret = -EINVAL;
551 		goto out;
552 	}
553 
554 	if (get_user(user_val, data)) {
555 		ret = -EFAULT;
556 		goto out;
557 	}
558 
559 	bp = tsk->thread.debug.hbp[idx];
560 	if (!bp) {
561 		bp = ptrace_hbp_create(tsk, implied_type);
562 		if (IS_ERR(bp)) {
563 			ret = PTR_ERR(bp);
564 			goto out;
565 		}
566 		tsk->thread.debug.hbp[idx] = bp;
567 	}
568 
569 	attr = bp->attr;
570 
571 	if (num & 0x1) {
572 		/* Address */
573 		attr.bp_addr	= user_val;
574 	} else {
575 		/* Control */
576 		decode_ctrl_reg(user_val, &ctrl);
577 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
578 		if (ret)
579 			goto out;
580 
581 		if ((gen_type & implied_type) != gen_type) {
582 			ret = -EINVAL;
583 			goto out;
584 		}
585 
586 		attr.bp_len	= gen_len;
587 		attr.bp_type	= gen_type;
588 		attr.disabled	= !ctrl.enabled;
589 	}
590 
591 	ret = modify_user_hw_breakpoint(bp, &attr);
592 out:
593 	return ret;
594 }
595 #endif
596 
597 /* regset get/set implementations */
598 
599 static int gpr_get(struct task_struct *target,
600 		   const struct user_regset *regset,
601 		   unsigned int pos, unsigned int count,
602 		   void *kbuf, void __user *ubuf)
603 {
604 	struct pt_regs *regs = task_pt_regs(target);
605 
606 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
607 				   regs,
608 				   0, sizeof(*regs));
609 }
610 
611 static int gpr_set(struct task_struct *target,
612 		   const struct user_regset *regset,
613 		   unsigned int pos, unsigned int count,
614 		   const void *kbuf, const void __user *ubuf)
615 {
616 	int ret;
617 	struct pt_regs newregs;
618 
619 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
620 				 &newregs,
621 				 0, sizeof(newregs));
622 	if (ret)
623 		return ret;
624 
625 	if (!valid_user_regs(&newregs))
626 		return -EINVAL;
627 
628 	*task_pt_regs(target) = newregs;
629 	return 0;
630 }
631 
632 static int fpa_get(struct task_struct *target,
633 		   const struct user_regset *regset,
634 		   unsigned int pos, unsigned int count,
635 		   void *kbuf, void __user *ubuf)
636 {
637 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
638 				   &task_thread_info(target)->fpstate,
639 				   0, sizeof(struct user_fp));
640 }
641 
642 static int fpa_set(struct task_struct *target,
643 		   const struct user_regset *regset,
644 		   unsigned int pos, unsigned int count,
645 		   const void *kbuf, const void __user *ubuf)
646 {
647 	struct thread_info *thread = task_thread_info(target);
648 
649 	thread->used_cp[1] = thread->used_cp[2] = 1;
650 
651 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
652 		&thread->fpstate,
653 		0, sizeof(struct user_fp));
654 }
655 
656 #ifdef CONFIG_VFP
657 /*
658  * VFP register get/set implementations.
659  *
660  * With respect to the kernel, struct user_fp is divided into three chunks:
661  * 16 or 32 real VFP registers (d0-d15 or d0-31)
662  *	These are transferred to/from the real registers in the task's
663  *	vfp_hard_struct.  The number of registers depends on the kernel
664  *	configuration.
665  *
666  * 16 or 0 fake VFP registers (d16-d31 or empty)
667  *	i.e., the user_vfp structure has space for 32 registers even if
668  *	the kernel doesn't have them all.
669  *
670  *	vfp_get() reads this chunk as zero where applicable
671  *	vfp_set() ignores this chunk
672  *
673  * 1 word for the FPSCR
674  *
675  * The bounds-checking logic built into user_regset_copyout and friends
676  * means that we can make a simple sequence of calls to map the relevant data
677  * to/from the specified slice of the user regset structure.
678  */
679 static int vfp_get(struct task_struct *target,
680 		   const struct user_regset *regset,
681 		   unsigned int pos, unsigned int count,
682 		   void *kbuf, void __user *ubuf)
683 {
684 	int ret;
685 	struct thread_info *thread = task_thread_info(target);
686 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
687 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
688 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
689 
690 	vfp_sync_hwstate(thread);
691 
692 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
693 				  &vfp->fpregs,
694 				  user_fpregs_offset,
695 				  user_fpregs_offset + sizeof(vfp->fpregs));
696 	if (ret)
697 		return ret;
698 
699 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
700 				       user_fpregs_offset + sizeof(vfp->fpregs),
701 				       user_fpscr_offset);
702 	if (ret)
703 		return ret;
704 
705 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
706 				   &vfp->fpscr,
707 				   user_fpscr_offset,
708 				   user_fpscr_offset + sizeof(vfp->fpscr));
709 }
710 
711 /*
712  * For vfp_set() a read-modify-write is done on the VFP registers,
713  * in order to avoid writing back a half-modified set of registers on
714  * failure.
715  */
716 static int vfp_set(struct task_struct *target,
717 			  const struct user_regset *regset,
718 			  unsigned int pos, unsigned int count,
719 			  const void *kbuf, const void __user *ubuf)
720 {
721 	int ret;
722 	struct thread_info *thread = task_thread_info(target);
723 	struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
724 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
725 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
726 
727 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
728 				  &new_vfp.fpregs,
729 				  user_fpregs_offset,
730 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
731 	if (ret)
732 		return ret;
733 
734 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
735 				user_fpregs_offset + sizeof(new_vfp.fpregs),
736 				user_fpscr_offset);
737 	if (ret)
738 		return ret;
739 
740 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
741 				 &new_vfp.fpscr,
742 				 user_fpscr_offset,
743 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
744 	if (ret)
745 		return ret;
746 
747 	vfp_sync_hwstate(thread);
748 	thread->vfpstate.hard = new_vfp;
749 	vfp_flush_hwstate(thread);
750 
751 	return 0;
752 }
753 #endif /* CONFIG_VFP */
754 
755 enum arm_regset {
756 	REGSET_GPR,
757 	REGSET_FPR,
758 #ifdef CONFIG_VFP
759 	REGSET_VFP,
760 #endif
761 };
762 
763 static const struct user_regset arm_regsets[] = {
764 	[REGSET_GPR] = {
765 		.core_note_type = NT_PRSTATUS,
766 		.n = ELF_NGREG,
767 		.size = sizeof(u32),
768 		.align = sizeof(u32),
769 		.get = gpr_get,
770 		.set = gpr_set
771 	},
772 	[REGSET_FPR] = {
773 		/*
774 		 * For the FPA regs in fpstate, the real fields are a mixture
775 		 * of sizes, so pretend that the registers are word-sized:
776 		 */
777 		.core_note_type = NT_PRFPREG,
778 		.n = sizeof(struct user_fp) / sizeof(u32),
779 		.size = sizeof(u32),
780 		.align = sizeof(u32),
781 		.get = fpa_get,
782 		.set = fpa_set
783 	},
784 #ifdef CONFIG_VFP
785 	[REGSET_VFP] = {
786 		/*
787 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
788 		 * a single word dangling at the end of struct user_vfp:
789 		 */
790 		.core_note_type = NT_ARM_VFP,
791 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
792 		.size = sizeof(u32),
793 		.align = sizeof(u32),
794 		.get = vfp_get,
795 		.set = vfp_set
796 	},
797 #endif /* CONFIG_VFP */
798 };
799 
800 static const struct user_regset_view user_arm_view = {
801 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
802 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
803 };
804 
805 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
806 {
807 	return &user_arm_view;
808 }
809 
810 long arch_ptrace(struct task_struct *child, long request,
811 		 unsigned long addr, unsigned long data)
812 {
813 	int ret;
814 	unsigned long __user *datap = (unsigned long __user *) data;
815 
816 	switch (request) {
817 		case PTRACE_PEEKUSR:
818 			ret = ptrace_read_user(child, addr, datap);
819 			break;
820 
821 		case PTRACE_POKEUSR:
822 			ret = ptrace_write_user(child, addr, data);
823 			break;
824 
825 		case PTRACE_GETREGS:
826 			ret = copy_regset_to_user(child,
827 						  &user_arm_view, REGSET_GPR,
828 						  0, sizeof(struct pt_regs),
829 						  datap);
830 			break;
831 
832 		case PTRACE_SETREGS:
833 			ret = copy_regset_from_user(child,
834 						    &user_arm_view, REGSET_GPR,
835 						    0, sizeof(struct pt_regs),
836 						    datap);
837 			break;
838 
839 		case PTRACE_GETFPREGS:
840 			ret = copy_regset_to_user(child,
841 						  &user_arm_view, REGSET_FPR,
842 						  0, sizeof(union fp_state),
843 						  datap);
844 			break;
845 
846 		case PTRACE_SETFPREGS:
847 			ret = copy_regset_from_user(child,
848 						    &user_arm_view, REGSET_FPR,
849 						    0, sizeof(union fp_state),
850 						    datap);
851 			break;
852 
853 #ifdef CONFIG_IWMMXT
854 		case PTRACE_GETWMMXREGS:
855 			ret = ptrace_getwmmxregs(child, datap);
856 			break;
857 
858 		case PTRACE_SETWMMXREGS:
859 			ret = ptrace_setwmmxregs(child, datap);
860 			break;
861 #endif
862 
863 		case PTRACE_GET_THREAD_AREA:
864 			ret = put_user(task_thread_info(child)->tp_value,
865 				       datap);
866 			break;
867 
868 		case PTRACE_SET_SYSCALL:
869 			task_thread_info(child)->syscall = data;
870 			ret = 0;
871 			break;
872 
873 #ifdef CONFIG_CRUNCH
874 		case PTRACE_GETCRUNCHREGS:
875 			ret = ptrace_getcrunchregs(child, datap);
876 			break;
877 
878 		case PTRACE_SETCRUNCHREGS:
879 			ret = ptrace_setcrunchregs(child, datap);
880 			break;
881 #endif
882 
883 #ifdef CONFIG_VFP
884 		case PTRACE_GETVFPREGS:
885 			ret = copy_regset_to_user(child,
886 						  &user_arm_view, REGSET_VFP,
887 						  0, ARM_VFPREGS_SIZE,
888 						  datap);
889 			break;
890 
891 		case PTRACE_SETVFPREGS:
892 			ret = copy_regset_from_user(child,
893 						    &user_arm_view, REGSET_VFP,
894 						    0, ARM_VFPREGS_SIZE,
895 						    datap);
896 			break;
897 #endif
898 
899 #ifdef CONFIG_HAVE_HW_BREAKPOINT
900 		case PTRACE_GETHBPREGS:
901 			if (ptrace_get_breakpoints(child) < 0)
902 				return -ESRCH;
903 
904 			ret = ptrace_gethbpregs(child, addr,
905 						(unsigned long __user *)data);
906 			ptrace_put_breakpoints(child);
907 			break;
908 		case PTRACE_SETHBPREGS:
909 			if (ptrace_get_breakpoints(child) < 0)
910 				return -ESRCH;
911 
912 			ret = ptrace_sethbpregs(child, addr,
913 						(unsigned long __user *)data);
914 			ptrace_put_breakpoints(child);
915 			break;
916 #endif
917 
918 		default:
919 			ret = ptrace_request(child, request, addr, data);
920 			break;
921 	}
922 
923 	return ret;
924 }
925 
926 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
927 {
928 	unsigned long ip;
929 
930 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
931 		return scno;
932 	if (!(current->ptrace & PT_PTRACED))
933 		return scno;
934 
935 	/*
936 	 * Save IP.  IP is used to denote syscall entry/exit:
937 	 *  IP = 0 -> entry, = 1 -> exit
938 	 */
939 	ip = regs->ARM_ip;
940 	regs->ARM_ip = why;
941 
942 	current_thread_info()->syscall = scno;
943 
944 	/* the 0x80 provides a way for the tracing parent to distinguish
945 	   between a syscall stop and SIGTRAP delivery */
946 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
947 				 ? 0x80 : 0));
948 	/*
949 	 * this isn't the same as continuing with a signal, but it will do
950 	 * for normal use.  strace only continues with a signal if the
951 	 * stopping signal is not SIGTRAP.  -brl
952 	 */
953 	if (current->exit_code) {
954 		send_sig(current->exit_code, current, 1);
955 		current->exit_code = 0;
956 	}
957 	regs->ARM_ip = ip;
958 
959 	return current_thread_info()->syscall;
960 }
961