xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision 1eb4c977)
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 
28 #include <asm/pgtable.h>
29 #include <asm/system.h>
30 #include <asm/traps.h>
31 
32 #define REG_PC	15
33 #define REG_PSR	16
34 /*
35  * does not yet catch signals sent when the child dies.
36  * in exit.c or in signal.c.
37  */
38 
39 #if 0
40 /*
41  * Breakpoint SWI instruction: SWI &9F0001
42  */
43 #define BREAKINST_ARM	0xef9f0001
44 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
45 #else
46 /*
47  * New breakpoints - use an undefined instruction.  The ARM architecture
48  * reference manual guarantees that the following instruction space
49  * will produce an undefined instruction exception on all CPUs:
50  *
51  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
52  *  Thumb: 1101 1110 xxxx xxxx
53  */
54 #define BREAKINST_ARM	0xe7f001f0
55 #define BREAKINST_THUMB	0xde01
56 #endif
57 
58 struct pt_regs_offset {
59 	const char *name;
60 	int offset;
61 };
62 
63 #define REG_OFFSET_NAME(r) \
64 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
66 
67 static const struct pt_regs_offset regoffset_table[] = {
68 	REG_OFFSET_NAME(r0),
69 	REG_OFFSET_NAME(r1),
70 	REG_OFFSET_NAME(r2),
71 	REG_OFFSET_NAME(r3),
72 	REG_OFFSET_NAME(r4),
73 	REG_OFFSET_NAME(r5),
74 	REG_OFFSET_NAME(r6),
75 	REG_OFFSET_NAME(r7),
76 	REG_OFFSET_NAME(r8),
77 	REG_OFFSET_NAME(r9),
78 	REG_OFFSET_NAME(r10),
79 	REG_OFFSET_NAME(fp),
80 	REG_OFFSET_NAME(ip),
81 	REG_OFFSET_NAME(sp),
82 	REG_OFFSET_NAME(lr),
83 	REG_OFFSET_NAME(pc),
84 	REG_OFFSET_NAME(cpsr),
85 	REG_OFFSET_NAME(ORIG_r0),
86 	REG_OFFSET_END,
87 };
88 
89 /**
90  * regs_query_register_offset() - query register offset from its name
91  * @name:	the name of a register
92  *
93  * regs_query_register_offset() returns the offset of a register in struct
94  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
95  */
96 int regs_query_register_offset(const char *name)
97 {
98 	const struct pt_regs_offset *roff;
99 	for (roff = regoffset_table; roff->name != NULL; roff++)
100 		if (!strcmp(roff->name, name))
101 			return roff->offset;
102 	return -EINVAL;
103 }
104 
105 /**
106  * regs_query_register_name() - query register name from its offset
107  * @offset:	the offset of a register in struct pt_regs.
108  *
109  * regs_query_register_name() returns the name of a register from its
110  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
111  */
112 const char *regs_query_register_name(unsigned int offset)
113 {
114 	const struct pt_regs_offset *roff;
115 	for (roff = regoffset_table; roff->name != NULL; roff++)
116 		if (roff->offset == offset)
117 			return roff->name;
118 	return NULL;
119 }
120 
121 /**
122  * regs_within_kernel_stack() - check the address in the stack
123  * @regs:      pt_regs which contains kernel stack pointer.
124  * @addr:      address which is checked.
125  *
126  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127  * If @addr is within the kernel stack, it returns true. If not, returns false.
128  */
129 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
130 {
131 	return ((addr & ~(THREAD_SIZE - 1))  ==
132 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
133 }
134 
135 /**
136  * regs_get_kernel_stack_nth() - get Nth entry of the stack
137  * @regs:	pt_regs which contains kernel stack pointer.
138  * @n:		stack entry number.
139  *
140  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142  * this returns 0.
143  */
144 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
145 {
146 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147 	addr += n;
148 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
149 		return *addr;
150 	else
151 		return 0;
152 }
153 
154 /*
155  * this routine will get a word off of the processes privileged stack.
156  * the offset is how far from the base addr as stored in the THREAD.
157  * this routine assumes that all the privileged stacks are in our
158  * data space.
159  */
160 static inline long get_user_reg(struct task_struct *task, int offset)
161 {
162 	return task_pt_regs(task)->uregs[offset];
163 }
164 
165 /*
166  * this routine will put a word on the processes privileged stack.
167  * the offset is how far from the base addr as stored in the THREAD.
168  * this routine assumes that all the privileged stacks are in our
169  * data space.
170  */
171 static inline int
172 put_user_reg(struct task_struct *task, int offset, long data)
173 {
174 	struct pt_regs newregs, *regs = task_pt_regs(task);
175 	int ret = -EINVAL;
176 
177 	newregs = *regs;
178 	newregs.uregs[offset] = data;
179 
180 	if (valid_user_regs(&newregs)) {
181 		regs->uregs[offset] = data;
182 		ret = 0;
183 	}
184 
185 	return ret;
186 }
187 
188 /*
189  * Called by kernel/ptrace.c when detaching..
190  */
191 void ptrace_disable(struct task_struct *child)
192 {
193 	/* Nothing to do. */
194 }
195 
196 /*
197  * Handle hitting a breakpoint.
198  */
199 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
200 {
201 	siginfo_t info;
202 
203 	info.si_signo = SIGTRAP;
204 	info.si_errno = 0;
205 	info.si_code  = TRAP_BRKPT;
206 	info.si_addr  = (void __user *)instruction_pointer(regs);
207 
208 	force_sig_info(SIGTRAP, &info, tsk);
209 }
210 
211 static int break_trap(struct pt_regs *regs, unsigned int instr)
212 {
213 	ptrace_break(current, regs);
214 	return 0;
215 }
216 
217 static struct undef_hook arm_break_hook = {
218 	.instr_mask	= 0x0fffffff,
219 	.instr_val	= 0x07f001f0,
220 	.cpsr_mask	= PSR_T_BIT,
221 	.cpsr_val	= 0,
222 	.fn		= break_trap,
223 };
224 
225 static struct undef_hook thumb_break_hook = {
226 	.instr_mask	= 0xffff,
227 	.instr_val	= 0xde01,
228 	.cpsr_mask	= PSR_T_BIT,
229 	.cpsr_val	= PSR_T_BIT,
230 	.fn		= break_trap,
231 };
232 
233 static struct undef_hook thumb2_break_hook = {
234 	.instr_mask	= 0xffffffff,
235 	.instr_val	= 0xf7f0a000,
236 	.cpsr_mask	= PSR_T_BIT,
237 	.cpsr_val	= PSR_T_BIT,
238 	.fn		= break_trap,
239 };
240 
241 static int __init ptrace_break_init(void)
242 {
243 	register_undef_hook(&arm_break_hook);
244 	register_undef_hook(&thumb_break_hook);
245 	register_undef_hook(&thumb2_break_hook);
246 	return 0;
247 }
248 
249 core_initcall(ptrace_break_init);
250 
251 /*
252  * Read the word at offset "off" into the "struct user".  We
253  * actually access the pt_regs stored on the kernel stack.
254  */
255 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256 			    unsigned long __user *ret)
257 {
258 	unsigned long tmp;
259 
260 	if (off & 3 || off >= sizeof(struct user))
261 		return -EIO;
262 
263 	tmp = 0;
264 	if (off == PT_TEXT_ADDR)
265 		tmp = tsk->mm->start_code;
266 	else if (off == PT_DATA_ADDR)
267 		tmp = tsk->mm->start_data;
268 	else if (off == PT_TEXT_END_ADDR)
269 		tmp = tsk->mm->end_code;
270 	else if (off < sizeof(struct pt_regs))
271 		tmp = get_user_reg(tsk, off >> 2);
272 
273 	return put_user(tmp, ret);
274 }
275 
276 /*
277  * Write the word at offset "off" into "struct user".  We
278  * actually access the pt_regs stored on the kernel stack.
279  */
280 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
281 			     unsigned long val)
282 {
283 	if (off & 3 || off >= sizeof(struct user))
284 		return -EIO;
285 
286 	if (off >= sizeof(struct pt_regs))
287 		return 0;
288 
289 	return put_user_reg(tsk, off >> 2, val);
290 }
291 
292 #ifdef CONFIG_IWMMXT
293 
294 /*
295  * Get the child iWMMXt state.
296  */
297 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
298 {
299 	struct thread_info *thread = task_thread_info(tsk);
300 
301 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
302 		return -ENODATA;
303 	iwmmxt_task_disable(thread);  /* force it to ram */
304 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
305 		? -EFAULT : 0;
306 }
307 
308 /*
309  * Set the child iWMMXt state.
310  */
311 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
312 {
313 	struct thread_info *thread = task_thread_info(tsk);
314 
315 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
316 		return -EACCES;
317 	iwmmxt_task_release(thread);  /* force a reload */
318 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
319 		? -EFAULT : 0;
320 }
321 
322 #endif
323 
324 #ifdef CONFIG_CRUNCH
325 /*
326  * Get the child Crunch state.
327  */
328 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
329 {
330 	struct thread_info *thread = task_thread_info(tsk);
331 
332 	crunch_task_disable(thread);  /* force it to ram */
333 	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
334 		? -EFAULT : 0;
335 }
336 
337 /*
338  * Set the child Crunch state.
339  */
340 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
341 {
342 	struct thread_info *thread = task_thread_info(tsk);
343 
344 	crunch_task_release(thread);  /* force a reload */
345 	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
346 		? -EFAULT : 0;
347 }
348 #endif
349 
350 #ifdef CONFIG_HAVE_HW_BREAKPOINT
351 /*
352  * Convert a virtual register number into an index for a thread_info
353  * breakpoint array. Breakpoints are identified using positive numbers
354  * whilst watchpoints are negative. The registers are laid out as pairs
355  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
356  * Register 0 is reserved for describing resource information.
357  */
358 static int ptrace_hbp_num_to_idx(long num)
359 {
360 	if (num < 0)
361 		num = (ARM_MAX_BRP << 1) - num;
362 	return (num - 1) >> 1;
363 }
364 
365 /*
366  * Returns the virtual register number for the address of the
367  * breakpoint at index idx.
368  */
369 static long ptrace_hbp_idx_to_num(int idx)
370 {
371 	long mid = ARM_MAX_BRP << 1;
372 	long num = (idx << 1) + 1;
373 	return num > mid ? mid - num : num;
374 }
375 
376 /*
377  * Handle hitting a HW-breakpoint.
378  */
379 static void ptrace_hbptriggered(struct perf_event *bp,
380 				     struct perf_sample_data *data,
381 				     struct pt_regs *regs)
382 {
383 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
384 	long num;
385 	int i;
386 	siginfo_t info;
387 
388 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
389 		if (current->thread.debug.hbp[i] == bp)
390 			break;
391 
392 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
393 
394 	info.si_signo	= SIGTRAP;
395 	info.si_errno	= (int)num;
396 	info.si_code	= TRAP_HWBKPT;
397 	info.si_addr	= (void __user *)(bkpt->trigger);
398 
399 	force_sig_info(SIGTRAP, &info, current);
400 }
401 
402 /*
403  * Set ptrace breakpoint pointers to zero for this task.
404  * This is required in order to prevent child processes from unregistering
405  * breakpoints held by their parent.
406  */
407 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
408 {
409 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
410 }
411 
412 /*
413  * Unregister breakpoints from this task and reset the pointers in
414  * the thread_struct.
415  */
416 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
417 {
418 	int i;
419 	struct thread_struct *t = &tsk->thread;
420 
421 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
422 		if (t->debug.hbp[i]) {
423 			unregister_hw_breakpoint(t->debug.hbp[i]);
424 			t->debug.hbp[i] = NULL;
425 		}
426 	}
427 }
428 
429 static u32 ptrace_get_hbp_resource_info(void)
430 {
431 	u8 num_brps, num_wrps, debug_arch, wp_len;
432 	u32 reg = 0;
433 
434 	num_brps	= hw_breakpoint_slots(TYPE_INST);
435 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
436 	debug_arch	= arch_get_debug_arch();
437 	wp_len		= arch_get_max_wp_len();
438 
439 	reg		|= debug_arch;
440 	reg		<<= 8;
441 	reg		|= wp_len;
442 	reg		<<= 8;
443 	reg		|= num_wrps;
444 	reg		<<= 8;
445 	reg		|= num_brps;
446 
447 	return reg;
448 }
449 
450 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
451 {
452 	struct perf_event_attr attr;
453 
454 	ptrace_breakpoint_init(&attr);
455 
456 	/* Initialise fields to sane defaults. */
457 	attr.bp_addr	= 0;
458 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
459 	attr.bp_type	= type;
460 	attr.disabled	= 1;
461 
462 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
463 					   tsk);
464 }
465 
466 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
467 			     unsigned long  __user *data)
468 {
469 	u32 reg;
470 	int idx, ret = 0;
471 	struct perf_event *bp;
472 	struct arch_hw_breakpoint_ctrl arch_ctrl;
473 
474 	if (num == 0) {
475 		reg = ptrace_get_hbp_resource_info();
476 	} else {
477 		idx = ptrace_hbp_num_to_idx(num);
478 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
479 			ret = -EINVAL;
480 			goto out;
481 		}
482 
483 		bp = tsk->thread.debug.hbp[idx];
484 		if (!bp) {
485 			reg = 0;
486 			goto put;
487 		}
488 
489 		arch_ctrl = counter_arch_bp(bp)->ctrl;
490 
491 		/*
492 		 * Fix up the len because we may have adjusted it
493 		 * to compensate for an unaligned address.
494 		 */
495 		while (!(arch_ctrl.len & 0x1))
496 			arch_ctrl.len >>= 1;
497 
498 		if (num & 0x1)
499 			reg = bp->attr.bp_addr;
500 		else
501 			reg = encode_ctrl_reg(arch_ctrl);
502 	}
503 
504 put:
505 	if (put_user(reg, data))
506 		ret = -EFAULT;
507 
508 out:
509 	return ret;
510 }
511 
512 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
513 			     unsigned long __user *data)
514 {
515 	int idx, gen_len, gen_type, implied_type, ret = 0;
516 	u32 user_val;
517 	struct perf_event *bp;
518 	struct arch_hw_breakpoint_ctrl ctrl;
519 	struct perf_event_attr attr;
520 
521 	if (num == 0)
522 		goto out;
523 	else if (num < 0)
524 		implied_type = HW_BREAKPOINT_RW;
525 	else
526 		implied_type = HW_BREAKPOINT_X;
527 
528 	idx = ptrace_hbp_num_to_idx(num);
529 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
530 		ret = -EINVAL;
531 		goto out;
532 	}
533 
534 	if (get_user(user_val, data)) {
535 		ret = -EFAULT;
536 		goto out;
537 	}
538 
539 	bp = tsk->thread.debug.hbp[idx];
540 	if (!bp) {
541 		bp = ptrace_hbp_create(tsk, implied_type);
542 		if (IS_ERR(bp)) {
543 			ret = PTR_ERR(bp);
544 			goto out;
545 		}
546 		tsk->thread.debug.hbp[idx] = bp;
547 	}
548 
549 	attr = bp->attr;
550 
551 	if (num & 0x1) {
552 		/* Address */
553 		attr.bp_addr	= user_val;
554 	} else {
555 		/* Control */
556 		decode_ctrl_reg(user_val, &ctrl);
557 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
558 		if (ret)
559 			goto out;
560 
561 		if ((gen_type & implied_type) != gen_type) {
562 			ret = -EINVAL;
563 			goto out;
564 		}
565 
566 		attr.bp_len	= gen_len;
567 		attr.bp_type	= gen_type;
568 		attr.disabled	= !ctrl.enabled;
569 	}
570 
571 	ret = modify_user_hw_breakpoint(bp, &attr);
572 out:
573 	return ret;
574 }
575 #endif
576 
577 /* regset get/set implementations */
578 
579 static int gpr_get(struct task_struct *target,
580 		   const struct user_regset *regset,
581 		   unsigned int pos, unsigned int count,
582 		   void *kbuf, void __user *ubuf)
583 {
584 	struct pt_regs *regs = task_pt_regs(target);
585 
586 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
587 				   regs,
588 				   0, sizeof(*regs));
589 }
590 
591 static int gpr_set(struct task_struct *target,
592 		   const struct user_regset *regset,
593 		   unsigned int pos, unsigned int count,
594 		   const void *kbuf, const void __user *ubuf)
595 {
596 	int ret;
597 	struct pt_regs newregs;
598 
599 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
600 				 &newregs,
601 				 0, sizeof(newregs));
602 	if (ret)
603 		return ret;
604 
605 	if (!valid_user_regs(&newregs))
606 		return -EINVAL;
607 
608 	*task_pt_regs(target) = newregs;
609 	return 0;
610 }
611 
612 static int fpa_get(struct task_struct *target,
613 		   const struct user_regset *regset,
614 		   unsigned int pos, unsigned int count,
615 		   void *kbuf, void __user *ubuf)
616 {
617 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
618 				   &task_thread_info(target)->fpstate,
619 				   0, sizeof(struct user_fp));
620 }
621 
622 static int fpa_set(struct task_struct *target,
623 		   const struct user_regset *regset,
624 		   unsigned int pos, unsigned int count,
625 		   const void *kbuf, const void __user *ubuf)
626 {
627 	struct thread_info *thread = task_thread_info(target);
628 
629 	thread->used_cp[1] = thread->used_cp[2] = 1;
630 
631 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
632 		&thread->fpstate,
633 		0, sizeof(struct user_fp));
634 }
635 
636 #ifdef CONFIG_VFP
637 /*
638  * VFP register get/set implementations.
639  *
640  * With respect to the kernel, struct user_fp is divided into three chunks:
641  * 16 or 32 real VFP registers (d0-d15 or d0-31)
642  *	These are transferred to/from the real registers in the task's
643  *	vfp_hard_struct.  The number of registers depends on the kernel
644  *	configuration.
645  *
646  * 16 or 0 fake VFP registers (d16-d31 or empty)
647  *	i.e., the user_vfp structure has space for 32 registers even if
648  *	the kernel doesn't have them all.
649  *
650  *	vfp_get() reads this chunk as zero where applicable
651  *	vfp_set() ignores this chunk
652  *
653  * 1 word for the FPSCR
654  *
655  * The bounds-checking logic built into user_regset_copyout and friends
656  * means that we can make a simple sequence of calls to map the relevant data
657  * to/from the specified slice of the user regset structure.
658  */
659 static int vfp_get(struct task_struct *target,
660 		   const struct user_regset *regset,
661 		   unsigned int pos, unsigned int count,
662 		   void *kbuf, void __user *ubuf)
663 {
664 	int ret;
665 	struct thread_info *thread = task_thread_info(target);
666 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
667 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
669 
670 	vfp_sync_hwstate(thread);
671 
672 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
673 				  &vfp->fpregs,
674 				  user_fpregs_offset,
675 				  user_fpregs_offset + sizeof(vfp->fpregs));
676 	if (ret)
677 		return ret;
678 
679 	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
680 				       user_fpregs_offset + sizeof(vfp->fpregs),
681 				       user_fpscr_offset);
682 	if (ret)
683 		return ret;
684 
685 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
686 				   &vfp->fpscr,
687 				   user_fpscr_offset,
688 				   user_fpscr_offset + sizeof(vfp->fpscr));
689 }
690 
691 /*
692  * For vfp_set() a read-modify-write is done on the VFP registers,
693  * in order to avoid writing back a half-modified set of registers on
694  * failure.
695  */
696 static int vfp_set(struct task_struct *target,
697 			  const struct user_regset *regset,
698 			  unsigned int pos, unsigned int count,
699 			  const void *kbuf, const void __user *ubuf)
700 {
701 	int ret;
702 	struct thread_info *thread = task_thread_info(target);
703 	struct vfp_hard_struct new_vfp;
704 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
705 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
706 
707 	vfp_sync_hwstate(thread);
708 	new_vfp = thread->vfpstate.hard;
709 
710 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
711 				  &new_vfp.fpregs,
712 				  user_fpregs_offset,
713 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
714 	if (ret)
715 		return ret;
716 
717 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
718 				user_fpregs_offset + sizeof(new_vfp.fpregs),
719 				user_fpscr_offset);
720 	if (ret)
721 		return ret;
722 
723 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
724 				 &new_vfp.fpscr,
725 				 user_fpscr_offset,
726 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
727 	if (ret)
728 		return ret;
729 
730 	vfp_flush_hwstate(thread);
731 	thread->vfpstate.hard = new_vfp;
732 
733 	return 0;
734 }
735 #endif /* CONFIG_VFP */
736 
737 enum arm_regset {
738 	REGSET_GPR,
739 	REGSET_FPR,
740 #ifdef CONFIG_VFP
741 	REGSET_VFP,
742 #endif
743 };
744 
745 static const struct user_regset arm_regsets[] = {
746 	[REGSET_GPR] = {
747 		.core_note_type = NT_PRSTATUS,
748 		.n = ELF_NGREG,
749 		.size = sizeof(u32),
750 		.align = sizeof(u32),
751 		.get = gpr_get,
752 		.set = gpr_set
753 	},
754 	[REGSET_FPR] = {
755 		/*
756 		 * For the FPA regs in fpstate, the real fields are a mixture
757 		 * of sizes, so pretend that the registers are word-sized:
758 		 */
759 		.core_note_type = NT_PRFPREG,
760 		.n = sizeof(struct user_fp) / sizeof(u32),
761 		.size = sizeof(u32),
762 		.align = sizeof(u32),
763 		.get = fpa_get,
764 		.set = fpa_set
765 	},
766 #ifdef CONFIG_VFP
767 	[REGSET_VFP] = {
768 		/*
769 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
770 		 * a single word dangling at the end of struct user_vfp:
771 		 */
772 		.core_note_type = NT_ARM_VFP,
773 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
774 		.size = sizeof(u32),
775 		.align = sizeof(u32),
776 		.get = vfp_get,
777 		.set = vfp_set
778 	},
779 #endif /* CONFIG_VFP */
780 };
781 
782 static const struct user_regset_view user_arm_view = {
783 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
784 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
785 };
786 
787 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
788 {
789 	return &user_arm_view;
790 }
791 
792 long arch_ptrace(struct task_struct *child, long request,
793 		 unsigned long addr, unsigned long data)
794 {
795 	int ret;
796 	unsigned long __user *datap = (unsigned long __user *) data;
797 
798 	switch (request) {
799 		case PTRACE_PEEKUSR:
800 			ret = ptrace_read_user(child, addr, datap);
801 			break;
802 
803 		case PTRACE_POKEUSR:
804 			ret = ptrace_write_user(child, addr, data);
805 			break;
806 
807 		case PTRACE_GETREGS:
808 			ret = copy_regset_to_user(child,
809 						  &user_arm_view, REGSET_GPR,
810 						  0, sizeof(struct pt_regs),
811 						  datap);
812 			break;
813 
814 		case PTRACE_SETREGS:
815 			ret = copy_regset_from_user(child,
816 						    &user_arm_view, REGSET_GPR,
817 						    0, sizeof(struct pt_regs),
818 						    datap);
819 			break;
820 
821 		case PTRACE_GETFPREGS:
822 			ret = copy_regset_to_user(child,
823 						  &user_arm_view, REGSET_FPR,
824 						  0, sizeof(union fp_state),
825 						  datap);
826 			break;
827 
828 		case PTRACE_SETFPREGS:
829 			ret = copy_regset_from_user(child,
830 						    &user_arm_view, REGSET_FPR,
831 						    0, sizeof(union fp_state),
832 						    datap);
833 			break;
834 
835 #ifdef CONFIG_IWMMXT
836 		case PTRACE_GETWMMXREGS:
837 			ret = ptrace_getwmmxregs(child, datap);
838 			break;
839 
840 		case PTRACE_SETWMMXREGS:
841 			ret = ptrace_setwmmxregs(child, datap);
842 			break;
843 #endif
844 
845 		case PTRACE_GET_THREAD_AREA:
846 			ret = put_user(task_thread_info(child)->tp_value,
847 				       datap);
848 			break;
849 
850 		case PTRACE_SET_SYSCALL:
851 			task_thread_info(child)->syscall = data;
852 			ret = 0;
853 			break;
854 
855 #ifdef CONFIG_CRUNCH
856 		case PTRACE_GETCRUNCHREGS:
857 			ret = ptrace_getcrunchregs(child, datap);
858 			break;
859 
860 		case PTRACE_SETCRUNCHREGS:
861 			ret = ptrace_setcrunchregs(child, datap);
862 			break;
863 #endif
864 
865 #ifdef CONFIG_VFP
866 		case PTRACE_GETVFPREGS:
867 			ret = copy_regset_to_user(child,
868 						  &user_arm_view, REGSET_VFP,
869 						  0, ARM_VFPREGS_SIZE,
870 						  datap);
871 			break;
872 
873 		case PTRACE_SETVFPREGS:
874 			ret = copy_regset_from_user(child,
875 						    &user_arm_view, REGSET_VFP,
876 						    0, ARM_VFPREGS_SIZE,
877 						    datap);
878 			break;
879 #endif
880 
881 #ifdef CONFIG_HAVE_HW_BREAKPOINT
882 		case PTRACE_GETHBPREGS:
883 			if (ptrace_get_breakpoints(child) < 0)
884 				return -ESRCH;
885 
886 			ret = ptrace_gethbpregs(child, addr,
887 						(unsigned long __user *)data);
888 			ptrace_put_breakpoints(child);
889 			break;
890 		case PTRACE_SETHBPREGS:
891 			if (ptrace_get_breakpoints(child) < 0)
892 				return -ESRCH;
893 
894 			ret = ptrace_sethbpregs(child, addr,
895 						(unsigned long __user *)data);
896 			ptrace_put_breakpoints(child);
897 			break;
898 #endif
899 
900 		default:
901 			ret = ptrace_request(child, request, addr, data);
902 			break;
903 	}
904 
905 	return ret;
906 }
907 
908 #ifdef __ARMEB__
909 #define AUDIT_ARCH_NR AUDIT_ARCH_ARMEB
910 #else
911 #define AUDIT_ARCH_NR AUDIT_ARCH_ARM
912 #endif
913 
914 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
915 {
916 	unsigned long ip;
917 
918 	/*
919 	 * Save IP.  IP is used to denote syscall entry/exit:
920 	 *  IP = 0 -> entry, = 1 -> exit
921 	 */
922 	ip = regs->ARM_ip;
923 	regs->ARM_ip = why;
924 
925 	if (!ip)
926 		audit_syscall_exit(regs);
927 	else
928 		audit_syscall_entry(AUDIT_ARCH_NR, scno, regs->ARM_r0,
929 				    regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
930 
931 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
932 		return scno;
933 	if (!(current->ptrace & PT_PTRACED))
934 		return scno;
935 
936 	current_thread_info()->syscall = scno;
937 
938 	/* the 0x80 provides a way for the tracing parent to distinguish
939 	   between a syscall stop and SIGTRAP delivery */
940 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
941 				 ? 0x80 : 0));
942 	/*
943 	 * this isn't the same as continuing with a signal, but it will do
944 	 * for normal use.  strace only continues with a signal if the
945 	 * stopping signal is not SIGTRAP.  -brl
946 	 */
947 	if (current->exit_code) {
948 		send_sig(current->exit_code, current, 1);
949 		current->exit_code = 0;
950 	}
951 	regs->ARM_ip = ip;
952 
953 	return current_thread_info()->syscall;
954 }
955