1 /* 2 * linux/arch/arm/kernel/ptrace.c 3 * 4 * By Ross Biro 1/23/92 5 * edited by Linus Torvalds 6 * ARM modifications Copyright (C) 2000 Russell King 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/mm.h> 15 #include <linux/elf.h> 16 #include <linux/smp.h> 17 #include <linux/ptrace.h> 18 #include <linux/user.h> 19 #include <linux/security.h> 20 #include <linux/init.h> 21 #include <linux/signal.h> 22 #include <linux/uaccess.h> 23 #include <linux/perf_event.h> 24 #include <linux/hw_breakpoint.h> 25 #include <linux/regset.h> 26 #include <linux/audit.h> 27 28 #include <asm/pgtable.h> 29 #include <asm/traps.h> 30 31 #define REG_PC 15 32 #define REG_PSR 16 33 /* 34 * does not yet catch signals sent when the child dies. 35 * in exit.c or in signal.c. 36 */ 37 38 #if 0 39 /* 40 * Breakpoint SWI instruction: SWI &9F0001 41 */ 42 #define BREAKINST_ARM 0xef9f0001 43 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 44 #else 45 /* 46 * New breakpoints - use an undefined instruction. The ARM architecture 47 * reference manual guarantees that the following instruction space 48 * will produce an undefined instruction exception on all CPUs: 49 * 50 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 51 * Thumb: 1101 1110 xxxx xxxx 52 */ 53 #define BREAKINST_ARM 0xe7f001f0 54 #define BREAKINST_THUMB 0xde01 55 #endif 56 57 struct pt_regs_offset { 58 const char *name; 59 int offset; 60 }; 61 62 #define REG_OFFSET_NAME(r) \ 63 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 64 #define REG_OFFSET_END {.name = NULL, .offset = 0} 65 66 static const struct pt_regs_offset regoffset_table[] = { 67 REG_OFFSET_NAME(r0), 68 REG_OFFSET_NAME(r1), 69 REG_OFFSET_NAME(r2), 70 REG_OFFSET_NAME(r3), 71 REG_OFFSET_NAME(r4), 72 REG_OFFSET_NAME(r5), 73 REG_OFFSET_NAME(r6), 74 REG_OFFSET_NAME(r7), 75 REG_OFFSET_NAME(r8), 76 REG_OFFSET_NAME(r9), 77 REG_OFFSET_NAME(r10), 78 REG_OFFSET_NAME(fp), 79 REG_OFFSET_NAME(ip), 80 REG_OFFSET_NAME(sp), 81 REG_OFFSET_NAME(lr), 82 REG_OFFSET_NAME(pc), 83 REG_OFFSET_NAME(cpsr), 84 REG_OFFSET_NAME(ORIG_r0), 85 REG_OFFSET_END, 86 }; 87 88 /** 89 * regs_query_register_offset() - query register offset from its name 90 * @name: the name of a register 91 * 92 * regs_query_register_offset() returns the offset of a register in struct 93 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 94 */ 95 int regs_query_register_offset(const char *name) 96 { 97 const struct pt_regs_offset *roff; 98 for (roff = regoffset_table; roff->name != NULL; roff++) 99 if (!strcmp(roff->name, name)) 100 return roff->offset; 101 return -EINVAL; 102 } 103 104 /** 105 * regs_query_register_name() - query register name from its offset 106 * @offset: the offset of a register in struct pt_regs. 107 * 108 * regs_query_register_name() returns the name of a register from its 109 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 110 */ 111 const char *regs_query_register_name(unsigned int offset) 112 { 113 const struct pt_regs_offset *roff; 114 for (roff = regoffset_table; roff->name != NULL; roff++) 115 if (roff->offset == offset) 116 return roff->name; 117 return NULL; 118 } 119 120 /** 121 * regs_within_kernel_stack() - check the address in the stack 122 * @regs: pt_regs which contains kernel stack pointer. 123 * @addr: address which is checked. 124 * 125 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 126 * If @addr is within the kernel stack, it returns true. If not, returns false. 127 */ 128 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 129 { 130 return ((addr & ~(THREAD_SIZE - 1)) == 131 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 132 } 133 134 /** 135 * regs_get_kernel_stack_nth() - get Nth entry of the stack 136 * @regs: pt_regs which contains kernel stack pointer. 137 * @n: stack entry number. 138 * 139 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 140 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 141 * this returns 0. 142 */ 143 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 144 { 145 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 146 addr += n; 147 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 148 return *addr; 149 else 150 return 0; 151 } 152 153 /* 154 * this routine will get a word off of the processes privileged stack. 155 * the offset is how far from the base addr as stored in the THREAD. 156 * this routine assumes that all the privileged stacks are in our 157 * data space. 158 */ 159 static inline long get_user_reg(struct task_struct *task, int offset) 160 { 161 return task_pt_regs(task)->uregs[offset]; 162 } 163 164 /* 165 * this routine will put a word on the processes privileged stack. 166 * the offset is how far from the base addr as stored in the THREAD. 167 * this routine assumes that all the privileged stacks are in our 168 * data space. 169 */ 170 static inline int 171 put_user_reg(struct task_struct *task, int offset, long data) 172 { 173 struct pt_regs newregs, *regs = task_pt_regs(task); 174 int ret = -EINVAL; 175 176 newregs = *regs; 177 newregs.uregs[offset] = data; 178 179 if (valid_user_regs(&newregs)) { 180 regs->uregs[offset] = data; 181 ret = 0; 182 } 183 184 return ret; 185 } 186 187 /* 188 * Called by kernel/ptrace.c when detaching.. 189 */ 190 void ptrace_disable(struct task_struct *child) 191 { 192 /* Nothing to do. */ 193 } 194 195 /* 196 * Handle hitting a breakpoint. 197 */ 198 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) 199 { 200 siginfo_t info; 201 202 info.si_signo = SIGTRAP; 203 info.si_errno = 0; 204 info.si_code = TRAP_BRKPT; 205 info.si_addr = (void __user *)instruction_pointer(regs); 206 207 force_sig_info(SIGTRAP, &info, tsk); 208 } 209 210 static int break_trap(struct pt_regs *regs, unsigned int instr) 211 { 212 ptrace_break(current, regs); 213 return 0; 214 } 215 216 static struct undef_hook arm_break_hook = { 217 .instr_mask = 0x0fffffff, 218 .instr_val = 0x07f001f0, 219 .cpsr_mask = PSR_T_BIT, 220 .cpsr_val = 0, 221 .fn = break_trap, 222 }; 223 224 static struct undef_hook thumb_break_hook = { 225 .instr_mask = 0xffff, 226 .instr_val = 0xde01, 227 .cpsr_mask = PSR_T_BIT, 228 .cpsr_val = PSR_T_BIT, 229 .fn = break_trap, 230 }; 231 232 static struct undef_hook thumb2_break_hook = { 233 .instr_mask = 0xffffffff, 234 .instr_val = 0xf7f0a000, 235 .cpsr_mask = PSR_T_BIT, 236 .cpsr_val = PSR_T_BIT, 237 .fn = break_trap, 238 }; 239 240 static int __init ptrace_break_init(void) 241 { 242 register_undef_hook(&arm_break_hook); 243 register_undef_hook(&thumb_break_hook); 244 register_undef_hook(&thumb2_break_hook); 245 return 0; 246 } 247 248 core_initcall(ptrace_break_init); 249 250 /* 251 * Read the word at offset "off" into the "struct user". We 252 * actually access the pt_regs stored on the kernel stack. 253 */ 254 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 255 unsigned long __user *ret) 256 { 257 unsigned long tmp; 258 259 if (off & 3) 260 return -EIO; 261 262 tmp = 0; 263 if (off == PT_TEXT_ADDR) 264 tmp = tsk->mm->start_code; 265 else if (off == PT_DATA_ADDR) 266 tmp = tsk->mm->start_data; 267 else if (off == PT_TEXT_END_ADDR) 268 tmp = tsk->mm->end_code; 269 else if (off < sizeof(struct pt_regs)) 270 tmp = get_user_reg(tsk, off >> 2); 271 else if (off >= sizeof(struct user)) 272 return -EIO; 273 274 return put_user(tmp, ret); 275 } 276 277 /* 278 * Write the word at offset "off" into "struct user". We 279 * actually access the pt_regs stored on the kernel stack. 280 */ 281 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 282 unsigned long val) 283 { 284 if (off & 3 || off >= sizeof(struct user)) 285 return -EIO; 286 287 if (off >= sizeof(struct pt_regs)) 288 return 0; 289 290 return put_user_reg(tsk, off >> 2, val); 291 } 292 293 #ifdef CONFIG_IWMMXT 294 295 /* 296 * Get the child iWMMXt state. 297 */ 298 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 299 { 300 struct thread_info *thread = task_thread_info(tsk); 301 302 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 303 return -ENODATA; 304 iwmmxt_task_disable(thread); /* force it to ram */ 305 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 306 ? -EFAULT : 0; 307 } 308 309 /* 310 * Set the child iWMMXt state. 311 */ 312 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 313 { 314 struct thread_info *thread = task_thread_info(tsk); 315 316 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 317 return -EACCES; 318 iwmmxt_task_release(thread); /* force a reload */ 319 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 320 ? -EFAULT : 0; 321 } 322 323 #endif 324 325 #ifdef CONFIG_CRUNCH 326 /* 327 * Get the child Crunch state. 328 */ 329 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 330 { 331 struct thread_info *thread = task_thread_info(tsk); 332 333 crunch_task_disable(thread); /* force it to ram */ 334 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 335 ? -EFAULT : 0; 336 } 337 338 /* 339 * Set the child Crunch state. 340 */ 341 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 342 { 343 struct thread_info *thread = task_thread_info(tsk); 344 345 crunch_task_release(thread); /* force a reload */ 346 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 347 ? -EFAULT : 0; 348 } 349 #endif 350 351 #ifdef CONFIG_HAVE_HW_BREAKPOINT 352 /* 353 * Convert a virtual register number into an index for a thread_info 354 * breakpoint array. Breakpoints are identified using positive numbers 355 * whilst watchpoints are negative. The registers are laid out as pairs 356 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 357 * Register 0 is reserved for describing resource information. 358 */ 359 static int ptrace_hbp_num_to_idx(long num) 360 { 361 if (num < 0) 362 num = (ARM_MAX_BRP << 1) - num; 363 return (num - 1) >> 1; 364 } 365 366 /* 367 * Returns the virtual register number for the address of the 368 * breakpoint at index idx. 369 */ 370 static long ptrace_hbp_idx_to_num(int idx) 371 { 372 long mid = ARM_MAX_BRP << 1; 373 long num = (idx << 1) + 1; 374 return num > mid ? mid - num : num; 375 } 376 377 /* 378 * Handle hitting a HW-breakpoint. 379 */ 380 static void ptrace_hbptriggered(struct perf_event *bp, 381 struct perf_sample_data *data, 382 struct pt_regs *regs) 383 { 384 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 385 long num; 386 int i; 387 siginfo_t info; 388 389 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 390 if (current->thread.debug.hbp[i] == bp) 391 break; 392 393 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 394 395 info.si_signo = SIGTRAP; 396 info.si_errno = (int)num; 397 info.si_code = TRAP_HWBKPT; 398 info.si_addr = (void __user *)(bkpt->trigger); 399 400 force_sig_info(SIGTRAP, &info, current); 401 } 402 403 /* 404 * Set ptrace breakpoint pointers to zero for this task. 405 * This is required in order to prevent child processes from unregistering 406 * breakpoints held by their parent. 407 */ 408 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 409 { 410 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 411 } 412 413 /* 414 * Unregister breakpoints from this task and reset the pointers in 415 * the thread_struct. 416 */ 417 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 418 { 419 int i; 420 struct thread_struct *t = &tsk->thread; 421 422 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 423 if (t->debug.hbp[i]) { 424 unregister_hw_breakpoint(t->debug.hbp[i]); 425 t->debug.hbp[i] = NULL; 426 } 427 } 428 } 429 430 static u32 ptrace_get_hbp_resource_info(void) 431 { 432 u8 num_brps, num_wrps, debug_arch, wp_len; 433 u32 reg = 0; 434 435 num_brps = hw_breakpoint_slots(TYPE_INST); 436 num_wrps = hw_breakpoint_slots(TYPE_DATA); 437 debug_arch = arch_get_debug_arch(); 438 wp_len = arch_get_max_wp_len(); 439 440 reg |= debug_arch; 441 reg <<= 8; 442 reg |= wp_len; 443 reg <<= 8; 444 reg |= num_wrps; 445 reg <<= 8; 446 reg |= num_brps; 447 448 return reg; 449 } 450 451 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 452 { 453 struct perf_event_attr attr; 454 455 ptrace_breakpoint_init(&attr); 456 457 /* Initialise fields to sane defaults. */ 458 attr.bp_addr = 0; 459 attr.bp_len = HW_BREAKPOINT_LEN_4; 460 attr.bp_type = type; 461 attr.disabled = 1; 462 463 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 464 tsk); 465 } 466 467 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 468 unsigned long __user *data) 469 { 470 u32 reg; 471 int idx, ret = 0; 472 struct perf_event *bp; 473 struct arch_hw_breakpoint_ctrl arch_ctrl; 474 475 if (num == 0) { 476 reg = ptrace_get_hbp_resource_info(); 477 } else { 478 idx = ptrace_hbp_num_to_idx(num); 479 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 480 ret = -EINVAL; 481 goto out; 482 } 483 484 bp = tsk->thread.debug.hbp[idx]; 485 if (!bp) { 486 reg = 0; 487 goto put; 488 } 489 490 arch_ctrl = counter_arch_bp(bp)->ctrl; 491 492 /* 493 * Fix up the len because we may have adjusted it 494 * to compensate for an unaligned address. 495 */ 496 while (!(arch_ctrl.len & 0x1)) 497 arch_ctrl.len >>= 1; 498 499 if (num & 0x1) 500 reg = bp->attr.bp_addr; 501 else 502 reg = encode_ctrl_reg(arch_ctrl); 503 } 504 505 put: 506 if (put_user(reg, data)) 507 ret = -EFAULT; 508 509 out: 510 return ret; 511 } 512 513 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 514 unsigned long __user *data) 515 { 516 int idx, gen_len, gen_type, implied_type, ret = 0; 517 u32 user_val; 518 struct perf_event *bp; 519 struct arch_hw_breakpoint_ctrl ctrl; 520 struct perf_event_attr attr; 521 522 if (num == 0) 523 goto out; 524 else if (num < 0) 525 implied_type = HW_BREAKPOINT_RW; 526 else 527 implied_type = HW_BREAKPOINT_X; 528 529 idx = ptrace_hbp_num_to_idx(num); 530 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 531 ret = -EINVAL; 532 goto out; 533 } 534 535 if (get_user(user_val, data)) { 536 ret = -EFAULT; 537 goto out; 538 } 539 540 bp = tsk->thread.debug.hbp[idx]; 541 if (!bp) { 542 bp = ptrace_hbp_create(tsk, implied_type); 543 if (IS_ERR(bp)) { 544 ret = PTR_ERR(bp); 545 goto out; 546 } 547 tsk->thread.debug.hbp[idx] = bp; 548 } 549 550 attr = bp->attr; 551 552 if (num & 0x1) { 553 /* Address */ 554 attr.bp_addr = user_val; 555 } else { 556 /* Control */ 557 decode_ctrl_reg(user_val, &ctrl); 558 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 559 if (ret) 560 goto out; 561 562 if ((gen_type & implied_type) != gen_type) { 563 ret = -EINVAL; 564 goto out; 565 } 566 567 attr.bp_len = gen_len; 568 attr.bp_type = gen_type; 569 attr.disabled = !ctrl.enabled; 570 } 571 572 ret = modify_user_hw_breakpoint(bp, &attr); 573 out: 574 return ret; 575 } 576 #endif 577 578 /* regset get/set implementations */ 579 580 static int gpr_get(struct task_struct *target, 581 const struct user_regset *regset, 582 unsigned int pos, unsigned int count, 583 void *kbuf, void __user *ubuf) 584 { 585 struct pt_regs *regs = task_pt_regs(target); 586 587 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 588 regs, 589 0, sizeof(*regs)); 590 } 591 592 static int gpr_set(struct task_struct *target, 593 const struct user_regset *regset, 594 unsigned int pos, unsigned int count, 595 const void *kbuf, const void __user *ubuf) 596 { 597 int ret; 598 struct pt_regs newregs; 599 600 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 601 &newregs, 602 0, sizeof(newregs)); 603 if (ret) 604 return ret; 605 606 if (!valid_user_regs(&newregs)) 607 return -EINVAL; 608 609 *task_pt_regs(target) = newregs; 610 return 0; 611 } 612 613 static int fpa_get(struct task_struct *target, 614 const struct user_regset *regset, 615 unsigned int pos, unsigned int count, 616 void *kbuf, void __user *ubuf) 617 { 618 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 619 &task_thread_info(target)->fpstate, 620 0, sizeof(struct user_fp)); 621 } 622 623 static int fpa_set(struct task_struct *target, 624 const struct user_regset *regset, 625 unsigned int pos, unsigned int count, 626 const void *kbuf, const void __user *ubuf) 627 { 628 struct thread_info *thread = task_thread_info(target); 629 630 thread->used_cp[1] = thread->used_cp[2] = 1; 631 632 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 633 &thread->fpstate, 634 0, sizeof(struct user_fp)); 635 } 636 637 #ifdef CONFIG_VFP 638 /* 639 * VFP register get/set implementations. 640 * 641 * With respect to the kernel, struct user_fp is divided into three chunks: 642 * 16 or 32 real VFP registers (d0-d15 or d0-31) 643 * These are transferred to/from the real registers in the task's 644 * vfp_hard_struct. The number of registers depends on the kernel 645 * configuration. 646 * 647 * 16 or 0 fake VFP registers (d16-d31 or empty) 648 * i.e., the user_vfp structure has space for 32 registers even if 649 * the kernel doesn't have them all. 650 * 651 * vfp_get() reads this chunk as zero where applicable 652 * vfp_set() ignores this chunk 653 * 654 * 1 word for the FPSCR 655 * 656 * The bounds-checking logic built into user_regset_copyout and friends 657 * means that we can make a simple sequence of calls to map the relevant data 658 * to/from the specified slice of the user regset structure. 659 */ 660 static int vfp_get(struct task_struct *target, 661 const struct user_regset *regset, 662 unsigned int pos, unsigned int count, 663 void *kbuf, void __user *ubuf) 664 { 665 int ret; 666 struct thread_info *thread = task_thread_info(target); 667 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 668 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 669 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 670 671 vfp_sync_hwstate(thread); 672 673 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 674 &vfp->fpregs, 675 user_fpregs_offset, 676 user_fpregs_offset + sizeof(vfp->fpregs)); 677 if (ret) 678 return ret; 679 680 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 681 user_fpregs_offset + sizeof(vfp->fpregs), 682 user_fpscr_offset); 683 if (ret) 684 return ret; 685 686 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 687 &vfp->fpscr, 688 user_fpscr_offset, 689 user_fpscr_offset + sizeof(vfp->fpscr)); 690 } 691 692 /* 693 * For vfp_set() a read-modify-write is done on the VFP registers, 694 * in order to avoid writing back a half-modified set of registers on 695 * failure. 696 */ 697 static int vfp_set(struct task_struct *target, 698 const struct user_regset *regset, 699 unsigned int pos, unsigned int count, 700 const void *kbuf, const void __user *ubuf) 701 { 702 int ret; 703 struct thread_info *thread = task_thread_info(target); 704 struct vfp_hard_struct new_vfp; 705 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 706 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 707 708 vfp_sync_hwstate(thread); 709 new_vfp = thread->vfpstate.hard; 710 711 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 712 &new_vfp.fpregs, 713 user_fpregs_offset, 714 user_fpregs_offset + sizeof(new_vfp.fpregs)); 715 if (ret) 716 return ret; 717 718 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 719 user_fpregs_offset + sizeof(new_vfp.fpregs), 720 user_fpscr_offset); 721 if (ret) 722 return ret; 723 724 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 725 &new_vfp.fpscr, 726 user_fpscr_offset, 727 user_fpscr_offset + sizeof(new_vfp.fpscr)); 728 if (ret) 729 return ret; 730 731 vfp_flush_hwstate(thread); 732 thread->vfpstate.hard = new_vfp; 733 734 return 0; 735 } 736 #endif /* CONFIG_VFP */ 737 738 enum arm_regset { 739 REGSET_GPR, 740 REGSET_FPR, 741 #ifdef CONFIG_VFP 742 REGSET_VFP, 743 #endif 744 }; 745 746 static const struct user_regset arm_regsets[] = { 747 [REGSET_GPR] = { 748 .core_note_type = NT_PRSTATUS, 749 .n = ELF_NGREG, 750 .size = sizeof(u32), 751 .align = sizeof(u32), 752 .get = gpr_get, 753 .set = gpr_set 754 }, 755 [REGSET_FPR] = { 756 /* 757 * For the FPA regs in fpstate, the real fields are a mixture 758 * of sizes, so pretend that the registers are word-sized: 759 */ 760 .core_note_type = NT_PRFPREG, 761 .n = sizeof(struct user_fp) / sizeof(u32), 762 .size = sizeof(u32), 763 .align = sizeof(u32), 764 .get = fpa_get, 765 .set = fpa_set 766 }, 767 #ifdef CONFIG_VFP 768 [REGSET_VFP] = { 769 /* 770 * Pretend that the VFP regs are word-sized, since the FPSCR is 771 * a single word dangling at the end of struct user_vfp: 772 */ 773 .core_note_type = NT_ARM_VFP, 774 .n = ARM_VFPREGS_SIZE / sizeof(u32), 775 .size = sizeof(u32), 776 .align = sizeof(u32), 777 .get = vfp_get, 778 .set = vfp_set 779 }, 780 #endif /* CONFIG_VFP */ 781 }; 782 783 static const struct user_regset_view user_arm_view = { 784 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 785 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 786 }; 787 788 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 789 { 790 return &user_arm_view; 791 } 792 793 long arch_ptrace(struct task_struct *child, long request, 794 unsigned long addr, unsigned long data) 795 { 796 int ret; 797 unsigned long __user *datap = (unsigned long __user *) data; 798 799 switch (request) { 800 case PTRACE_PEEKUSR: 801 ret = ptrace_read_user(child, addr, datap); 802 break; 803 804 case PTRACE_POKEUSR: 805 ret = ptrace_write_user(child, addr, data); 806 break; 807 808 case PTRACE_GETREGS: 809 ret = copy_regset_to_user(child, 810 &user_arm_view, REGSET_GPR, 811 0, sizeof(struct pt_regs), 812 datap); 813 break; 814 815 case PTRACE_SETREGS: 816 ret = copy_regset_from_user(child, 817 &user_arm_view, REGSET_GPR, 818 0, sizeof(struct pt_regs), 819 datap); 820 break; 821 822 case PTRACE_GETFPREGS: 823 ret = copy_regset_to_user(child, 824 &user_arm_view, REGSET_FPR, 825 0, sizeof(union fp_state), 826 datap); 827 break; 828 829 case PTRACE_SETFPREGS: 830 ret = copy_regset_from_user(child, 831 &user_arm_view, REGSET_FPR, 832 0, sizeof(union fp_state), 833 datap); 834 break; 835 836 #ifdef CONFIG_IWMMXT 837 case PTRACE_GETWMMXREGS: 838 ret = ptrace_getwmmxregs(child, datap); 839 break; 840 841 case PTRACE_SETWMMXREGS: 842 ret = ptrace_setwmmxregs(child, datap); 843 break; 844 #endif 845 846 case PTRACE_GET_THREAD_AREA: 847 ret = put_user(task_thread_info(child)->tp_value, 848 datap); 849 break; 850 851 case PTRACE_SET_SYSCALL: 852 task_thread_info(child)->syscall = data; 853 ret = 0; 854 break; 855 856 #ifdef CONFIG_CRUNCH 857 case PTRACE_GETCRUNCHREGS: 858 ret = ptrace_getcrunchregs(child, datap); 859 break; 860 861 case PTRACE_SETCRUNCHREGS: 862 ret = ptrace_setcrunchregs(child, datap); 863 break; 864 #endif 865 866 #ifdef CONFIG_VFP 867 case PTRACE_GETVFPREGS: 868 ret = copy_regset_to_user(child, 869 &user_arm_view, REGSET_VFP, 870 0, ARM_VFPREGS_SIZE, 871 datap); 872 break; 873 874 case PTRACE_SETVFPREGS: 875 ret = copy_regset_from_user(child, 876 &user_arm_view, REGSET_VFP, 877 0, ARM_VFPREGS_SIZE, 878 datap); 879 break; 880 #endif 881 882 #ifdef CONFIG_HAVE_HW_BREAKPOINT 883 case PTRACE_GETHBPREGS: 884 if (ptrace_get_breakpoints(child) < 0) 885 return -ESRCH; 886 887 ret = ptrace_gethbpregs(child, addr, 888 (unsigned long __user *)data); 889 ptrace_put_breakpoints(child); 890 break; 891 case PTRACE_SETHBPREGS: 892 if (ptrace_get_breakpoints(child) < 0) 893 return -ESRCH; 894 895 ret = ptrace_sethbpregs(child, addr, 896 (unsigned long __user *)data); 897 ptrace_put_breakpoints(child); 898 break; 899 #endif 900 901 default: 902 ret = ptrace_request(child, request, addr, data); 903 break; 904 } 905 906 return ret; 907 } 908 909 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) 910 { 911 unsigned long ip; 912 913 if (why) 914 audit_syscall_exit(regs); 915 else 916 audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0, 917 regs->ARM_r1, regs->ARM_r2, regs->ARM_r3); 918 919 if (!test_thread_flag(TIF_SYSCALL_TRACE)) 920 return scno; 921 if (!(current->ptrace & PT_PTRACED)) 922 return scno; 923 924 current_thread_info()->syscall = scno; 925 926 /* 927 * IP is used to denote syscall entry/exit: 928 * IP = 0 -> entry, =1 -> exit 929 */ 930 ip = regs->ARM_ip; 931 regs->ARM_ip = why; 932 933 /* the 0x80 provides a way for the tracing parent to distinguish 934 between a syscall stop and SIGTRAP delivery */ 935 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) 936 ? 0x80 : 0)); 937 /* 938 * this isn't the same as continuing with a signal, but it will do 939 * for normal use. strace only continues with a signal if the 940 * stopping signal is not SIGTRAP. -brl 941 */ 942 if (current->exit_code) { 943 send_sig(current->exit_code, current, 1); 944 current->exit_code = 0; 945 } 946 regs->ARM_ip = ip; 947 948 return current_thread_info()->syscall; 949 } 950