1 /* 2 * linux/arch/arm/kernel/ptrace.c 3 * 4 * By Ross Biro 1/23/92 5 * edited by Linus Torvalds 6 * ARM modifications Copyright (C) 2000 Russell King 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/mm.h> 16 #include <linux/elf.h> 17 #include <linux/smp.h> 18 #include <linux/ptrace.h> 19 #include <linux/user.h> 20 #include <linux/security.h> 21 #include <linux/init.h> 22 #include <linux/signal.h> 23 #include <linux/uaccess.h> 24 #include <linux/perf_event.h> 25 #include <linux/hw_breakpoint.h> 26 #include <linux/regset.h> 27 #include <linux/audit.h> 28 #include <linux/tracehook.h> 29 #include <linux/unistd.h> 30 31 #include <asm/pgtable.h> 32 #include <asm/traps.h> 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/syscalls.h> 36 37 #define REG_PC 15 38 #define REG_PSR 16 39 /* 40 * does not yet catch signals sent when the child dies. 41 * in exit.c or in signal.c. 42 */ 43 44 #if 0 45 /* 46 * Breakpoint SWI instruction: SWI &9F0001 47 */ 48 #define BREAKINST_ARM 0xef9f0001 49 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 50 #else 51 /* 52 * New breakpoints - use an undefined instruction. The ARM architecture 53 * reference manual guarantees that the following instruction space 54 * will produce an undefined instruction exception on all CPUs: 55 * 56 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 57 * Thumb: 1101 1110 xxxx xxxx 58 */ 59 #define BREAKINST_ARM 0xe7f001f0 60 #define BREAKINST_THUMB 0xde01 61 #endif 62 63 struct pt_regs_offset { 64 const char *name; 65 int offset; 66 }; 67 68 #define REG_OFFSET_NAME(r) \ 69 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 70 #define REG_OFFSET_END {.name = NULL, .offset = 0} 71 72 static const struct pt_regs_offset regoffset_table[] = { 73 REG_OFFSET_NAME(r0), 74 REG_OFFSET_NAME(r1), 75 REG_OFFSET_NAME(r2), 76 REG_OFFSET_NAME(r3), 77 REG_OFFSET_NAME(r4), 78 REG_OFFSET_NAME(r5), 79 REG_OFFSET_NAME(r6), 80 REG_OFFSET_NAME(r7), 81 REG_OFFSET_NAME(r8), 82 REG_OFFSET_NAME(r9), 83 REG_OFFSET_NAME(r10), 84 REG_OFFSET_NAME(fp), 85 REG_OFFSET_NAME(ip), 86 REG_OFFSET_NAME(sp), 87 REG_OFFSET_NAME(lr), 88 REG_OFFSET_NAME(pc), 89 REG_OFFSET_NAME(cpsr), 90 REG_OFFSET_NAME(ORIG_r0), 91 REG_OFFSET_END, 92 }; 93 94 /** 95 * regs_query_register_offset() - query register offset from its name 96 * @name: the name of a register 97 * 98 * regs_query_register_offset() returns the offset of a register in struct 99 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 100 */ 101 int regs_query_register_offset(const char *name) 102 { 103 const struct pt_regs_offset *roff; 104 for (roff = regoffset_table; roff->name != NULL; roff++) 105 if (!strcmp(roff->name, name)) 106 return roff->offset; 107 return -EINVAL; 108 } 109 110 /** 111 * regs_query_register_name() - query register name from its offset 112 * @offset: the offset of a register in struct pt_regs. 113 * 114 * regs_query_register_name() returns the name of a register from its 115 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 116 */ 117 const char *regs_query_register_name(unsigned int offset) 118 { 119 const struct pt_regs_offset *roff; 120 for (roff = regoffset_table; roff->name != NULL; roff++) 121 if (roff->offset == offset) 122 return roff->name; 123 return NULL; 124 } 125 126 /** 127 * regs_within_kernel_stack() - check the address in the stack 128 * @regs: pt_regs which contains kernel stack pointer. 129 * @addr: address which is checked. 130 * 131 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 132 * If @addr is within the kernel stack, it returns true. If not, returns false. 133 */ 134 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 135 { 136 return ((addr & ~(THREAD_SIZE - 1)) == 137 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 138 } 139 140 /** 141 * regs_get_kernel_stack_nth() - get Nth entry of the stack 142 * @regs: pt_regs which contains kernel stack pointer. 143 * @n: stack entry number. 144 * 145 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 146 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 147 * this returns 0. 148 */ 149 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 150 { 151 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 152 addr += n; 153 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 154 return *addr; 155 else 156 return 0; 157 } 158 159 /* 160 * this routine will get a word off of the processes privileged stack. 161 * the offset is how far from the base addr as stored in the THREAD. 162 * this routine assumes that all the privileged stacks are in our 163 * data space. 164 */ 165 static inline long get_user_reg(struct task_struct *task, int offset) 166 { 167 return task_pt_regs(task)->uregs[offset]; 168 } 169 170 /* 171 * this routine will put a word on the processes privileged stack. 172 * the offset is how far from the base addr as stored in the THREAD. 173 * this routine assumes that all the privileged stacks are in our 174 * data space. 175 */ 176 static inline int 177 put_user_reg(struct task_struct *task, int offset, long data) 178 { 179 struct pt_regs newregs, *regs = task_pt_regs(task); 180 int ret = -EINVAL; 181 182 newregs = *regs; 183 newregs.uregs[offset] = data; 184 185 if (valid_user_regs(&newregs)) { 186 regs->uregs[offset] = data; 187 ret = 0; 188 } 189 190 return ret; 191 } 192 193 /* 194 * Called by kernel/ptrace.c when detaching.. 195 */ 196 void ptrace_disable(struct task_struct *child) 197 { 198 /* Nothing to do. */ 199 } 200 201 /* 202 * Handle hitting a breakpoint. 203 */ 204 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) 205 { 206 siginfo_t info; 207 208 info.si_signo = SIGTRAP; 209 info.si_errno = 0; 210 info.si_code = TRAP_BRKPT; 211 info.si_addr = (void __user *)instruction_pointer(regs); 212 213 force_sig_info(SIGTRAP, &info, tsk); 214 } 215 216 static int break_trap(struct pt_regs *regs, unsigned int instr) 217 { 218 ptrace_break(current, regs); 219 return 0; 220 } 221 222 static struct undef_hook arm_break_hook = { 223 .instr_mask = 0x0fffffff, 224 .instr_val = 0x07f001f0, 225 .cpsr_mask = PSR_T_BIT, 226 .cpsr_val = 0, 227 .fn = break_trap, 228 }; 229 230 static struct undef_hook thumb_break_hook = { 231 .instr_mask = 0xffff, 232 .instr_val = 0xde01, 233 .cpsr_mask = PSR_T_BIT, 234 .cpsr_val = PSR_T_BIT, 235 .fn = break_trap, 236 }; 237 238 static struct undef_hook thumb2_break_hook = { 239 .instr_mask = 0xffffffff, 240 .instr_val = 0xf7f0a000, 241 .cpsr_mask = PSR_T_BIT, 242 .cpsr_val = PSR_T_BIT, 243 .fn = break_trap, 244 }; 245 246 static int __init ptrace_break_init(void) 247 { 248 register_undef_hook(&arm_break_hook); 249 register_undef_hook(&thumb_break_hook); 250 register_undef_hook(&thumb2_break_hook); 251 return 0; 252 } 253 254 core_initcall(ptrace_break_init); 255 256 /* 257 * Read the word at offset "off" into the "struct user". We 258 * actually access the pt_regs stored on the kernel stack. 259 */ 260 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 261 unsigned long __user *ret) 262 { 263 unsigned long tmp; 264 265 if (off & 3) 266 return -EIO; 267 268 tmp = 0; 269 if (off == PT_TEXT_ADDR) 270 tmp = tsk->mm->start_code; 271 else if (off == PT_DATA_ADDR) 272 tmp = tsk->mm->start_data; 273 else if (off == PT_TEXT_END_ADDR) 274 tmp = tsk->mm->end_code; 275 else if (off < sizeof(struct pt_regs)) 276 tmp = get_user_reg(tsk, off >> 2); 277 else if (off >= sizeof(struct user)) 278 return -EIO; 279 280 return put_user(tmp, ret); 281 } 282 283 /* 284 * Write the word at offset "off" into "struct user". We 285 * actually access the pt_regs stored on the kernel stack. 286 */ 287 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 288 unsigned long val) 289 { 290 if (off & 3 || off >= sizeof(struct user)) 291 return -EIO; 292 293 if (off >= sizeof(struct pt_regs)) 294 return 0; 295 296 return put_user_reg(tsk, off >> 2, val); 297 } 298 299 #ifdef CONFIG_IWMMXT 300 301 /* 302 * Get the child iWMMXt state. 303 */ 304 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 305 { 306 struct thread_info *thread = task_thread_info(tsk); 307 308 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 309 return -ENODATA; 310 iwmmxt_task_disable(thread); /* force it to ram */ 311 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 312 ? -EFAULT : 0; 313 } 314 315 /* 316 * Set the child iWMMXt state. 317 */ 318 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 319 { 320 struct thread_info *thread = task_thread_info(tsk); 321 322 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 323 return -EACCES; 324 iwmmxt_task_release(thread); /* force a reload */ 325 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 326 ? -EFAULT : 0; 327 } 328 329 #endif 330 331 #ifdef CONFIG_CRUNCH 332 /* 333 * Get the child Crunch state. 334 */ 335 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 336 { 337 struct thread_info *thread = task_thread_info(tsk); 338 339 crunch_task_disable(thread); /* force it to ram */ 340 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 341 ? -EFAULT : 0; 342 } 343 344 /* 345 * Set the child Crunch state. 346 */ 347 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 348 { 349 struct thread_info *thread = task_thread_info(tsk); 350 351 crunch_task_release(thread); /* force a reload */ 352 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 353 ? -EFAULT : 0; 354 } 355 #endif 356 357 #ifdef CONFIG_HAVE_HW_BREAKPOINT 358 /* 359 * Convert a virtual register number into an index for a thread_info 360 * breakpoint array. Breakpoints are identified using positive numbers 361 * whilst watchpoints are negative. The registers are laid out as pairs 362 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 363 * Register 0 is reserved for describing resource information. 364 */ 365 static int ptrace_hbp_num_to_idx(long num) 366 { 367 if (num < 0) 368 num = (ARM_MAX_BRP << 1) - num; 369 return (num - 1) >> 1; 370 } 371 372 /* 373 * Returns the virtual register number for the address of the 374 * breakpoint at index idx. 375 */ 376 static long ptrace_hbp_idx_to_num(int idx) 377 { 378 long mid = ARM_MAX_BRP << 1; 379 long num = (idx << 1) + 1; 380 return num > mid ? mid - num : num; 381 } 382 383 /* 384 * Handle hitting a HW-breakpoint. 385 */ 386 static void ptrace_hbptriggered(struct perf_event *bp, 387 struct perf_sample_data *data, 388 struct pt_regs *regs) 389 { 390 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 391 long num; 392 int i; 393 siginfo_t info; 394 395 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 396 if (current->thread.debug.hbp[i] == bp) 397 break; 398 399 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 400 401 info.si_signo = SIGTRAP; 402 info.si_errno = (int)num; 403 info.si_code = TRAP_HWBKPT; 404 info.si_addr = (void __user *)(bkpt->trigger); 405 406 force_sig_info(SIGTRAP, &info, current); 407 } 408 409 /* 410 * Set ptrace breakpoint pointers to zero for this task. 411 * This is required in order to prevent child processes from unregistering 412 * breakpoints held by their parent. 413 */ 414 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 415 { 416 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 417 } 418 419 /* 420 * Unregister breakpoints from this task and reset the pointers in 421 * the thread_struct. 422 */ 423 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 424 { 425 int i; 426 struct thread_struct *t = &tsk->thread; 427 428 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 429 if (t->debug.hbp[i]) { 430 unregister_hw_breakpoint(t->debug.hbp[i]); 431 t->debug.hbp[i] = NULL; 432 } 433 } 434 } 435 436 static u32 ptrace_get_hbp_resource_info(void) 437 { 438 u8 num_brps, num_wrps, debug_arch, wp_len; 439 u32 reg = 0; 440 441 num_brps = hw_breakpoint_slots(TYPE_INST); 442 num_wrps = hw_breakpoint_slots(TYPE_DATA); 443 debug_arch = arch_get_debug_arch(); 444 wp_len = arch_get_max_wp_len(); 445 446 reg |= debug_arch; 447 reg <<= 8; 448 reg |= wp_len; 449 reg <<= 8; 450 reg |= num_wrps; 451 reg <<= 8; 452 reg |= num_brps; 453 454 return reg; 455 } 456 457 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 458 { 459 struct perf_event_attr attr; 460 461 ptrace_breakpoint_init(&attr); 462 463 /* Initialise fields to sane defaults. */ 464 attr.bp_addr = 0; 465 attr.bp_len = HW_BREAKPOINT_LEN_4; 466 attr.bp_type = type; 467 attr.disabled = 1; 468 469 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 470 tsk); 471 } 472 473 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 474 unsigned long __user *data) 475 { 476 u32 reg; 477 int idx, ret = 0; 478 struct perf_event *bp; 479 struct arch_hw_breakpoint_ctrl arch_ctrl; 480 481 if (num == 0) { 482 reg = ptrace_get_hbp_resource_info(); 483 } else { 484 idx = ptrace_hbp_num_to_idx(num); 485 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 486 ret = -EINVAL; 487 goto out; 488 } 489 490 bp = tsk->thread.debug.hbp[idx]; 491 if (!bp) { 492 reg = 0; 493 goto put; 494 } 495 496 arch_ctrl = counter_arch_bp(bp)->ctrl; 497 498 /* 499 * Fix up the len because we may have adjusted it 500 * to compensate for an unaligned address. 501 */ 502 while (!(arch_ctrl.len & 0x1)) 503 arch_ctrl.len >>= 1; 504 505 if (num & 0x1) 506 reg = bp->attr.bp_addr; 507 else 508 reg = encode_ctrl_reg(arch_ctrl); 509 } 510 511 put: 512 if (put_user(reg, data)) 513 ret = -EFAULT; 514 515 out: 516 return ret; 517 } 518 519 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 520 unsigned long __user *data) 521 { 522 int idx, gen_len, gen_type, implied_type, ret = 0; 523 u32 user_val; 524 struct perf_event *bp; 525 struct arch_hw_breakpoint_ctrl ctrl; 526 struct perf_event_attr attr; 527 528 if (num == 0) 529 goto out; 530 else if (num < 0) 531 implied_type = HW_BREAKPOINT_RW; 532 else 533 implied_type = HW_BREAKPOINT_X; 534 535 idx = ptrace_hbp_num_to_idx(num); 536 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 537 ret = -EINVAL; 538 goto out; 539 } 540 541 if (get_user(user_val, data)) { 542 ret = -EFAULT; 543 goto out; 544 } 545 546 bp = tsk->thread.debug.hbp[idx]; 547 if (!bp) { 548 bp = ptrace_hbp_create(tsk, implied_type); 549 if (IS_ERR(bp)) { 550 ret = PTR_ERR(bp); 551 goto out; 552 } 553 tsk->thread.debug.hbp[idx] = bp; 554 } 555 556 attr = bp->attr; 557 558 if (num & 0x1) { 559 /* Address */ 560 attr.bp_addr = user_val; 561 } else { 562 /* Control */ 563 decode_ctrl_reg(user_val, &ctrl); 564 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 565 if (ret) 566 goto out; 567 568 if ((gen_type & implied_type) != gen_type) { 569 ret = -EINVAL; 570 goto out; 571 } 572 573 attr.bp_len = gen_len; 574 attr.bp_type = gen_type; 575 attr.disabled = !ctrl.enabled; 576 } 577 578 ret = modify_user_hw_breakpoint(bp, &attr); 579 out: 580 return ret; 581 } 582 #endif 583 584 /* regset get/set implementations */ 585 586 static int gpr_get(struct task_struct *target, 587 const struct user_regset *regset, 588 unsigned int pos, unsigned int count, 589 void *kbuf, void __user *ubuf) 590 { 591 struct pt_regs *regs = task_pt_regs(target); 592 593 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 594 regs, 595 0, sizeof(*regs)); 596 } 597 598 static int gpr_set(struct task_struct *target, 599 const struct user_regset *regset, 600 unsigned int pos, unsigned int count, 601 const void *kbuf, const void __user *ubuf) 602 { 603 int ret; 604 struct pt_regs newregs = *task_pt_regs(target); 605 606 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 607 &newregs, 608 0, sizeof(newregs)); 609 if (ret) 610 return ret; 611 612 if (!valid_user_regs(&newregs)) 613 return -EINVAL; 614 615 *task_pt_regs(target) = newregs; 616 return 0; 617 } 618 619 static int fpa_get(struct task_struct *target, 620 const struct user_regset *regset, 621 unsigned int pos, unsigned int count, 622 void *kbuf, void __user *ubuf) 623 { 624 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 625 &task_thread_info(target)->fpstate, 626 0, sizeof(struct user_fp)); 627 } 628 629 static int fpa_set(struct task_struct *target, 630 const struct user_regset *regset, 631 unsigned int pos, unsigned int count, 632 const void *kbuf, const void __user *ubuf) 633 { 634 struct thread_info *thread = task_thread_info(target); 635 636 thread->used_cp[1] = thread->used_cp[2] = 1; 637 638 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 639 &thread->fpstate, 640 0, sizeof(struct user_fp)); 641 } 642 643 #ifdef CONFIG_VFP 644 /* 645 * VFP register get/set implementations. 646 * 647 * With respect to the kernel, struct user_fp is divided into three chunks: 648 * 16 or 32 real VFP registers (d0-d15 or d0-31) 649 * These are transferred to/from the real registers in the task's 650 * vfp_hard_struct. The number of registers depends on the kernel 651 * configuration. 652 * 653 * 16 or 0 fake VFP registers (d16-d31 or empty) 654 * i.e., the user_vfp structure has space for 32 registers even if 655 * the kernel doesn't have them all. 656 * 657 * vfp_get() reads this chunk as zero where applicable 658 * vfp_set() ignores this chunk 659 * 660 * 1 word for the FPSCR 661 * 662 * The bounds-checking logic built into user_regset_copyout and friends 663 * means that we can make a simple sequence of calls to map the relevant data 664 * to/from the specified slice of the user regset structure. 665 */ 666 static int vfp_get(struct task_struct *target, 667 const struct user_regset *regset, 668 unsigned int pos, unsigned int count, 669 void *kbuf, void __user *ubuf) 670 { 671 int ret; 672 struct thread_info *thread = task_thread_info(target); 673 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 674 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 675 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 676 677 vfp_sync_hwstate(thread); 678 679 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 680 &vfp->fpregs, 681 user_fpregs_offset, 682 user_fpregs_offset + sizeof(vfp->fpregs)); 683 if (ret) 684 return ret; 685 686 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 687 user_fpregs_offset + sizeof(vfp->fpregs), 688 user_fpscr_offset); 689 if (ret) 690 return ret; 691 692 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 693 &vfp->fpscr, 694 user_fpscr_offset, 695 user_fpscr_offset + sizeof(vfp->fpscr)); 696 } 697 698 /* 699 * For vfp_set() a read-modify-write is done on the VFP registers, 700 * in order to avoid writing back a half-modified set of registers on 701 * failure. 702 */ 703 static int vfp_set(struct task_struct *target, 704 const struct user_regset *regset, 705 unsigned int pos, unsigned int count, 706 const void *kbuf, const void __user *ubuf) 707 { 708 int ret; 709 struct thread_info *thread = task_thread_info(target); 710 struct vfp_hard_struct new_vfp; 711 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 712 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 713 714 vfp_sync_hwstate(thread); 715 new_vfp = thread->vfpstate.hard; 716 717 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 718 &new_vfp.fpregs, 719 user_fpregs_offset, 720 user_fpregs_offset + sizeof(new_vfp.fpregs)); 721 if (ret) 722 return ret; 723 724 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 725 user_fpregs_offset + sizeof(new_vfp.fpregs), 726 user_fpscr_offset); 727 if (ret) 728 return ret; 729 730 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 731 &new_vfp.fpscr, 732 user_fpscr_offset, 733 user_fpscr_offset + sizeof(new_vfp.fpscr)); 734 if (ret) 735 return ret; 736 737 thread->vfpstate.hard = new_vfp; 738 vfp_flush_hwstate(thread); 739 740 return 0; 741 } 742 #endif /* CONFIG_VFP */ 743 744 enum arm_regset { 745 REGSET_GPR, 746 REGSET_FPR, 747 #ifdef CONFIG_VFP 748 REGSET_VFP, 749 #endif 750 }; 751 752 static const struct user_regset arm_regsets[] = { 753 [REGSET_GPR] = { 754 .core_note_type = NT_PRSTATUS, 755 .n = ELF_NGREG, 756 .size = sizeof(u32), 757 .align = sizeof(u32), 758 .get = gpr_get, 759 .set = gpr_set 760 }, 761 [REGSET_FPR] = { 762 /* 763 * For the FPA regs in fpstate, the real fields are a mixture 764 * of sizes, so pretend that the registers are word-sized: 765 */ 766 .core_note_type = NT_PRFPREG, 767 .n = sizeof(struct user_fp) / sizeof(u32), 768 .size = sizeof(u32), 769 .align = sizeof(u32), 770 .get = fpa_get, 771 .set = fpa_set 772 }, 773 #ifdef CONFIG_VFP 774 [REGSET_VFP] = { 775 /* 776 * Pretend that the VFP regs are word-sized, since the FPSCR is 777 * a single word dangling at the end of struct user_vfp: 778 */ 779 .core_note_type = NT_ARM_VFP, 780 .n = ARM_VFPREGS_SIZE / sizeof(u32), 781 .size = sizeof(u32), 782 .align = sizeof(u32), 783 .get = vfp_get, 784 .set = vfp_set 785 }, 786 #endif /* CONFIG_VFP */ 787 }; 788 789 static const struct user_regset_view user_arm_view = { 790 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 791 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 792 }; 793 794 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 795 { 796 return &user_arm_view; 797 } 798 799 long arch_ptrace(struct task_struct *child, long request, 800 unsigned long addr, unsigned long data) 801 { 802 int ret; 803 unsigned long __user *datap = (unsigned long __user *) data; 804 805 switch (request) { 806 case PTRACE_PEEKUSR: 807 ret = ptrace_read_user(child, addr, datap); 808 break; 809 810 case PTRACE_POKEUSR: 811 ret = ptrace_write_user(child, addr, data); 812 break; 813 814 case PTRACE_GETREGS: 815 ret = copy_regset_to_user(child, 816 &user_arm_view, REGSET_GPR, 817 0, sizeof(struct pt_regs), 818 datap); 819 break; 820 821 case PTRACE_SETREGS: 822 ret = copy_regset_from_user(child, 823 &user_arm_view, REGSET_GPR, 824 0, sizeof(struct pt_regs), 825 datap); 826 break; 827 828 case PTRACE_GETFPREGS: 829 ret = copy_regset_to_user(child, 830 &user_arm_view, REGSET_FPR, 831 0, sizeof(union fp_state), 832 datap); 833 break; 834 835 case PTRACE_SETFPREGS: 836 ret = copy_regset_from_user(child, 837 &user_arm_view, REGSET_FPR, 838 0, sizeof(union fp_state), 839 datap); 840 break; 841 842 #ifdef CONFIG_IWMMXT 843 case PTRACE_GETWMMXREGS: 844 ret = ptrace_getwmmxregs(child, datap); 845 break; 846 847 case PTRACE_SETWMMXREGS: 848 ret = ptrace_setwmmxregs(child, datap); 849 break; 850 #endif 851 852 case PTRACE_GET_THREAD_AREA: 853 ret = put_user(task_thread_info(child)->tp_value[0], 854 datap); 855 break; 856 857 case PTRACE_SET_SYSCALL: 858 task_thread_info(child)->syscall = data; 859 ret = 0; 860 break; 861 862 #ifdef CONFIG_CRUNCH 863 case PTRACE_GETCRUNCHREGS: 864 ret = ptrace_getcrunchregs(child, datap); 865 break; 866 867 case PTRACE_SETCRUNCHREGS: 868 ret = ptrace_setcrunchregs(child, datap); 869 break; 870 #endif 871 872 #ifdef CONFIG_VFP 873 case PTRACE_GETVFPREGS: 874 ret = copy_regset_to_user(child, 875 &user_arm_view, REGSET_VFP, 876 0, ARM_VFPREGS_SIZE, 877 datap); 878 break; 879 880 case PTRACE_SETVFPREGS: 881 ret = copy_regset_from_user(child, 882 &user_arm_view, REGSET_VFP, 883 0, ARM_VFPREGS_SIZE, 884 datap); 885 break; 886 #endif 887 888 #ifdef CONFIG_HAVE_HW_BREAKPOINT 889 case PTRACE_GETHBPREGS: 890 ret = ptrace_gethbpregs(child, addr, 891 (unsigned long __user *)data); 892 break; 893 case PTRACE_SETHBPREGS: 894 ret = ptrace_sethbpregs(child, addr, 895 (unsigned long __user *)data); 896 break; 897 #endif 898 899 default: 900 ret = ptrace_request(child, request, addr, data); 901 break; 902 } 903 904 return ret; 905 } 906 907 enum ptrace_syscall_dir { 908 PTRACE_SYSCALL_ENTER = 0, 909 PTRACE_SYSCALL_EXIT, 910 }; 911 912 static void tracehook_report_syscall(struct pt_regs *regs, 913 enum ptrace_syscall_dir dir) 914 { 915 unsigned long ip; 916 917 /* 918 * IP is used to denote syscall entry/exit: 919 * IP = 0 -> entry, =1 -> exit 920 */ 921 ip = regs->ARM_ip; 922 regs->ARM_ip = dir; 923 924 if (dir == PTRACE_SYSCALL_EXIT) 925 tracehook_report_syscall_exit(regs, 0); 926 else if (tracehook_report_syscall_entry(regs)) 927 current_thread_info()->syscall = -1; 928 929 regs->ARM_ip = ip; 930 } 931 932 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno) 933 { 934 current_thread_info()->syscall = scno; 935 936 if (test_thread_flag(TIF_SYSCALL_TRACE)) 937 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER); 938 939 /* Do seccomp after ptrace; syscall may have changed. */ 940 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 941 if (secure_computing(NULL) == -1) 942 return -1; 943 #else 944 /* XXX: remove this once OABI gets fixed */ 945 secure_computing_strict(current_thread_info()->syscall); 946 #endif 947 948 /* Tracer or seccomp may have changed syscall. */ 949 scno = current_thread_info()->syscall; 950 951 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 952 trace_sys_enter(regs, scno); 953 954 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, 955 regs->ARM_r3); 956 957 return scno; 958 } 959 960 asmlinkage void syscall_trace_exit(struct pt_regs *regs) 961 { 962 /* 963 * Audit the syscall before anything else, as a debugger may 964 * come in and change the current registers. 965 */ 966 audit_syscall_exit(regs); 967 968 /* 969 * Note that we haven't updated the ->syscall field for the 970 * current thread. This isn't a problem because it will have 971 * been set on syscall entry and there hasn't been an opportunity 972 * for a PTRACE_SET_SYSCALL since then. 973 */ 974 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 975 trace_sys_exit(regs, regs_return_value(regs)); 976 977 if (test_thread_flag(TIF_SYSCALL_TRACE)) 978 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT); 979 } 980