xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision 2d6bed9c)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 #include <linux/tracehook.h>
28 #include <linux/unistd.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/traps.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/syscalls.h>
35 
36 #define REG_PC	15
37 #define REG_PSR	16
38 /*
39  * does not yet catch signals sent when the child dies.
40  * in exit.c or in signal.c.
41  */
42 
43 #if 0
44 /*
45  * Breakpoint SWI instruction: SWI &9F0001
46  */
47 #define BREAKINST_ARM	0xef9f0001
48 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
49 #else
50 /*
51  * New breakpoints - use an undefined instruction.  The ARM architecture
52  * reference manual guarantees that the following instruction space
53  * will produce an undefined instruction exception on all CPUs:
54  *
55  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
56  *  Thumb: 1101 1110 xxxx xxxx
57  */
58 #define BREAKINST_ARM	0xe7f001f0
59 #define BREAKINST_THUMB	0xde01
60 #endif
61 
62 struct pt_regs_offset {
63 	const char *name;
64 	int offset;
65 };
66 
67 #define REG_OFFSET_NAME(r) \
68 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
69 #define REG_OFFSET_END {.name = NULL, .offset = 0}
70 
71 static const struct pt_regs_offset regoffset_table[] = {
72 	REG_OFFSET_NAME(r0),
73 	REG_OFFSET_NAME(r1),
74 	REG_OFFSET_NAME(r2),
75 	REG_OFFSET_NAME(r3),
76 	REG_OFFSET_NAME(r4),
77 	REG_OFFSET_NAME(r5),
78 	REG_OFFSET_NAME(r6),
79 	REG_OFFSET_NAME(r7),
80 	REG_OFFSET_NAME(r8),
81 	REG_OFFSET_NAME(r9),
82 	REG_OFFSET_NAME(r10),
83 	REG_OFFSET_NAME(fp),
84 	REG_OFFSET_NAME(ip),
85 	REG_OFFSET_NAME(sp),
86 	REG_OFFSET_NAME(lr),
87 	REG_OFFSET_NAME(pc),
88 	REG_OFFSET_NAME(cpsr),
89 	REG_OFFSET_NAME(ORIG_r0),
90 	REG_OFFSET_END,
91 };
92 
93 /**
94  * regs_query_register_offset() - query register offset from its name
95  * @name:	the name of a register
96  *
97  * regs_query_register_offset() returns the offset of a register in struct
98  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
99  */
100 int regs_query_register_offset(const char *name)
101 {
102 	const struct pt_regs_offset *roff;
103 	for (roff = regoffset_table; roff->name != NULL; roff++)
104 		if (!strcmp(roff->name, name))
105 			return roff->offset;
106 	return -EINVAL;
107 }
108 
109 /**
110  * regs_query_register_name() - query register name from its offset
111  * @offset:	the offset of a register in struct pt_regs.
112  *
113  * regs_query_register_name() returns the name of a register from its
114  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
115  */
116 const char *regs_query_register_name(unsigned int offset)
117 {
118 	const struct pt_regs_offset *roff;
119 	for (roff = regoffset_table; roff->name != NULL; roff++)
120 		if (roff->offset == offset)
121 			return roff->name;
122 	return NULL;
123 }
124 
125 /**
126  * regs_within_kernel_stack() - check the address in the stack
127  * @regs:      pt_regs which contains kernel stack pointer.
128  * @addr:      address which is checked.
129  *
130  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
131  * If @addr is within the kernel stack, it returns true. If not, returns false.
132  */
133 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
134 {
135 	return ((addr & ~(THREAD_SIZE - 1))  ==
136 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
137 }
138 
139 /**
140  * regs_get_kernel_stack_nth() - get Nth entry of the stack
141  * @regs:	pt_regs which contains kernel stack pointer.
142  * @n:		stack entry number.
143  *
144  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
145  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
146  * this returns 0.
147  */
148 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
149 {
150 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
151 	addr += n;
152 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
153 		return *addr;
154 	else
155 		return 0;
156 }
157 
158 /*
159  * this routine will get a word off of the processes privileged stack.
160  * the offset is how far from the base addr as stored in the THREAD.
161  * this routine assumes that all the privileged stacks are in our
162  * data space.
163  */
164 static inline long get_user_reg(struct task_struct *task, int offset)
165 {
166 	return task_pt_regs(task)->uregs[offset];
167 }
168 
169 /*
170  * this routine will put a word on the processes privileged stack.
171  * the offset is how far from the base addr as stored in the THREAD.
172  * this routine assumes that all the privileged stacks are in our
173  * data space.
174  */
175 static inline int
176 put_user_reg(struct task_struct *task, int offset, long data)
177 {
178 	struct pt_regs newregs, *regs = task_pt_regs(task);
179 	int ret = -EINVAL;
180 
181 	newregs = *regs;
182 	newregs.uregs[offset] = data;
183 
184 	if (valid_user_regs(&newregs)) {
185 		regs->uregs[offset] = data;
186 		ret = 0;
187 	}
188 
189 	return ret;
190 }
191 
192 /*
193  * Called by kernel/ptrace.c when detaching..
194  */
195 void ptrace_disable(struct task_struct *child)
196 {
197 	/* Nothing to do. */
198 }
199 
200 /*
201  * Handle hitting a breakpoint.
202  */
203 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
204 {
205 	siginfo_t info;
206 
207 	info.si_signo = SIGTRAP;
208 	info.si_errno = 0;
209 	info.si_code  = TRAP_BRKPT;
210 	info.si_addr  = (void __user *)instruction_pointer(regs);
211 
212 	force_sig_info(SIGTRAP, &info, tsk);
213 }
214 
215 static int break_trap(struct pt_regs *regs, unsigned int instr)
216 {
217 	ptrace_break(current, regs);
218 	return 0;
219 }
220 
221 static struct undef_hook arm_break_hook = {
222 	.instr_mask	= 0x0fffffff,
223 	.instr_val	= 0x07f001f0,
224 	.cpsr_mask	= PSR_T_BIT,
225 	.cpsr_val	= 0,
226 	.fn		= break_trap,
227 };
228 
229 static struct undef_hook thumb_break_hook = {
230 	.instr_mask	= 0xffff,
231 	.instr_val	= 0xde01,
232 	.cpsr_mask	= PSR_T_BIT,
233 	.cpsr_val	= PSR_T_BIT,
234 	.fn		= break_trap,
235 };
236 
237 static struct undef_hook thumb2_break_hook = {
238 	.instr_mask	= 0xffffffff,
239 	.instr_val	= 0xf7f0a000,
240 	.cpsr_mask	= PSR_T_BIT,
241 	.cpsr_val	= PSR_T_BIT,
242 	.fn		= break_trap,
243 };
244 
245 static int __init ptrace_break_init(void)
246 {
247 	register_undef_hook(&arm_break_hook);
248 	register_undef_hook(&thumb_break_hook);
249 	register_undef_hook(&thumb2_break_hook);
250 	return 0;
251 }
252 
253 core_initcall(ptrace_break_init);
254 
255 /*
256  * Read the word at offset "off" into the "struct user".  We
257  * actually access the pt_regs stored on the kernel stack.
258  */
259 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
260 			    unsigned long __user *ret)
261 {
262 	unsigned long tmp;
263 
264 	if (off & 3)
265 		return -EIO;
266 
267 	tmp = 0;
268 	if (off == PT_TEXT_ADDR)
269 		tmp = tsk->mm->start_code;
270 	else if (off == PT_DATA_ADDR)
271 		tmp = tsk->mm->start_data;
272 	else if (off == PT_TEXT_END_ADDR)
273 		tmp = tsk->mm->end_code;
274 	else if (off < sizeof(struct pt_regs))
275 		tmp = get_user_reg(tsk, off >> 2);
276 	else if (off >= sizeof(struct user))
277 		return -EIO;
278 
279 	return put_user(tmp, ret);
280 }
281 
282 /*
283  * Write the word at offset "off" into "struct user".  We
284  * actually access the pt_regs stored on the kernel stack.
285  */
286 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
287 			     unsigned long val)
288 {
289 	if (off & 3 || off >= sizeof(struct user))
290 		return -EIO;
291 
292 	if (off >= sizeof(struct pt_regs))
293 		return 0;
294 
295 	return put_user_reg(tsk, off >> 2, val);
296 }
297 
298 #ifdef CONFIG_IWMMXT
299 
300 /*
301  * Get the child iWMMXt state.
302  */
303 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
304 {
305 	struct thread_info *thread = task_thread_info(tsk);
306 
307 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
308 		return -ENODATA;
309 	iwmmxt_task_disable(thread);  /* force it to ram */
310 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
311 		? -EFAULT : 0;
312 }
313 
314 /*
315  * Set the child iWMMXt state.
316  */
317 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
318 {
319 	struct thread_info *thread = task_thread_info(tsk);
320 
321 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
322 		return -EACCES;
323 	iwmmxt_task_release(thread);  /* force a reload */
324 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
325 		? -EFAULT : 0;
326 }
327 
328 #endif
329 
330 #ifdef CONFIG_CRUNCH
331 /*
332  * Get the child Crunch state.
333  */
334 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
335 {
336 	struct thread_info *thread = task_thread_info(tsk);
337 
338 	crunch_task_disable(thread);  /* force it to ram */
339 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
340 		? -EFAULT : 0;
341 }
342 
343 /*
344  * Set the child Crunch state.
345  */
346 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
347 {
348 	struct thread_info *thread = task_thread_info(tsk);
349 
350 	crunch_task_release(thread);  /* force a reload */
351 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
352 		? -EFAULT : 0;
353 }
354 #endif
355 
356 #ifdef CONFIG_HAVE_HW_BREAKPOINT
357 /*
358  * Convert a virtual register number into an index for a thread_info
359  * breakpoint array. Breakpoints are identified using positive numbers
360  * whilst watchpoints are negative. The registers are laid out as pairs
361  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
362  * Register 0 is reserved for describing resource information.
363  */
364 static int ptrace_hbp_num_to_idx(long num)
365 {
366 	if (num < 0)
367 		num = (ARM_MAX_BRP << 1) - num;
368 	return (num - 1) >> 1;
369 }
370 
371 /*
372  * Returns the virtual register number for the address of the
373  * breakpoint at index idx.
374  */
375 static long ptrace_hbp_idx_to_num(int idx)
376 {
377 	long mid = ARM_MAX_BRP << 1;
378 	long num = (idx << 1) + 1;
379 	return num > mid ? mid - num : num;
380 }
381 
382 /*
383  * Handle hitting a HW-breakpoint.
384  */
385 static void ptrace_hbptriggered(struct perf_event *bp,
386 				     struct perf_sample_data *data,
387 				     struct pt_regs *regs)
388 {
389 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
390 	long num;
391 	int i;
392 	siginfo_t info;
393 
394 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
395 		if (current->thread.debug.hbp[i] == bp)
396 			break;
397 
398 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
399 
400 	info.si_signo	= SIGTRAP;
401 	info.si_errno	= (int)num;
402 	info.si_code	= TRAP_HWBKPT;
403 	info.si_addr	= (void __user *)(bkpt->trigger);
404 
405 	force_sig_info(SIGTRAP, &info, current);
406 }
407 
408 /*
409  * Set ptrace breakpoint pointers to zero for this task.
410  * This is required in order to prevent child processes from unregistering
411  * breakpoints held by their parent.
412  */
413 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
414 {
415 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
416 }
417 
418 /*
419  * Unregister breakpoints from this task and reset the pointers in
420  * the thread_struct.
421  */
422 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
423 {
424 	int i;
425 	struct thread_struct *t = &tsk->thread;
426 
427 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
428 		if (t->debug.hbp[i]) {
429 			unregister_hw_breakpoint(t->debug.hbp[i]);
430 			t->debug.hbp[i] = NULL;
431 		}
432 	}
433 }
434 
435 static u32 ptrace_get_hbp_resource_info(void)
436 {
437 	u8 num_brps, num_wrps, debug_arch, wp_len;
438 	u32 reg = 0;
439 
440 	num_brps	= hw_breakpoint_slots(TYPE_INST);
441 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
442 	debug_arch	= arch_get_debug_arch();
443 	wp_len		= arch_get_max_wp_len();
444 
445 	reg		|= debug_arch;
446 	reg		<<= 8;
447 	reg		|= wp_len;
448 	reg		<<= 8;
449 	reg		|= num_wrps;
450 	reg		<<= 8;
451 	reg		|= num_brps;
452 
453 	return reg;
454 }
455 
456 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
457 {
458 	struct perf_event_attr attr;
459 
460 	ptrace_breakpoint_init(&attr);
461 
462 	/* Initialise fields to sane defaults. */
463 	attr.bp_addr	= 0;
464 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
465 	attr.bp_type	= type;
466 	attr.disabled	= 1;
467 
468 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
469 					   tsk);
470 }
471 
472 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
473 			     unsigned long  __user *data)
474 {
475 	u32 reg;
476 	int idx, ret = 0;
477 	struct perf_event *bp;
478 	struct arch_hw_breakpoint_ctrl arch_ctrl;
479 
480 	if (num == 0) {
481 		reg = ptrace_get_hbp_resource_info();
482 	} else {
483 		idx = ptrace_hbp_num_to_idx(num);
484 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
485 			ret = -EINVAL;
486 			goto out;
487 		}
488 
489 		bp = tsk->thread.debug.hbp[idx];
490 		if (!bp) {
491 			reg = 0;
492 			goto put;
493 		}
494 
495 		arch_ctrl = counter_arch_bp(bp)->ctrl;
496 
497 		/*
498 		 * Fix up the len because we may have adjusted it
499 		 * to compensate for an unaligned address.
500 		 */
501 		while (!(arch_ctrl.len & 0x1))
502 			arch_ctrl.len >>= 1;
503 
504 		if (num & 0x1)
505 			reg = bp->attr.bp_addr;
506 		else
507 			reg = encode_ctrl_reg(arch_ctrl);
508 	}
509 
510 put:
511 	if (put_user(reg, data))
512 		ret = -EFAULT;
513 
514 out:
515 	return ret;
516 }
517 
518 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
519 			     unsigned long __user *data)
520 {
521 	int idx, gen_len, gen_type, implied_type, ret = 0;
522 	u32 user_val;
523 	struct perf_event *bp;
524 	struct arch_hw_breakpoint_ctrl ctrl;
525 	struct perf_event_attr attr;
526 
527 	if (num == 0)
528 		goto out;
529 	else if (num < 0)
530 		implied_type = HW_BREAKPOINT_RW;
531 	else
532 		implied_type = HW_BREAKPOINT_X;
533 
534 	idx = ptrace_hbp_num_to_idx(num);
535 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
536 		ret = -EINVAL;
537 		goto out;
538 	}
539 
540 	if (get_user(user_val, data)) {
541 		ret = -EFAULT;
542 		goto out;
543 	}
544 
545 	bp = tsk->thread.debug.hbp[idx];
546 	if (!bp) {
547 		bp = ptrace_hbp_create(tsk, implied_type);
548 		if (IS_ERR(bp)) {
549 			ret = PTR_ERR(bp);
550 			goto out;
551 		}
552 		tsk->thread.debug.hbp[idx] = bp;
553 	}
554 
555 	attr = bp->attr;
556 
557 	if (num & 0x1) {
558 		/* Address */
559 		attr.bp_addr	= user_val;
560 	} else {
561 		/* Control */
562 		decode_ctrl_reg(user_val, &ctrl);
563 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
564 		if (ret)
565 			goto out;
566 
567 		if ((gen_type & implied_type) != gen_type) {
568 			ret = -EINVAL;
569 			goto out;
570 		}
571 
572 		attr.bp_len	= gen_len;
573 		attr.bp_type	= gen_type;
574 		attr.disabled	= !ctrl.enabled;
575 	}
576 
577 	ret = modify_user_hw_breakpoint(bp, &attr);
578 out:
579 	return ret;
580 }
581 #endif
582 
583 /* regset get/set implementations */
584 
585 static int gpr_get(struct task_struct *target,
586 		   const struct user_regset *regset,
587 		   unsigned int pos, unsigned int count,
588 		   void *kbuf, void __user *ubuf)
589 {
590 	struct pt_regs *regs = task_pt_regs(target);
591 
592 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
593 				   regs,
594 				   0, sizeof(*regs));
595 }
596 
597 static int gpr_set(struct task_struct *target,
598 		   const struct user_regset *regset,
599 		   unsigned int pos, unsigned int count,
600 		   const void *kbuf, const void __user *ubuf)
601 {
602 	int ret;
603 	struct pt_regs newregs;
604 
605 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
606 				 &newregs,
607 				 0, sizeof(newregs));
608 	if (ret)
609 		return ret;
610 
611 	if (!valid_user_regs(&newregs))
612 		return -EINVAL;
613 
614 	*task_pt_regs(target) = newregs;
615 	return 0;
616 }
617 
618 static int fpa_get(struct task_struct *target,
619 		   const struct user_regset *regset,
620 		   unsigned int pos, unsigned int count,
621 		   void *kbuf, void __user *ubuf)
622 {
623 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
624 				   &task_thread_info(target)->fpstate,
625 				   0, sizeof(struct user_fp));
626 }
627 
628 static int fpa_set(struct task_struct *target,
629 		   const struct user_regset *regset,
630 		   unsigned int pos, unsigned int count,
631 		   const void *kbuf, const void __user *ubuf)
632 {
633 	struct thread_info *thread = task_thread_info(target);
634 
635 	thread->used_cp[1] = thread->used_cp[2] = 1;
636 
637 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
638 		&thread->fpstate,
639 		0, sizeof(struct user_fp));
640 }
641 
642 #ifdef CONFIG_VFP
643 /*
644  * VFP register get/set implementations.
645  *
646  * With respect to the kernel, struct user_fp is divided into three chunks:
647  * 16 or 32 real VFP registers (d0-d15 or d0-31)
648  *	These are transferred to/from the real registers in the task's
649  *	vfp_hard_struct.  The number of registers depends on the kernel
650  *	configuration.
651  *
652  * 16 or 0 fake VFP registers (d16-d31 or empty)
653  *	i.e., the user_vfp structure has space for 32 registers even if
654  *	the kernel doesn't have them all.
655  *
656  *	vfp_get() reads this chunk as zero where applicable
657  *	vfp_set() ignores this chunk
658  *
659  * 1 word for the FPSCR
660  *
661  * The bounds-checking logic built into user_regset_copyout and friends
662  * means that we can make a simple sequence of calls to map the relevant data
663  * to/from the specified slice of the user regset structure.
664  */
665 static int vfp_get(struct task_struct *target,
666 		   const struct user_regset *regset,
667 		   unsigned int pos, unsigned int count,
668 		   void *kbuf, void __user *ubuf)
669 {
670 	int ret;
671 	struct thread_info *thread = task_thread_info(target);
672 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
673 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
674 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
675 
676 	vfp_sync_hwstate(thread);
677 
678 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
679 				  &vfp->fpregs,
680 				  user_fpregs_offset,
681 				  user_fpregs_offset + sizeof(vfp->fpregs));
682 	if (ret)
683 		return ret;
684 
685 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
686 				       user_fpregs_offset + sizeof(vfp->fpregs),
687 				       user_fpscr_offset);
688 	if (ret)
689 		return ret;
690 
691 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
692 				   &vfp->fpscr,
693 				   user_fpscr_offset,
694 				   user_fpscr_offset + sizeof(vfp->fpscr));
695 }
696 
697 /*
698  * For vfp_set() a read-modify-write is done on the VFP registers,
699  * in order to avoid writing back a half-modified set of registers on
700  * failure.
701  */
702 static int vfp_set(struct task_struct *target,
703 			  const struct user_regset *regset,
704 			  unsigned int pos, unsigned int count,
705 			  const void *kbuf, const void __user *ubuf)
706 {
707 	int ret;
708 	struct thread_info *thread = task_thread_info(target);
709 	struct vfp_hard_struct new_vfp;
710 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
711 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
712 
713 	vfp_sync_hwstate(thread);
714 	new_vfp = thread->vfpstate.hard;
715 
716 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
717 				  &new_vfp.fpregs,
718 				  user_fpregs_offset,
719 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
720 	if (ret)
721 		return ret;
722 
723 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
724 				user_fpregs_offset + sizeof(new_vfp.fpregs),
725 				user_fpscr_offset);
726 	if (ret)
727 		return ret;
728 
729 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
730 				 &new_vfp.fpscr,
731 				 user_fpscr_offset,
732 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
733 	if (ret)
734 		return ret;
735 
736 	vfp_flush_hwstate(thread);
737 	thread->vfpstate.hard = new_vfp;
738 
739 	return 0;
740 }
741 #endif /* CONFIG_VFP */
742 
743 enum arm_regset {
744 	REGSET_GPR,
745 	REGSET_FPR,
746 #ifdef CONFIG_VFP
747 	REGSET_VFP,
748 #endif
749 };
750 
751 static const struct user_regset arm_regsets[] = {
752 	[REGSET_GPR] = {
753 		.core_note_type = NT_PRSTATUS,
754 		.n = ELF_NGREG,
755 		.size = sizeof(u32),
756 		.align = sizeof(u32),
757 		.get = gpr_get,
758 		.set = gpr_set
759 	},
760 	[REGSET_FPR] = {
761 		/*
762 		 * For the FPA regs in fpstate, the real fields are a mixture
763 		 * of sizes, so pretend that the registers are word-sized:
764 		 */
765 		.core_note_type = NT_PRFPREG,
766 		.n = sizeof(struct user_fp) / sizeof(u32),
767 		.size = sizeof(u32),
768 		.align = sizeof(u32),
769 		.get = fpa_get,
770 		.set = fpa_set
771 	},
772 #ifdef CONFIG_VFP
773 	[REGSET_VFP] = {
774 		/*
775 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
776 		 * a single word dangling at the end of struct user_vfp:
777 		 */
778 		.core_note_type = NT_ARM_VFP,
779 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
780 		.size = sizeof(u32),
781 		.align = sizeof(u32),
782 		.get = vfp_get,
783 		.set = vfp_set
784 	},
785 #endif /* CONFIG_VFP */
786 };
787 
788 static const struct user_regset_view user_arm_view = {
789 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
790 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
791 };
792 
793 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
794 {
795 	return &user_arm_view;
796 }
797 
798 long arch_ptrace(struct task_struct *child, long request,
799 		 unsigned long addr, unsigned long data)
800 {
801 	int ret;
802 	unsigned long __user *datap = (unsigned long __user *) data;
803 
804 	switch (request) {
805 		case PTRACE_PEEKUSR:
806 			ret = ptrace_read_user(child, addr, datap);
807 			break;
808 
809 		case PTRACE_POKEUSR:
810 			ret = ptrace_write_user(child, addr, data);
811 			break;
812 
813 		case PTRACE_GETREGS:
814 			ret = copy_regset_to_user(child,
815 						  &user_arm_view, REGSET_GPR,
816 						  0, sizeof(struct pt_regs),
817 						  datap);
818 			break;
819 
820 		case PTRACE_SETREGS:
821 			ret = copy_regset_from_user(child,
822 						    &user_arm_view, REGSET_GPR,
823 						    0, sizeof(struct pt_regs),
824 						    datap);
825 			break;
826 
827 		case PTRACE_GETFPREGS:
828 			ret = copy_regset_to_user(child,
829 						  &user_arm_view, REGSET_FPR,
830 						  0, sizeof(union fp_state),
831 						  datap);
832 			break;
833 
834 		case PTRACE_SETFPREGS:
835 			ret = copy_regset_from_user(child,
836 						    &user_arm_view, REGSET_FPR,
837 						    0, sizeof(union fp_state),
838 						    datap);
839 			break;
840 
841 #ifdef CONFIG_IWMMXT
842 		case PTRACE_GETWMMXREGS:
843 			ret = ptrace_getwmmxregs(child, datap);
844 			break;
845 
846 		case PTRACE_SETWMMXREGS:
847 			ret = ptrace_setwmmxregs(child, datap);
848 			break;
849 #endif
850 
851 		case PTRACE_GET_THREAD_AREA:
852 			ret = put_user(task_thread_info(child)->tp_value,
853 				       datap);
854 			break;
855 
856 		case PTRACE_SET_SYSCALL:
857 			task_thread_info(child)->syscall = data;
858 			ret = 0;
859 			break;
860 
861 #ifdef CONFIG_CRUNCH
862 		case PTRACE_GETCRUNCHREGS:
863 			ret = ptrace_getcrunchregs(child, datap);
864 			break;
865 
866 		case PTRACE_SETCRUNCHREGS:
867 			ret = ptrace_setcrunchregs(child, datap);
868 			break;
869 #endif
870 
871 #ifdef CONFIG_VFP
872 		case PTRACE_GETVFPREGS:
873 			ret = copy_regset_to_user(child,
874 						  &user_arm_view, REGSET_VFP,
875 						  0, ARM_VFPREGS_SIZE,
876 						  datap);
877 			break;
878 
879 		case PTRACE_SETVFPREGS:
880 			ret = copy_regset_from_user(child,
881 						    &user_arm_view, REGSET_VFP,
882 						    0, ARM_VFPREGS_SIZE,
883 						    datap);
884 			break;
885 #endif
886 
887 #ifdef CONFIG_HAVE_HW_BREAKPOINT
888 		case PTRACE_GETHBPREGS:
889 			if (ptrace_get_breakpoints(child) < 0)
890 				return -ESRCH;
891 
892 			ret = ptrace_gethbpregs(child, addr,
893 						(unsigned long __user *)data);
894 			ptrace_put_breakpoints(child);
895 			break;
896 		case PTRACE_SETHBPREGS:
897 			if (ptrace_get_breakpoints(child) < 0)
898 				return -ESRCH;
899 
900 			ret = ptrace_sethbpregs(child, addr,
901 						(unsigned long __user *)data);
902 			ptrace_put_breakpoints(child);
903 			break;
904 #endif
905 
906 		default:
907 			ret = ptrace_request(child, request, addr, data);
908 			break;
909 	}
910 
911 	return ret;
912 }
913 
914 enum ptrace_syscall_dir {
915 	PTRACE_SYSCALL_ENTER = 0,
916 	PTRACE_SYSCALL_EXIT,
917 };
918 
919 static int ptrace_syscall_trace(struct pt_regs *regs, int scno,
920 				enum ptrace_syscall_dir dir)
921 {
922 	unsigned long ip;
923 
924 	current_thread_info()->syscall = scno;
925 
926 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
927 		return scno;
928 
929 	/*
930 	 * IP is used to denote syscall entry/exit:
931 	 * IP = 0 -> entry, =1 -> exit
932 	 */
933 	ip = regs->ARM_ip;
934 	regs->ARM_ip = dir;
935 
936 	if (dir == PTRACE_SYSCALL_EXIT)
937 		tracehook_report_syscall_exit(regs, 0);
938 	else if (tracehook_report_syscall_entry(regs))
939 		current_thread_info()->syscall = -1;
940 
941 	regs->ARM_ip = ip;
942 	return current_thread_info()->syscall;
943 }
944 
945 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
946 {
947 	scno = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_ENTER);
948 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
949 		trace_sys_enter(regs, scno);
950 	audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0, regs->ARM_r1,
951 			    regs->ARM_r2, regs->ARM_r3);
952 	return scno;
953 }
954 
955 asmlinkage int syscall_trace_exit(struct pt_regs *regs, int scno)
956 {
957 	scno = ptrace_syscall_trace(regs, scno, PTRACE_SYSCALL_EXIT);
958 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
959 		trace_sys_exit(regs, scno);
960 	audit_syscall_exit(regs);
961 	return scno;
962 }
963