xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision 63dc02bd)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 
28 #include <asm/pgtable.h>
29 #include <asm/traps.h>
30 
31 #define REG_PC	15
32 #define REG_PSR	16
33 /*
34  * does not yet catch signals sent when the child dies.
35  * in exit.c or in signal.c.
36  */
37 
38 #if 0
39 /*
40  * Breakpoint SWI instruction: SWI &9F0001
41  */
42 #define BREAKINST_ARM	0xef9f0001
43 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
44 #else
45 /*
46  * New breakpoints - use an undefined instruction.  The ARM architecture
47  * reference manual guarantees that the following instruction space
48  * will produce an undefined instruction exception on all CPUs:
49  *
50  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
51  *  Thumb: 1101 1110 xxxx xxxx
52  */
53 #define BREAKINST_ARM	0xe7f001f0
54 #define BREAKINST_THUMB	0xde01
55 #endif
56 
57 struct pt_regs_offset {
58 	const char *name;
59 	int offset;
60 };
61 
62 #define REG_OFFSET_NAME(r) \
63 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
64 #define REG_OFFSET_END {.name = NULL, .offset = 0}
65 
66 static const struct pt_regs_offset regoffset_table[] = {
67 	REG_OFFSET_NAME(r0),
68 	REG_OFFSET_NAME(r1),
69 	REG_OFFSET_NAME(r2),
70 	REG_OFFSET_NAME(r3),
71 	REG_OFFSET_NAME(r4),
72 	REG_OFFSET_NAME(r5),
73 	REG_OFFSET_NAME(r6),
74 	REG_OFFSET_NAME(r7),
75 	REG_OFFSET_NAME(r8),
76 	REG_OFFSET_NAME(r9),
77 	REG_OFFSET_NAME(r10),
78 	REG_OFFSET_NAME(fp),
79 	REG_OFFSET_NAME(ip),
80 	REG_OFFSET_NAME(sp),
81 	REG_OFFSET_NAME(lr),
82 	REG_OFFSET_NAME(pc),
83 	REG_OFFSET_NAME(cpsr),
84 	REG_OFFSET_NAME(ORIG_r0),
85 	REG_OFFSET_END,
86 };
87 
88 /**
89  * regs_query_register_offset() - query register offset from its name
90  * @name:	the name of a register
91  *
92  * regs_query_register_offset() returns the offset of a register in struct
93  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
94  */
95 int regs_query_register_offset(const char *name)
96 {
97 	const struct pt_regs_offset *roff;
98 	for (roff = regoffset_table; roff->name != NULL; roff++)
99 		if (!strcmp(roff->name, name))
100 			return roff->offset;
101 	return -EINVAL;
102 }
103 
104 /**
105  * regs_query_register_name() - query register name from its offset
106  * @offset:	the offset of a register in struct pt_regs.
107  *
108  * regs_query_register_name() returns the name of a register from its
109  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
110  */
111 const char *regs_query_register_name(unsigned int offset)
112 {
113 	const struct pt_regs_offset *roff;
114 	for (roff = regoffset_table; roff->name != NULL; roff++)
115 		if (roff->offset == offset)
116 			return roff->name;
117 	return NULL;
118 }
119 
120 /**
121  * regs_within_kernel_stack() - check the address in the stack
122  * @regs:      pt_regs which contains kernel stack pointer.
123  * @addr:      address which is checked.
124  *
125  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
126  * If @addr is within the kernel stack, it returns true. If not, returns false.
127  */
128 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
129 {
130 	return ((addr & ~(THREAD_SIZE - 1))  ==
131 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
132 }
133 
134 /**
135  * regs_get_kernel_stack_nth() - get Nth entry of the stack
136  * @regs:	pt_regs which contains kernel stack pointer.
137  * @n:		stack entry number.
138  *
139  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
140  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
141  * this returns 0.
142  */
143 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
144 {
145 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
146 	addr += n;
147 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
148 		return *addr;
149 	else
150 		return 0;
151 }
152 
153 /*
154  * this routine will get a word off of the processes privileged stack.
155  * the offset is how far from the base addr as stored in the THREAD.
156  * this routine assumes that all the privileged stacks are in our
157  * data space.
158  */
159 static inline long get_user_reg(struct task_struct *task, int offset)
160 {
161 	return task_pt_regs(task)->uregs[offset];
162 }
163 
164 /*
165  * this routine will put a word on the processes privileged stack.
166  * the offset is how far from the base addr as stored in the THREAD.
167  * this routine assumes that all the privileged stacks are in our
168  * data space.
169  */
170 static inline int
171 put_user_reg(struct task_struct *task, int offset, long data)
172 {
173 	struct pt_regs newregs, *regs = task_pt_regs(task);
174 	int ret = -EINVAL;
175 
176 	newregs = *regs;
177 	newregs.uregs[offset] = data;
178 
179 	if (valid_user_regs(&newregs)) {
180 		regs->uregs[offset] = data;
181 		ret = 0;
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * Called by kernel/ptrace.c when detaching..
189  */
190 void ptrace_disable(struct task_struct *child)
191 {
192 	/* Nothing to do. */
193 }
194 
195 /*
196  * Handle hitting a breakpoint.
197  */
198 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
199 {
200 	siginfo_t info;
201 
202 	info.si_signo = SIGTRAP;
203 	info.si_errno = 0;
204 	info.si_code  = TRAP_BRKPT;
205 	info.si_addr  = (void __user *)instruction_pointer(regs);
206 
207 	force_sig_info(SIGTRAP, &info, tsk);
208 }
209 
210 static int break_trap(struct pt_regs *regs, unsigned int instr)
211 {
212 	ptrace_break(current, regs);
213 	return 0;
214 }
215 
216 static struct undef_hook arm_break_hook = {
217 	.instr_mask	= 0x0fffffff,
218 	.instr_val	= 0x07f001f0,
219 	.cpsr_mask	= PSR_T_BIT,
220 	.cpsr_val	= 0,
221 	.fn		= break_trap,
222 };
223 
224 static struct undef_hook thumb_break_hook = {
225 	.instr_mask	= 0xffff,
226 	.instr_val	= 0xde01,
227 	.cpsr_mask	= PSR_T_BIT,
228 	.cpsr_val	= PSR_T_BIT,
229 	.fn		= break_trap,
230 };
231 
232 static struct undef_hook thumb2_break_hook = {
233 	.instr_mask	= 0xffffffff,
234 	.instr_val	= 0xf7f0a000,
235 	.cpsr_mask	= PSR_T_BIT,
236 	.cpsr_val	= PSR_T_BIT,
237 	.fn		= break_trap,
238 };
239 
240 static int __init ptrace_break_init(void)
241 {
242 	register_undef_hook(&arm_break_hook);
243 	register_undef_hook(&thumb_break_hook);
244 	register_undef_hook(&thumb2_break_hook);
245 	return 0;
246 }
247 
248 core_initcall(ptrace_break_init);
249 
250 /*
251  * Read the word at offset "off" into the "struct user".  We
252  * actually access the pt_regs stored on the kernel stack.
253  */
254 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
255 			    unsigned long __user *ret)
256 {
257 	unsigned long tmp;
258 
259 	if (off & 3)
260 		return -EIO;
261 
262 	tmp = 0;
263 	if (off == PT_TEXT_ADDR)
264 		tmp = tsk->mm->start_code;
265 	else if (off == PT_DATA_ADDR)
266 		tmp = tsk->mm->start_data;
267 	else if (off == PT_TEXT_END_ADDR)
268 		tmp = tsk->mm->end_code;
269 	else if (off < sizeof(struct pt_regs))
270 		tmp = get_user_reg(tsk, off >> 2);
271 	else if (off >= sizeof(struct user))
272 		return -EIO;
273 
274 	return put_user(tmp, ret);
275 }
276 
277 /*
278  * Write the word at offset "off" into "struct user".  We
279  * actually access the pt_regs stored on the kernel stack.
280  */
281 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
282 			     unsigned long val)
283 {
284 	if (off & 3 || off >= sizeof(struct user))
285 		return -EIO;
286 
287 	if (off >= sizeof(struct pt_regs))
288 		return 0;
289 
290 	return put_user_reg(tsk, off >> 2, val);
291 }
292 
293 #ifdef CONFIG_IWMMXT
294 
295 /*
296  * Get the child iWMMXt state.
297  */
298 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
299 {
300 	struct thread_info *thread = task_thread_info(tsk);
301 
302 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
303 		return -ENODATA;
304 	iwmmxt_task_disable(thread);  /* force it to ram */
305 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
306 		? -EFAULT : 0;
307 }
308 
309 /*
310  * Set the child iWMMXt state.
311  */
312 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
313 {
314 	struct thread_info *thread = task_thread_info(tsk);
315 
316 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
317 		return -EACCES;
318 	iwmmxt_task_release(thread);  /* force a reload */
319 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
320 		? -EFAULT : 0;
321 }
322 
323 #endif
324 
325 #ifdef CONFIG_CRUNCH
326 /*
327  * Get the child Crunch state.
328  */
329 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
330 {
331 	struct thread_info *thread = task_thread_info(tsk);
332 
333 	crunch_task_disable(thread);  /* force it to ram */
334 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
335 		? -EFAULT : 0;
336 }
337 
338 /*
339  * Set the child Crunch state.
340  */
341 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
342 {
343 	struct thread_info *thread = task_thread_info(tsk);
344 
345 	crunch_task_release(thread);  /* force a reload */
346 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
347 		? -EFAULT : 0;
348 }
349 #endif
350 
351 #ifdef CONFIG_HAVE_HW_BREAKPOINT
352 /*
353  * Convert a virtual register number into an index for a thread_info
354  * breakpoint array. Breakpoints are identified using positive numbers
355  * whilst watchpoints are negative. The registers are laid out as pairs
356  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
357  * Register 0 is reserved for describing resource information.
358  */
359 static int ptrace_hbp_num_to_idx(long num)
360 {
361 	if (num < 0)
362 		num = (ARM_MAX_BRP << 1) - num;
363 	return (num - 1) >> 1;
364 }
365 
366 /*
367  * Returns the virtual register number for the address of the
368  * breakpoint at index idx.
369  */
370 static long ptrace_hbp_idx_to_num(int idx)
371 {
372 	long mid = ARM_MAX_BRP << 1;
373 	long num = (idx << 1) + 1;
374 	return num > mid ? mid - num : num;
375 }
376 
377 /*
378  * Handle hitting a HW-breakpoint.
379  */
380 static void ptrace_hbptriggered(struct perf_event *bp,
381 				     struct perf_sample_data *data,
382 				     struct pt_regs *regs)
383 {
384 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
385 	long num;
386 	int i;
387 	siginfo_t info;
388 
389 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
390 		if (current->thread.debug.hbp[i] == bp)
391 			break;
392 
393 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
394 
395 	info.si_signo	= SIGTRAP;
396 	info.si_errno	= (int)num;
397 	info.si_code	= TRAP_HWBKPT;
398 	info.si_addr	= (void __user *)(bkpt->trigger);
399 
400 	force_sig_info(SIGTRAP, &info, current);
401 }
402 
403 /*
404  * Set ptrace breakpoint pointers to zero for this task.
405  * This is required in order to prevent child processes from unregistering
406  * breakpoints held by their parent.
407  */
408 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
409 {
410 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
411 }
412 
413 /*
414  * Unregister breakpoints from this task and reset the pointers in
415  * the thread_struct.
416  */
417 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
418 {
419 	int i;
420 	struct thread_struct *t = &tsk->thread;
421 
422 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
423 		if (t->debug.hbp[i]) {
424 			unregister_hw_breakpoint(t->debug.hbp[i]);
425 			t->debug.hbp[i] = NULL;
426 		}
427 	}
428 }
429 
430 static u32 ptrace_get_hbp_resource_info(void)
431 {
432 	u8 num_brps, num_wrps, debug_arch, wp_len;
433 	u32 reg = 0;
434 
435 	num_brps	= hw_breakpoint_slots(TYPE_INST);
436 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
437 	debug_arch	= arch_get_debug_arch();
438 	wp_len		= arch_get_max_wp_len();
439 
440 	reg		|= debug_arch;
441 	reg		<<= 8;
442 	reg		|= wp_len;
443 	reg		<<= 8;
444 	reg		|= num_wrps;
445 	reg		<<= 8;
446 	reg		|= num_brps;
447 
448 	return reg;
449 }
450 
451 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
452 {
453 	struct perf_event_attr attr;
454 
455 	ptrace_breakpoint_init(&attr);
456 
457 	/* Initialise fields to sane defaults. */
458 	attr.bp_addr	= 0;
459 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
460 	attr.bp_type	= type;
461 	attr.disabled	= 1;
462 
463 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
464 					   tsk);
465 }
466 
467 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
468 			     unsigned long  __user *data)
469 {
470 	u32 reg;
471 	int idx, ret = 0;
472 	struct perf_event *bp;
473 	struct arch_hw_breakpoint_ctrl arch_ctrl;
474 
475 	if (num == 0) {
476 		reg = ptrace_get_hbp_resource_info();
477 	} else {
478 		idx = ptrace_hbp_num_to_idx(num);
479 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
480 			ret = -EINVAL;
481 			goto out;
482 		}
483 
484 		bp = tsk->thread.debug.hbp[idx];
485 		if (!bp) {
486 			reg = 0;
487 			goto put;
488 		}
489 
490 		arch_ctrl = counter_arch_bp(bp)->ctrl;
491 
492 		/*
493 		 * Fix up the len because we may have adjusted it
494 		 * to compensate for an unaligned address.
495 		 */
496 		while (!(arch_ctrl.len & 0x1))
497 			arch_ctrl.len >>= 1;
498 
499 		if (num & 0x1)
500 			reg = bp->attr.bp_addr;
501 		else
502 			reg = encode_ctrl_reg(arch_ctrl);
503 	}
504 
505 put:
506 	if (put_user(reg, data))
507 		ret = -EFAULT;
508 
509 out:
510 	return ret;
511 }
512 
513 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
514 			     unsigned long __user *data)
515 {
516 	int idx, gen_len, gen_type, implied_type, ret = 0;
517 	u32 user_val;
518 	struct perf_event *bp;
519 	struct arch_hw_breakpoint_ctrl ctrl;
520 	struct perf_event_attr attr;
521 
522 	if (num == 0)
523 		goto out;
524 	else if (num < 0)
525 		implied_type = HW_BREAKPOINT_RW;
526 	else
527 		implied_type = HW_BREAKPOINT_X;
528 
529 	idx = ptrace_hbp_num_to_idx(num);
530 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
531 		ret = -EINVAL;
532 		goto out;
533 	}
534 
535 	if (get_user(user_val, data)) {
536 		ret = -EFAULT;
537 		goto out;
538 	}
539 
540 	bp = tsk->thread.debug.hbp[idx];
541 	if (!bp) {
542 		bp = ptrace_hbp_create(tsk, implied_type);
543 		if (IS_ERR(bp)) {
544 			ret = PTR_ERR(bp);
545 			goto out;
546 		}
547 		tsk->thread.debug.hbp[idx] = bp;
548 	}
549 
550 	attr = bp->attr;
551 
552 	if (num & 0x1) {
553 		/* Address */
554 		attr.bp_addr	= user_val;
555 	} else {
556 		/* Control */
557 		decode_ctrl_reg(user_val, &ctrl);
558 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
559 		if (ret)
560 			goto out;
561 
562 		if ((gen_type & implied_type) != gen_type) {
563 			ret = -EINVAL;
564 			goto out;
565 		}
566 
567 		attr.bp_len	= gen_len;
568 		attr.bp_type	= gen_type;
569 		attr.disabled	= !ctrl.enabled;
570 	}
571 
572 	ret = modify_user_hw_breakpoint(bp, &attr);
573 out:
574 	return ret;
575 }
576 #endif
577 
578 /* regset get/set implementations */
579 
580 static int gpr_get(struct task_struct *target,
581 		   const struct user_regset *regset,
582 		   unsigned int pos, unsigned int count,
583 		   void *kbuf, void __user *ubuf)
584 {
585 	struct pt_regs *regs = task_pt_regs(target);
586 
587 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
588 				   regs,
589 				   0, sizeof(*regs));
590 }
591 
592 static int gpr_set(struct task_struct *target,
593 		   const struct user_regset *regset,
594 		   unsigned int pos, unsigned int count,
595 		   const void *kbuf, const void __user *ubuf)
596 {
597 	int ret;
598 	struct pt_regs newregs;
599 
600 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
601 				 &newregs,
602 				 0, sizeof(newregs));
603 	if (ret)
604 		return ret;
605 
606 	if (!valid_user_regs(&newregs))
607 		return -EINVAL;
608 
609 	*task_pt_regs(target) = newregs;
610 	return 0;
611 }
612 
613 static int fpa_get(struct task_struct *target,
614 		   const struct user_regset *regset,
615 		   unsigned int pos, unsigned int count,
616 		   void *kbuf, void __user *ubuf)
617 {
618 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
619 				   &task_thread_info(target)->fpstate,
620 				   0, sizeof(struct user_fp));
621 }
622 
623 static int fpa_set(struct task_struct *target,
624 		   const struct user_regset *regset,
625 		   unsigned int pos, unsigned int count,
626 		   const void *kbuf, const void __user *ubuf)
627 {
628 	struct thread_info *thread = task_thread_info(target);
629 
630 	thread->used_cp[1] = thread->used_cp[2] = 1;
631 
632 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
633 		&thread->fpstate,
634 		0, sizeof(struct user_fp));
635 }
636 
637 #ifdef CONFIG_VFP
638 /*
639  * VFP register get/set implementations.
640  *
641  * With respect to the kernel, struct user_fp is divided into three chunks:
642  * 16 or 32 real VFP registers (d0-d15 or d0-31)
643  *	These are transferred to/from the real registers in the task's
644  *	vfp_hard_struct.  The number of registers depends on the kernel
645  *	configuration.
646  *
647  * 16 or 0 fake VFP registers (d16-d31 or empty)
648  *	i.e., the user_vfp structure has space for 32 registers even if
649  *	the kernel doesn't have them all.
650  *
651  *	vfp_get() reads this chunk as zero where applicable
652  *	vfp_set() ignores this chunk
653  *
654  * 1 word for the FPSCR
655  *
656  * The bounds-checking logic built into user_regset_copyout and friends
657  * means that we can make a simple sequence of calls to map the relevant data
658  * to/from the specified slice of the user regset structure.
659  */
660 static int vfp_get(struct task_struct *target,
661 		   const struct user_regset *regset,
662 		   unsigned int pos, unsigned int count,
663 		   void *kbuf, void __user *ubuf)
664 {
665 	int ret;
666 	struct thread_info *thread = task_thread_info(target);
667 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
668 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
669 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
670 
671 	vfp_sync_hwstate(thread);
672 
673 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
674 				  &vfp->fpregs,
675 				  user_fpregs_offset,
676 				  user_fpregs_offset + sizeof(vfp->fpregs));
677 	if (ret)
678 		return ret;
679 
680 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
681 				       user_fpregs_offset + sizeof(vfp->fpregs),
682 				       user_fpscr_offset);
683 	if (ret)
684 		return ret;
685 
686 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
687 				   &vfp->fpscr,
688 				   user_fpscr_offset,
689 				   user_fpscr_offset + sizeof(vfp->fpscr));
690 }
691 
692 /*
693  * For vfp_set() a read-modify-write is done on the VFP registers,
694  * in order to avoid writing back a half-modified set of registers on
695  * failure.
696  */
697 static int vfp_set(struct task_struct *target,
698 			  const struct user_regset *regset,
699 			  unsigned int pos, unsigned int count,
700 			  const void *kbuf, const void __user *ubuf)
701 {
702 	int ret;
703 	struct thread_info *thread = task_thread_info(target);
704 	struct vfp_hard_struct new_vfp;
705 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
706 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
707 
708 	vfp_sync_hwstate(thread);
709 	new_vfp = thread->vfpstate.hard;
710 
711 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
712 				  &new_vfp.fpregs,
713 				  user_fpregs_offset,
714 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
715 	if (ret)
716 		return ret;
717 
718 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
719 				user_fpregs_offset + sizeof(new_vfp.fpregs),
720 				user_fpscr_offset);
721 	if (ret)
722 		return ret;
723 
724 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
725 				 &new_vfp.fpscr,
726 				 user_fpscr_offset,
727 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
728 	if (ret)
729 		return ret;
730 
731 	vfp_flush_hwstate(thread);
732 	thread->vfpstate.hard = new_vfp;
733 
734 	return 0;
735 }
736 #endif /* CONFIG_VFP */
737 
738 enum arm_regset {
739 	REGSET_GPR,
740 	REGSET_FPR,
741 #ifdef CONFIG_VFP
742 	REGSET_VFP,
743 #endif
744 };
745 
746 static const struct user_regset arm_regsets[] = {
747 	[REGSET_GPR] = {
748 		.core_note_type = NT_PRSTATUS,
749 		.n = ELF_NGREG,
750 		.size = sizeof(u32),
751 		.align = sizeof(u32),
752 		.get = gpr_get,
753 		.set = gpr_set
754 	},
755 	[REGSET_FPR] = {
756 		/*
757 		 * For the FPA regs in fpstate, the real fields are a mixture
758 		 * of sizes, so pretend that the registers are word-sized:
759 		 */
760 		.core_note_type = NT_PRFPREG,
761 		.n = sizeof(struct user_fp) / sizeof(u32),
762 		.size = sizeof(u32),
763 		.align = sizeof(u32),
764 		.get = fpa_get,
765 		.set = fpa_set
766 	},
767 #ifdef CONFIG_VFP
768 	[REGSET_VFP] = {
769 		/*
770 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
771 		 * a single word dangling at the end of struct user_vfp:
772 		 */
773 		.core_note_type = NT_ARM_VFP,
774 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
775 		.size = sizeof(u32),
776 		.align = sizeof(u32),
777 		.get = vfp_get,
778 		.set = vfp_set
779 	},
780 #endif /* CONFIG_VFP */
781 };
782 
783 static const struct user_regset_view user_arm_view = {
784 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
785 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
786 };
787 
788 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
789 {
790 	return &user_arm_view;
791 }
792 
793 long arch_ptrace(struct task_struct *child, long request,
794 		 unsigned long addr, unsigned long data)
795 {
796 	int ret;
797 	unsigned long __user *datap = (unsigned long __user *) data;
798 
799 	switch (request) {
800 		case PTRACE_PEEKUSR:
801 			ret = ptrace_read_user(child, addr, datap);
802 			break;
803 
804 		case PTRACE_POKEUSR:
805 			ret = ptrace_write_user(child, addr, data);
806 			break;
807 
808 		case PTRACE_GETREGS:
809 			ret = copy_regset_to_user(child,
810 						  &user_arm_view, REGSET_GPR,
811 						  0, sizeof(struct pt_regs),
812 						  datap);
813 			break;
814 
815 		case PTRACE_SETREGS:
816 			ret = copy_regset_from_user(child,
817 						    &user_arm_view, REGSET_GPR,
818 						    0, sizeof(struct pt_regs),
819 						    datap);
820 			break;
821 
822 		case PTRACE_GETFPREGS:
823 			ret = copy_regset_to_user(child,
824 						  &user_arm_view, REGSET_FPR,
825 						  0, sizeof(union fp_state),
826 						  datap);
827 			break;
828 
829 		case PTRACE_SETFPREGS:
830 			ret = copy_regset_from_user(child,
831 						    &user_arm_view, REGSET_FPR,
832 						    0, sizeof(union fp_state),
833 						    datap);
834 			break;
835 
836 #ifdef CONFIG_IWMMXT
837 		case PTRACE_GETWMMXREGS:
838 			ret = ptrace_getwmmxregs(child, datap);
839 			break;
840 
841 		case PTRACE_SETWMMXREGS:
842 			ret = ptrace_setwmmxregs(child, datap);
843 			break;
844 #endif
845 
846 		case PTRACE_GET_THREAD_AREA:
847 			ret = put_user(task_thread_info(child)->tp_value,
848 				       datap);
849 			break;
850 
851 		case PTRACE_SET_SYSCALL:
852 			task_thread_info(child)->syscall = data;
853 			ret = 0;
854 			break;
855 
856 #ifdef CONFIG_CRUNCH
857 		case PTRACE_GETCRUNCHREGS:
858 			ret = ptrace_getcrunchregs(child, datap);
859 			break;
860 
861 		case PTRACE_SETCRUNCHREGS:
862 			ret = ptrace_setcrunchregs(child, datap);
863 			break;
864 #endif
865 
866 #ifdef CONFIG_VFP
867 		case PTRACE_GETVFPREGS:
868 			ret = copy_regset_to_user(child,
869 						  &user_arm_view, REGSET_VFP,
870 						  0, ARM_VFPREGS_SIZE,
871 						  datap);
872 			break;
873 
874 		case PTRACE_SETVFPREGS:
875 			ret = copy_regset_from_user(child,
876 						    &user_arm_view, REGSET_VFP,
877 						    0, ARM_VFPREGS_SIZE,
878 						    datap);
879 			break;
880 #endif
881 
882 #ifdef CONFIG_HAVE_HW_BREAKPOINT
883 		case PTRACE_GETHBPREGS:
884 			if (ptrace_get_breakpoints(child) < 0)
885 				return -ESRCH;
886 
887 			ret = ptrace_gethbpregs(child, addr,
888 						(unsigned long __user *)data);
889 			ptrace_put_breakpoints(child);
890 			break;
891 		case PTRACE_SETHBPREGS:
892 			if (ptrace_get_breakpoints(child) < 0)
893 				return -ESRCH;
894 
895 			ret = ptrace_sethbpregs(child, addr,
896 						(unsigned long __user *)data);
897 			ptrace_put_breakpoints(child);
898 			break;
899 #endif
900 
901 		default:
902 			ret = ptrace_request(child, request, addr, data);
903 			break;
904 	}
905 
906 	return ret;
907 }
908 
909 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
910 {
911 	unsigned long ip;
912 
913 	if (why)
914 		audit_syscall_exit(regs);
915 	else
916 		audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
917 				    regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
918 
919 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
920 		return scno;
921 	if (!(current->ptrace & PT_PTRACED))
922 		return scno;
923 
924 	current_thread_info()->syscall = scno;
925 
926 	/*
927 	 * IP is used to denote syscall entry/exit:
928 	 * IP = 0 -> entry, =1 -> exit
929 	 */
930 	ip = regs->ARM_ip;
931 	regs->ARM_ip = why;
932 
933 	/* the 0x80 provides a way for the tracing parent to distinguish
934 	   between a syscall stop and SIGTRAP delivery */
935 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
936 				 ? 0x80 : 0));
937 	/*
938 	 * this isn't the same as continuing with a signal, but it will do
939 	 * for normal use.  strace only continues with a signal if the
940 	 * stopping signal is not SIGTRAP.  -brl
941 	 */
942 	if (current->exit_code) {
943 		send_sig(current->exit_code, current, 1);
944 		current->exit_code = 0;
945 	}
946 	regs->ARM_ip = ip;
947 
948 	return current_thread_info()->syscall;
949 }
950