xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision 7e035230)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 #include <linux/tracehook.h>
28 #include <linux/unistd.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/traps.h>
32 
33 #define REG_PC	15
34 #define REG_PSR	16
35 /*
36  * does not yet catch signals sent when the child dies.
37  * in exit.c or in signal.c.
38  */
39 
40 #if 0
41 /*
42  * Breakpoint SWI instruction: SWI &9F0001
43  */
44 #define BREAKINST_ARM	0xef9f0001
45 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
46 #else
47 /*
48  * New breakpoints - use an undefined instruction.  The ARM architecture
49  * reference manual guarantees that the following instruction space
50  * will produce an undefined instruction exception on all CPUs:
51  *
52  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
53  *  Thumb: 1101 1110 xxxx xxxx
54  */
55 #define BREAKINST_ARM	0xe7f001f0
56 #define BREAKINST_THUMB	0xde01
57 #endif
58 
59 struct pt_regs_offset {
60 	const char *name;
61 	int offset;
62 };
63 
64 #define REG_OFFSET_NAME(r) \
65 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
66 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67 
68 static const struct pt_regs_offset regoffset_table[] = {
69 	REG_OFFSET_NAME(r0),
70 	REG_OFFSET_NAME(r1),
71 	REG_OFFSET_NAME(r2),
72 	REG_OFFSET_NAME(r3),
73 	REG_OFFSET_NAME(r4),
74 	REG_OFFSET_NAME(r5),
75 	REG_OFFSET_NAME(r6),
76 	REG_OFFSET_NAME(r7),
77 	REG_OFFSET_NAME(r8),
78 	REG_OFFSET_NAME(r9),
79 	REG_OFFSET_NAME(r10),
80 	REG_OFFSET_NAME(fp),
81 	REG_OFFSET_NAME(ip),
82 	REG_OFFSET_NAME(sp),
83 	REG_OFFSET_NAME(lr),
84 	REG_OFFSET_NAME(pc),
85 	REG_OFFSET_NAME(cpsr),
86 	REG_OFFSET_NAME(ORIG_r0),
87 	REG_OFFSET_END,
88 };
89 
90 /**
91  * regs_query_register_offset() - query register offset from its name
92  * @name:	the name of a register
93  *
94  * regs_query_register_offset() returns the offset of a register in struct
95  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96  */
97 int regs_query_register_offset(const char *name)
98 {
99 	const struct pt_regs_offset *roff;
100 	for (roff = regoffset_table; roff->name != NULL; roff++)
101 		if (!strcmp(roff->name, name))
102 			return roff->offset;
103 	return -EINVAL;
104 }
105 
106 /**
107  * regs_query_register_name() - query register name from its offset
108  * @offset:	the offset of a register in struct pt_regs.
109  *
110  * regs_query_register_name() returns the name of a register from its
111  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112  */
113 const char *regs_query_register_name(unsigned int offset)
114 {
115 	const struct pt_regs_offset *roff;
116 	for (roff = regoffset_table; roff->name != NULL; roff++)
117 		if (roff->offset == offset)
118 			return roff->name;
119 	return NULL;
120 }
121 
122 /**
123  * regs_within_kernel_stack() - check the address in the stack
124  * @regs:      pt_regs which contains kernel stack pointer.
125  * @addr:      address which is checked.
126  *
127  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128  * If @addr is within the kernel stack, it returns true. If not, returns false.
129  */
130 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 {
132 	return ((addr & ~(THREAD_SIZE - 1))  ==
133 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134 }
135 
136 /**
137  * regs_get_kernel_stack_nth() - get Nth entry of the stack
138  * @regs:	pt_regs which contains kernel stack pointer.
139  * @n:		stack entry number.
140  *
141  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143  * this returns 0.
144  */
145 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146 {
147 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148 	addr += n;
149 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
150 		return *addr;
151 	else
152 		return 0;
153 }
154 
155 /*
156  * this routine will get a word off of the processes privileged stack.
157  * the offset is how far from the base addr as stored in the THREAD.
158  * this routine assumes that all the privileged stacks are in our
159  * data space.
160  */
161 static inline long get_user_reg(struct task_struct *task, int offset)
162 {
163 	return task_pt_regs(task)->uregs[offset];
164 }
165 
166 /*
167  * this routine will put a word on the processes privileged stack.
168  * the offset is how far from the base addr as stored in the THREAD.
169  * this routine assumes that all the privileged stacks are in our
170  * data space.
171  */
172 static inline int
173 put_user_reg(struct task_struct *task, int offset, long data)
174 {
175 	struct pt_regs newregs, *regs = task_pt_regs(task);
176 	int ret = -EINVAL;
177 
178 	newregs = *regs;
179 	newregs.uregs[offset] = data;
180 
181 	if (valid_user_regs(&newregs)) {
182 		regs->uregs[offset] = data;
183 		ret = 0;
184 	}
185 
186 	return ret;
187 }
188 
189 /*
190  * Called by kernel/ptrace.c when detaching..
191  */
192 void ptrace_disable(struct task_struct *child)
193 {
194 	/* Nothing to do. */
195 }
196 
197 /*
198  * Handle hitting a breakpoint.
199  */
200 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
201 {
202 	siginfo_t info;
203 
204 	info.si_signo = SIGTRAP;
205 	info.si_errno = 0;
206 	info.si_code  = TRAP_BRKPT;
207 	info.si_addr  = (void __user *)instruction_pointer(regs);
208 
209 	force_sig_info(SIGTRAP, &info, tsk);
210 }
211 
212 static int break_trap(struct pt_regs *regs, unsigned int instr)
213 {
214 	ptrace_break(current, regs);
215 	return 0;
216 }
217 
218 static struct undef_hook arm_break_hook = {
219 	.instr_mask	= 0x0fffffff,
220 	.instr_val	= 0x07f001f0,
221 	.cpsr_mask	= PSR_T_BIT,
222 	.cpsr_val	= 0,
223 	.fn		= break_trap,
224 };
225 
226 static struct undef_hook thumb_break_hook = {
227 	.instr_mask	= 0xffff,
228 	.instr_val	= 0xde01,
229 	.cpsr_mask	= PSR_T_BIT,
230 	.cpsr_val	= PSR_T_BIT,
231 	.fn		= break_trap,
232 };
233 
234 static struct undef_hook thumb2_break_hook = {
235 	.instr_mask	= 0xffffffff,
236 	.instr_val	= 0xf7f0a000,
237 	.cpsr_mask	= PSR_T_BIT,
238 	.cpsr_val	= PSR_T_BIT,
239 	.fn		= break_trap,
240 };
241 
242 static int __init ptrace_break_init(void)
243 {
244 	register_undef_hook(&arm_break_hook);
245 	register_undef_hook(&thumb_break_hook);
246 	register_undef_hook(&thumb2_break_hook);
247 	return 0;
248 }
249 
250 core_initcall(ptrace_break_init);
251 
252 /*
253  * Read the word at offset "off" into the "struct user".  We
254  * actually access the pt_regs stored on the kernel stack.
255  */
256 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
257 			    unsigned long __user *ret)
258 {
259 	unsigned long tmp;
260 
261 	if (off & 3)
262 		return -EIO;
263 
264 	tmp = 0;
265 	if (off == PT_TEXT_ADDR)
266 		tmp = tsk->mm->start_code;
267 	else if (off == PT_DATA_ADDR)
268 		tmp = tsk->mm->start_data;
269 	else if (off == PT_TEXT_END_ADDR)
270 		tmp = tsk->mm->end_code;
271 	else if (off < sizeof(struct pt_regs))
272 		tmp = get_user_reg(tsk, off >> 2);
273 	else if (off >= sizeof(struct user))
274 		return -EIO;
275 
276 	return put_user(tmp, ret);
277 }
278 
279 /*
280  * Write the word at offset "off" into "struct user".  We
281  * actually access the pt_regs stored on the kernel stack.
282  */
283 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
284 			     unsigned long val)
285 {
286 	if (off & 3 || off >= sizeof(struct user))
287 		return -EIO;
288 
289 	if (off >= sizeof(struct pt_regs))
290 		return 0;
291 
292 	return put_user_reg(tsk, off >> 2, val);
293 }
294 
295 #ifdef CONFIG_IWMMXT
296 
297 /*
298  * Get the child iWMMXt state.
299  */
300 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
301 {
302 	struct thread_info *thread = task_thread_info(tsk);
303 
304 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
305 		return -ENODATA;
306 	iwmmxt_task_disable(thread);  /* force it to ram */
307 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
308 		? -EFAULT : 0;
309 }
310 
311 /*
312  * Set the child iWMMXt state.
313  */
314 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
315 {
316 	struct thread_info *thread = task_thread_info(tsk);
317 
318 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
319 		return -EACCES;
320 	iwmmxt_task_release(thread);  /* force a reload */
321 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
322 		? -EFAULT : 0;
323 }
324 
325 #endif
326 
327 #ifdef CONFIG_CRUNCH
328 /*
329  * Get the child Crunch state.
330  */
331 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
332 {
333 	struct thread_info *thread = task_thread_info(tsk);
334 
335 	crunch_task_disable(thread);  /* force it to ram */
336 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
337 		? -EFAULT : 0;
338 }
339 
340 /*
341  * Set the child Crunch state.
342  */
343 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
344 {
345 	struct thread_info *thread = task_thread_info(tsk);
346 
347 	crunch_task_release(thread);  /* force a reload */
348 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
349 		? -EFAULT : 0;
350 }
351 #endif
352 
353 #ifdef CONFIG_HAVE_HW_BREAKPOINT
354 /*
355  * Convert a virtual register number into an index for a thread_info
356  * breakpoint array. Breakpoints are identified using positive numbers
357  * whilst watchpoints are negative. The registers are laid out as pairs
358  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
359  * Register 0 is reserved for describing resource information.
360  */
361 static int ptrace_hbp_num_to_idx(long num)
362 {
363 	if (num < 0)
364 		num = (ARM_MAX_BRP << 1) - num;
365 	return (num - 1) >> 1;
366 }
367 
368 /*
369  * Returns the virtual register number for the address of the
370  * breakpoint at index idx.
371  */
372 static long ptrace_hbp_idx_to_num(int idx)
373 {
374 	long mid = ARM_MAX_BRP << 1;
375 	long num = (idx << 1) + 1;
376 	return num > mid ? mid - num : num;
377 }
378 
379 /*
380  * Handle hitting a HW-breakpoint.
381  */
382 static void ptrace_hbptriggered(struct perf_event *bp,
383 				     struct perf_sample_data *data,
384 				     struct pt_regs *regs)
385 {
386 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
387 	long num;
388 	int i;
389 	siginfo_t info;
390 
391 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
392 		if (current->thread.debug.hbp[i] == bp)
393 			break;
394 
395 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
396 
397 	info.si_signo	= SIGTRAP;
398 	info.si_errno	= (int)num;
399 	info.si_code	= TRAP_HWBKPT;
400 	info.si_addr	= (void __user *)(bkpt->trigger);
401 
402 	force_sig_info(SIGTRAP, &info, current);
403 }
404 
405 /*
406  * Set ptrace breakpoint pointers to zero for this task.
407  * This is required in order to prevent child processes from unregistering
408  * breakpoints held by their parent.
409  */
410 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
411 {
412 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
413 }
414 
415 /*
416  * Unregister breakpoints from this task and reset the pointers in
417  * the thread_struct.
418  */
419 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
420 {
421 	int i;
422 	struct thread_struct *t = &tsk->thread;
423 
424 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
425 		if (t->debug.hbp[i]) {
426 			unregister_hw_breakpoint(t->debug.hbp[i]);
427 			t->debug.hbp[i] = NULL;
428 		}
429 	}
430 }
431 
432 static u32 ptrace_get_hbp_resource_info(void)
433 {
434 	u8 num_brps, num_wrps, debug_arch, wp_len;
435 	u32 reg = 0;
436 
437 	num_brps	= hw_breakpoint_slots(TYPE_INST);
438 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
439 	debug_arch	= arch_get_debug_arch();
440 	wp_len		= arch_get_max_wp_len();
441 
442 	reg		|= debug_arch;
443 	reg		<<= 8;
444 	reg		|= wp_len;
445 	reg		<<= 8;
446 	reg		|= num_wrps;
447 	reg		<<= 8;
448 	reg		|= num_brps;
449 
450 	return reg;
451 }
452 
453 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
454 {
455 	struct perf_event_attr attr;
456 
457 	ptrace_breakpoint_init(&attr);
458 
459 	/* Initialise fields to sane defaults. */
460 	attr.bp_addr	= 0;
461 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
462 	attr.bp_type	= type;
463 	attr.disabled	= 1;
464 
465 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
466 					   tsk);
467 }
468 
469 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
470 			     unsigned long  __user *data)
471 {
472 	u32 reg;
473 	int idx, ret = 0;
474 	struct perf_event *bp;
475 	struct arch_hw_breakpoint_ctrl arch_ctrl;
476 
477 	if (num == 0) {
478 		reg = ptrace_get_hbp_resource_info();
479 	} else {
480 		idx = ptrace_hbp_num_to_idx(num);
481 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
482 			ret = -EINVAL;
483 			goto out;
484 		}
485 
486 		bp = tsk->thread.debug.hbp[idx];
487 		if (!bp) {
488 			reg = 0;
489 			goto put;
490 		}
491 
492 		arch_ctrl = counter_arch_bp(bp)->ctrl;
493 
494 		/*
495 		 * Fix up the len because we may have adjusted it
496 		 * to compensate for an unaligned address.
497 		 */
498 		while (!(arch_ctrl.len & 0x1))
499 			arch_ctrl.len >>= 1;
500 
501 		if (num & 0x1)
502 			reg = bp->attr.bp_addr;
503 		else
504 			reg = encode_ctrl_reg(arch_ctrl);
505 	}
506 
507 put:
508 	if (put_user(reg, data))
509 		ret = -EFAULT;
510 
511 out:
512 	return ret;
513 }
514 
515 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
516 			     unsigned long __user *data)
517 {
518 	int idx, gen_len, gen_type, implied_type, ret = 0;
519 	u32 user_val;
520 	struct perf_event *bp;
521 	struct arch_hw_breakpoint_ctrl ctrl;
522 	struct perf_event_attr attr;
523 
524 	if (num == 0)
525 		goto out;
526 	else if (num < 0)
527 		implied_type = HW_BREAKPOINT_RW;
528 	else
529 		implied_type = HW_BREAKPOINT_X;
530 
531 	idx = ptrace_hbp_num_to_idx(num);
532 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
533 		ret = -EINVAL;
534 		goto out;
535 	}
536 
537 	if (get_user(user_val, data)) {
538 		ret = -EFAULT;
539 		goto out;
540 	}
541 
542 	bp = tsk->thread.debug.hbp[idx];
543 	if (!bp) {
544 		bp = ptrace_hbp_create(tsk, implied_type);
545 		if (IS_ERR(bp)) {
546 			ret = PTR_ERR(bp);
547 			goto out;
548 		}
549 		tsk->thread.debug.hbp[idx] = bp;
550 	}
551 
552 	attr = bp->attr;
553 
554 	if (num & 0x1) {
555 		/* Address */
556 		attr.bp_addr	= user_val;
557 	} else {
558 		/* Control */
559 		decode_ctrl_reg(user_val, &ctrl);
560 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
561 		if (ret)
562 			goto out;
563 
564 		if ((gen_type & implied_type) != gen_type) {
565 			ret = -EINVAL;
566 			goto out;
567 		}
568 
569 		attr.bp_len	= gen_len;
570 		attr.bp_type	= gen_type;
571 		attr.disabled	= !ctrl.enabled;
572 	}
573 
574 	ret = modify_user_hw_breakpoint(bp, &attr);
575 out:
576 	return ret;
577 }
578 #endif
579 
580 /* regset get/set implementations */
581 
582 static int gpr_get(struct task_struct *target,
583 		   const struct user_regset *regset,
584 		   unsigned int pos, unsigned int count,
585 		   void *kbuf, void __user *ubuf)
586 {
587 	struct pt_regs *regs = task_pt_regs(target);
588 
589 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
590 				   regs,
591 				   0, sizeof(*regs));
592 }
593 
594 static int gpr_set(struct task_struct *target,
595 		   const struct user_regset *regset,
596 		   unsigned int pos, unsigned int count,
597 		   const void *kbuf, const void __user *ubuf)
598 {
599 	int ret;
600 	struct pt_regs newregs;
601 
602 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
603 				 &newregs,
604 				 0, sizeof(newregs));
605 	if (ret)
606 		return ret;
607 
608 	if (!valid_user_regs(&newregs))
609 		return -EINVAL;
610 
611 	*task_pt_regs(target) = newregs;
612 	return 0;
613 }
614 
615 static int fpa_get(struct task_struct *target,
616 		   const struct user_regset *regset,
617 		   unsigned int pos, unsigned int count,
618 		   void *kbuf, void __user *ubuf)
619 {
620 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
621 				   &task_thread_info(target)->fpstate,
622 				   0, sizeof(struct user_fp));
623 }
624 
625 static int fpa_set(struct task_struct *target,
626 		   const struct user_regset *regset,
627 		   unsigned int pos, unsigned int count,
628 		   const void *kbuf, const void __user *ubuf)
629 {
630 	struct thread_info *thread = task_thread_info(target);
631 
632 	thread->used_cp[1] = thread->used_cp[2] = 1;
633 
634 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
635 		&thread->fpstate,
636 		0, sizeof(struct user_fp));
637 }
638 
639 #ifdef CONFIG_VFP
640 /*
641  * VFP register get/set implementations.
642  *
643  * With respect to the kernel, struct user_fp is divided into three chunks:
644  * 16 or 32 real VFP registers (d0-d15 or d0-31)
645  *	These are transferred to/from the real registers in the task's
646  *	vfp_hard_struct.  The number of registers depends on the kernel
647  *	configuration.
648  *
649  * 16 or 0 fake VFP registers (d16-d31 or empty)
650  *	i.e., the user_vfp structure has space for 32 registers even if
651  *	the kernel doesn't have them all.
652  *
653  *	vfp_get() reads this chunk as zero where applicable
654  *	vfp_set() ignores this chunk
655  *
656  * 1 word for the FPSCR
657  *
658  * The bounds-checking logic built into user_regset_copyout and friends
659  * means that we can make a simple sequence of calls to map the relevant data
660  * to/from the specified slice of the user regset structure.
661  */
662 static int vfp_get(struct task_struct *target,
663 		   const struct user_regset *regset,
664 		   unsigned int pos, unsigned int count,
665 		   void *kbuf, void __user *ubuf)
666 {
667 	int ret;
668 	struct thread_info *thread = task_thread_info(target);
669 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
670 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
671 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
672 
673 	vfp_sync_hwstate(thread);
674 
675 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
676 				  &vfp->fpregs,
677 				  user_fpregs_offset,
678 				  user_fpregs_offset + sizeof(vfp->fpregs));
679 	if (ret)
680 		return ret;
681 
682 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
683 				       user_fpregs_offset + sizeof(vfp->fpregs),
684 				       user_fpscr_offset);
685 	if (ret)
686 		return ret;
687 
688 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
689 				   &vfp->fpscr,
690 				   user_fpscr_offset,
691 				   user_fpscr_offset + sizeof(vfp->fpscr));
692 }
693 
694 /*
695  * For vfp_set() a read-modify-write is done on the VFP registers,
696  * in order to avoid writing back a half-modified set of registers on
697  * failure.
698  */
699 static int vfp_set(struct task_struct *target,
700 			  const struct user_regset *regset,
701 			  unsigned int pos, unsigned int count,
702 			  const void *kbuf, const void __user *ubuf)
703 {
704 	int ret;
705 	struct thread_info *thread = task_thread_info(target);
706 	struct vfp_hard_struct new_vfp;
707 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
708 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
709 
710 	vfp_sync_hwstate(thread);
711 	new_vfp = thread->vfpstate.hard;
712 
713 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
714 				  &new_vfp.fpregs,
715 				  user_fpregs_offset,
716 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
717 	if (ret)
718 		return ret;
719 
720 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
721 				user_fpregs_offset + sizeof(new_vfp.fpregs),
722 				user_fpscr_offset);
723 	if (ret)
724 		return ret;
725 
726 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
727 				 &new_vfp.fpscr,
728 				 user_fpscr_offset,
729 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
730 	if (ret)
731 		return ret;
732 
733 	vfp_flush_hwstate(thread);
734 	thread->vfpstate.hard = new_vfp;
735 
736 	return 0;
737 }
738 #endif /* CONFIG_VFP */
739 
740 enum arm_regset {
741 	REGSET_GPR,
742 	REGSET_FPR,
743 #ifdef CONFIG_VFP
744 	REGSET_VFP,
745 #endif
746 };
747 
748 static const struct user_regset arm_regsets[] = {
749 	[REGSET_GPR] = {
750 		.core_note_type = NT_PRSTATUS,
751 		.n = ELF_NGREG,
752 		.size = sizeof(u32),
753 		.align = sizeof(u32),
754 		.get = gpr_get,
755 		.set = gpr_set
756 	},
757 	[REGSET_FPR] = {
758 		/*
759 		 * For the FPA regs in fpstate, the real fields are a mixture
760 		 * of sizes, so pretend that the registers are word-sized:
761 		 */
762 		.core_note_type = NT_PRFPREG,
763 		.n = sizeof(struct user_fp) / sizeof(u32),
764 		.size = sizeof(u32),
765 		.align = sizeof(u32),
766 		.get = fpa_get,
767 		.set = fpa_set
768 	},
769 #ifdef CONFIG_VFP
770 	[REGSET_VFP] = {
771 		/*
772 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
773 		 * a single word dangling at the end of struct user_vfp:
774 		 */
775 		.core_note_type = NT_ARM_VFP,
776 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
777 		.size = sizeof(u32),
778 		.align = sizeof(u32),
779 		.get = vfp_get,
780 		.set = vfp_set
781 	},
782 #endif /* CONFIG_VFP */
783 };
784 
785 static const struct user_regset_view user_arm_view = {
786 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
787 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
788 };
789 
790 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
791 {
792 	return &user_arm_view;
793 }
794 
795 long arch_ptrace(struct task_struct *child, long request,
796 		 unsigned long addr, unsigned long data)
797 {
798 	int ret;
799 	unsigned long __user *datap = (unsigned long __user *) data;
800 
801 	switch (request) {
802 		case PTRACE_PEEKUSR:
803 			ret = ptrace_read_user(child, addr, datap);
804 			break;
805 
806 		case PTRACE_POKEUSR:
807 			ret = ptrace_write_user(child, addr, data);
808 			break;
809 
810 		case PTRACE_GETREGS:
811 			ret = copy_regset_to_user(child,
812 						  &user_arm_view, REGSET_GPR,
813 						  0, sizeof(struct pt_regs),
814 						  datap);
815 			break;
816 
817 		case PTRACE_SETREGS:
818 			ret = copy_regset_from_user(child,
819 						    &user_arm_view, REGSET_GPR,
820 						    0, sizeof(struct pt_regs),
821 						    datap);
822 			break;
823 
824 		case PTRACE_GETFPREGS:
825 			ret = copy_regset_to_user(child,
826 						  &user_arm_view, REGSET_FPR,
827 						  0, sizeof(union fp_state),
828 						  datap);
829 			break;
830 
831 		case PTRACE_SETFPREGS:
832 			ret = copy_regset_from_user(child,
833 						    &user_arm_view, REGSET_FPR,
834 						    0, sizeof(union fp_state),
835 						    datap);
836 			break;
837 
838 #ifdef CONFIG_IWMMXT
839 		case PTRACE_GETWMMXREGS:
840 			ret = ptrace_getwmmxregs(child, datap);
841 			break;
842 
843 		case PTRACE_SETWMMXREGS:
844 			ret = ptrace_setwmmxregs(child, datap);
845 			break;
846 #endif
847 
848 		case PTRACE_GET_THREAD_AREA:
849 			ret = put_user(task_thread_info(child)->tp_value,
850 				       datap);
851 			break;
852 
853 		case PTRACE_SET_SYSCALL:
854 			task_thread_info(child)->syscall = data;
855 			ret = 0;
856 			break;
857 
858 #ifdef CONFIG_CRUNCH
859 		case PTRACE_GETCRUNCHREGS:
860 			ret = ptrace_getcrunchregs(child, datap);
861 			break;
862 
863 		case PTRACE_SETCRUNCHREGS:
864 			ret = ptrace_setcrunchregs(child, datap);
865 			break;
866 #endif
867 
868 #ifdef CONFIG_VFP
869 		case PTRACE_GETVFPREGS:
870 			ret = copy_regset_to_user(child,
871 						  &user_arm_view, REGSET_VFP,
872 						  0, ARM_VFPREGS_SIZE,
873 						  datap);
874 			break;
875 
876 		case PTRACE_SETVFPREGS:
877 			ret = copy_regset_from_user(child,
878 						    &user_arm_view, REGSET_VFP,
879 						    0, ARM_VFPREGS_SIZE,
880 						    datap);
881 			break;
882 #endif
883 
884 #ifdef CONFIG_HAVE_HW_BREAKPOINT
885 		case PTRACE_GETHBPREGS:
886 			if (ptrace_get_breakpoints(child) < 0)
887 				return -ESRCH;
888 
889 			ret = ptrace_gethbpregs(child, addr,
890 						(unsigned long __user *)data);
891 			ptrace_put_breakpoints(child);
892 			break;
893 		case PTRACE_SETHBPREGS:
894 			if (ptrace_get_breakpoints(child) < 0)
895 				return -ESRCH;
896 
897 			ret = ptrace_sethbpregs(child, addr,
898 						(unsigned long __user *)data);
899 			ptrace_put_breakpoints(child);
900 			break;
901 #endif
902 
903 		default:
904 			ret = ptrace_request(child, request, addr, data);
905 			break;
906 	}
907 
908 	return ret;
909 }
910 
911 enum ptrace_syscall_dir {
912 	PTRACE_SYSCALL_ENTER = 0,
913 	PTRACE_SYSCALL_EXIT,
914 };
915 
916 static int ptrace_syscall_trace(struct pt_regs *regs, int scno,
917 				enum ptrace_syscall_dir dir)
918 {
919 	unsigned long ip;
920 
921 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
922 		return scno;
923 
924 	current_thread_info()->syscall = scno;
925 
926 	/*
927 	 * IP is used to denote syscall entry/exit:
928 	 * IP = 0 -> entry, =1 -> exit
929 	 */
930 	ip = regs->ARM_ip;
931 	regs->ARM_ip = dir;
932 
933 	if (dir == PTRACE_SYSCALL_EXIT)
934 		tracehook_report_syscall_exit(regs, 0);
935 	else if (tracehook_report_syscall_entry(regs))
936 		current_thread_info()->syscall = -1;
937 
938 	regs->ARM_ip = ip;
939 	return current_thread_info()->syscall;
940 }
941 
942 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
943 {
944 	int ret = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_ENTER);
945 	audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0, regs->ARM_r1,
946 			    regs->ARM_r2, regs->ARM_r3);
947 	return ret;
948 }
949 
950 asmlinkage int syscall_trace_exit(struct pt_regs *regs, int scno)
951 {
952 	int ret = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_EXIT);
953 	audit_syscall_exit(regs);
954 	return ret;
955 }
956