1 /* 2 * linux/arch/arm/kernel/ptrace.c 3 * 4 * By Ross Biro 1/23/92 5 * edited by Linus Torvalds 6 * ARM modifications Copyright (C) 2000 Russell King 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/mm.h> 15 #include <linux/elf.h> 16 #include <linux/smp.h> 17 #include <linux/ptrace.h> 18 #include <linux/user.h> 19 #include <linux/security.h> 20 #include <linux/init.h> 21 #include <linux/signal.h> 22 #include <linux/uaccess.h> 23 #include <linux/perf_event.h> 24 #include <linux/hw_breakpoint.h> 25 #include <linux/regset.h> 26 #include <linux/audit.h> 27 28 #include <asm/pgtable.h> 29 #include <asm/system.h> 30 #include <asm/traps.h> 31 32 #define REG_PC 15 33 #define REG_PSR 16 34 /* 35 * does not yet catch signals sent when the child dies. 36 * in exit.c or in signal.c. 37 */ 38 39 #if 0 40 /* 41 * Breakpoint SWI instruction: SWI &9F0001 42 */ 43 #define BREAKINST_ARM 0xef9f0001 44 #define BREAKINST_THUMB 0xdf00 /* fill this in later */ 45 #else 46 /* 47 * New breakpoints - use an undefined instruction. The ARM architecture 48 * reference manual guarantees that the following instruction space 49 * will produce an undefined instruction exception on all CPUs: 50 * 51 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx 52 * Thumb: 1101 1110 xxxx xxxx 53 */ 54 #define BREAKINST_ARM 0xe7f001f0 55 #define BREAKINST_THUMB 0xde01 56 #endif 57 58 struct pt_regs_offset { 59 const char *name; 60 int offset; 61 }; 62 63 #define REG_OFFSET_NAME(r) \ 64 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} 65 #define REG_OFFSET_END {.name = NULL, .offset = 0} 66 67 static const struct pt_regs_offset regoffset_table[] = { 68 REG_OFFSET_NAME(r0), 69 REG_OFFSET_NAME(r1), 70 REG_OFFSET_NAME(r2), 71 REG_OFFSET_NAME(r3), 72 REG_OFFSET_NAME(r4), 73 REG_OFFSET_NAME(r5), 74 REG_OFFSET_NAME(r6), 75 REG_OFFSET_NAME(r7), 76 REG_OFFSET_NAME(r8), 77 REG_OFFSET_NAME(r9), 78 REG_OFFSET_NAME(r10), 79 REG_OFFSET_NAME(fp), 80 REG_OFFSET_NAME(ip), 81 REG_OFFSET_NAME(sp), 82 REG_OFFSET_NAME(lr), 83 REG_OFFSET_NAME(pc), 84 REG_OFFSET_NAME(cpsr), 85 REG_OFFSET_NAME(ORIG_r0), 86 REG_OFFSET_END, 87 }; 88 89 /** 90 * regs_query_register_offset() - query register offset from its name 91 * @name: the name of a register 92 * 93 * regs_query_register_offset() returns the offset of a register in struct 94 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 95 */ 96 int regs_query_register_offset(const char *name) 97 { 98 const struct pt_regs_offset *roff; 99 for (roff = regoffset_table; roff->name != NULL; roff++) 100 if (!strcmp(roff->name, name)) 101 return roff->offset; 102 return -EINVAL; 103 } 104 105 /** 106 * regs_query_register_name() - query register name from its offset 107 * @offset: the offset of a register in struct pt_regs. 108 * 109 * regs_query_register_name() returns the name of a register from its 110 * offset in struct pt_regs. If the @offset is invalid, this returns NULL; 111 */ 112 const char *regs_query_register_name(unsigned int offset) 113 { 114 const struct pt_regs_offset *roff; 115 for (roff = regoffset_table; roff->name != NULL; roff++) 116 if (roff->offset == offset) 117 return roff->name; 118 return NULL; 119 } 120 121 /** 122 * regs_within_kernel_stack() - check the address in the stack 123 * @regs: pt_regs which contains kernel stack pointer. 124 * @addr: address which is checked. 125 * 126 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 127 * If @addr is within the kernel stack, it returns true. If not, returns false. 128 */ 129 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 130 { 131 return ((addr & ~(THREAD_SIZE - 1)) == 132 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); 133 } 134 135 /** 136 * regs_get_kernel_stack_nth() - get Nth entry of the stack 137 * @regs: pt_regs which contains kernel stack pointer. 138 * @n: stack entry number. 139 * 140 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 141 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 142 * this returns 0. 143 */ 144 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 145 { 146 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 147 addr += n; 148 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 149 return *addr; 150 else 151 return 0; 152 } 153 154 /* 155 * this routine will get a word off of the processes privileged stack. 156 * the offset is how far from the base addr as stored in the THREAD. 157 * this routine assumes that all the privileged stacks are in our 158 * data space. 159 */ 160 static inline long get_user_reg(struct task_struct *task, int offset) 161 { 162 return task_pt_regs(task)->uregs[offset]; 163 } 164 165 /* 166 * this routine will put a word on the processes privileged stack. 167 * the offset is how far from the base addr as stored in the THREAD. 168 * this routine assumes that all the privileged stacks are in our 169 * data space. 170 */ 171 static inline int 172 put_user_reg(struct task_struct *task, int offset, long data) 173 { 174 struct pt_regs newregs, *regs = task_pt_regs(task); 175 int ret = -EINVAL; 176 177 newregs = *regs; 178 newregs.uregs[offset] = data; 179 180 if (valid_user_regs(&newregs)) { 181 regs->uregs[offset] = data; 182 ret = 0; 183 } 184 185 return ret; 186 } 187 188 /* 189 * Called by kernel/ptrace.c when detaching.. 190 */ 191 void ptrace_disable(struct task_struct *child) 192 { 193 /* Nothing to do. */ 194 } 195 196 /* 197 * Handle hitting a breakpoint. 198 */ 199 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) 200 { 201 siginfo_t info; 202 203 info.si_signo = SIGTRAP; 204 info.si_errno = 0; 205 info.si_code = TRAP_BRKPT; 206 info.si_addr = (void __user *)instruction_pointer(regs); 207 208 force_sig_info(SIGTRAP, &info, tsk); 209 } 210 211 static int break_trap(struct pt_regs *regs, unsigned int instr) 212 { 213 ptrace_break(current, regs); 214 return 0; 215 } 216 217 static struct undef_hook arm_break_hook = { 218 .instr_mask = 0x0fffffff, 219 .instr_val = 0x07f001f0, 220 .cpsr_mask = PSR_T_BIT, 221 .cpsr_val = 0, 222 .fn = break_trap, 223 }; 224 225 static struct undef_hook thumb_break_hook = { 226 .instr_mask = 0xffff, 227 .instr_val = 0xde01, 228 .cpsr_mask = PSR_T_BIT, 229 .cpsr_val = PSR_T_BIT, 230 .fn = break_trap, 231 }; 232 233 static struct undef_hook thumb2_break_hook = { 234 .instr_mask = 0xffffffff, 235 .instr_val = 0xf7f0a000, 236 .cpsr_mask = PSR_T_BIT, 237 .cpsr_val = PSR_T_BIT, 238 .fn = break_trap, 239 }; 240 241 static int __init ptrace_break_init(void) 242 { 243 register_undef_hook(&arm_break_hook); 244 register_undef_hook(&thumb_break_hook); 245 register_undef_hook(&thumb2_break_hook); 246 return 0; 247 } 248 249 core_initcall(ptrace_break_init); 250 251 /* 252 * Read the word at offset "off" into the "struct user". We 253 * actually access the pt_regs stored on the kernel stack. 254 */ 255 static int ptrace_read_user(struct task_struct *tsk, unsigned long off, 256 unsigned long __user *ret) 257 { 258 unsigned long tmp; 259 260 if (off & 3 || off >= sizeof(struct user)) 261 return -EIO; 262 263 tmp = 0; 264 if (off == PT_TEXT_ADDR) 265 tmp = tsk->mm->start_code; 266 else if (off == PT_DATA_ADDR) 267 tmp = tsk->mm->start_data; 268 else if (off == PT_TEXT_END_ADDR) 269 tmp = tsk->mm->end_code; 270 else if (off < sizeof(struct pt_regs)) 271 tmp = get_user_reg(tsk, off >> 2); 272 273 return put_user(tmp, ret); 274 } 275 276 /* 277 * Write the word at offset "off" into "struct user". We 278 * actually access the pt_regs stored on the kernel stack. 279 */ 280 static int ptrace_write_user(struct task_struct *tsk, unsigned long off, 281 unsigned long val) 282 { 283 if (off & 3 || off >= sizeof(struct user)) 284 return -EIO; 285 286 if (off >= sizeof(struct pt_regs)) 287 return 0; 288 289 return put_user_reg(tsk, off >> 2, val); 290 } 291 292 #ifdef CONFIG_IWMMXT 293 294 /* 295 * Get the child iWMMXt state. 296 */ 297 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) 298 { 299 struct thread_info *thread = task_thread_info(tsk); 300 301 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 302 return -ENODATA; 303 iwmmxt_task_disable(thread); /* force it to ram */ 304 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) 305 ? -EFAULT : 0; 306 } 307 308 /* 309 * Set the child iWMMXt state. 310 */ 311 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) 312 { 313 struct thread_info *thread = task_thread_info(tsk); 314 315 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) 316 return -EACCES; 317 iwmmxt_task_release(thread); /* force a reload */ 318 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) 319 ? -EFAULT : 0; 320 } 321 322 #endif 323 324 #ifdef CONFIG_CRUNCH 325 /* 326 * Get the child Crunch state. 327 */ 328 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) 329 { 330 struct thread_info *thread = task_thread_info(tsk); 331 332 crunch_task_disable(thread); /* force it to ram */ 333 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) 334 ? -EFAULT : 0; 335 } 336 337 /* 338 * Set the child Crunch state. 339 */ 340 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) 341 { 342 struct thread_info *thread = task_thread_info(tsk); 343 344 crunch_task_release(thread); /* force a reload */ 345 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) 346 ? -EFAULT : 0; 347 } 348 #endif 349 350 #ifdef CONFIG_HAVE_HW_BREAKPOINT 351 /* 352 * Convert a virtual register number into an index for a thread_info 353 * breakpoint array. Breakpoints are identified using positive numbers 354 * whilst watchpoints are negative. The registers are laid out as pairs 355 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 356 * Register 0 is reserved for describing resource information. 357 */ 358 static int ptrace_hbp_num_to_idx(long num) 359 { 360 if (num < 0) 361 num = (ARM_MAX_BRP << 1) - num; 362 return (num - 1) >> 1; 363 } 364 365 /* 366 * Returns the virtual register number for the address of the 367 * breakpoint at index idx. 368 */ 369 static long ptrace_hbp_idx_to_num(int idx) 370 { 371 long mid = ARM_MAX_BRP << 1; 372 long num = (idx << 1) + 1; 373 return num > mid ? mid - num : num; 374 } 375 376 /* 377 * Handle hitting a HW-breakpoint. 378 */ 379 static void ptrace_hbptriggered(struct perf_event *bp, 380 struct perf_sample_data *data, 381 struct pt_regs *regs) 382 { 383 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 384 long num; 385 int i; 386 siginfo_t info; 387 388 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) 389 if (current->thread.debug.hbp[i] == bp) 390 break; 391 392 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); 393 394 info.si_signo = SIGTRAP; 395 info.si_errno = (int)num; 396 info.si_code = TRAP_HWBKPT; 397 info.si_addr = (void __user *)(bkpt->trigger); 398 399 force_sig_info(SIGTRAP, &info, current); 400 } 401 402 /* 403 * Set ptrace breakpoint pointers to zero for this task. 404 * This is required in order to prevent child processes from unregistering 405 * breakpoints held by their parent. 406 */ 407 void clear_ptrace_hw_breakpoint(struct task_struct *tsk) 408 { 409 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); 410 } 411 412 /* 413 * Unregister breakpoints from this task and reset the pointers in 414 * the thread_struct. 415 */ 416 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 417 { 418 int i; 419 struct thread_struct *t = &tsk->thread; 420 421 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { 422 if (t->debug.hbp[i]) { 423 unregister_hw_breakpoint(t->debug.hbp[i]); 424 t->debug.hbp[i] = NULL; 425 } 426 } 427 } 428 429 static u32 ptrace_get_hbp_resource_info(void) 430 { 431 u8 num_brps, num_wrps, debug_arch, wp_len; 432 u32 reg = 0; 433 434 num_brps = hw_breakpoint_slots(TYPE_INST); 435 num_wrps = hw_breakpoint_slots(TYPE_DATA); 436 debug_arch = arch_get_debug_arch(); 437 wp_len = arch_get_max_wp_len(); 438 439 reg |= debug_arch; 440 reg <<= 8; 441 reg |= wp_len; 442 reg <<= 8; 443 reg |= num_wrps; 444 reg <<= 8; 445 reg |= num_brps; 446 447 return reg; 448 } 449 450 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) 451 { 452 struct perf_event_attr attr; 453 454 ptrace_breakpoint_init(&attr); 455 456 /* Initialise fields to sane defaults. */ 457 attr.bp_addr = 0; 458 attr.bp_len = HW_BREAKPOINT_LEN_4; 459 attr.bp_type = type; 460 attr.disabled = 1; 461 462 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, 463 tsk); 464 } 465 466 static int ptrace_gethbpregs(struct task_struct *tsk, long num, 467 unsigned long __user *data) 468 { 469 u32 reg; 470 int idx, ret = 0; 471 struct perf_event *bp; 472 struct arch_hw_breakpoint_ctrl arch_ctrl; 473 474 if (num == 0) { 475 reg = ptrace_get_hbp_resource_info(); 476 } else { 477 idx = ptrace_hbp_num_to_idx(num); 478 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 479 ret = -EINVAL; 480 goto out; 481 } 482 483 bp = tsk->thread.debug.hbp[idx]; 484 if (!bp) { 485 reg = 0; 486 goto put; 487 } 488 489 arch_ctrl = counter_arch_bp(bp)->ctrl; 490 491 /* 492 * Fix up the len because we may have adjusted it 493 * to compensate for an unaligned address. 494 */ 495 while (!(arch_ctrl.len & 0x1)) 496 arch_ctrl.len >>= 1; 497 498 if (num & 0x1) 499 reg = bp->attr.bp_addr; 500 else 501 reg = encode_ctrl_reg(arch_ctrl); 502 } 503 504 put: 505 if (put_user(reg, data)) 506 ret = -EFAULT; 507 508 out: 509 return ret; 510 } 511 512 static int ptrace_sethbpregs(struct task_struct *tsk, long num, 513 unsigned long __user *data) 514 { 515 int idx, gen_len, gen_type, implied_type, ret = 0; 516 u32 user_val; 517 struct perf_event *bp; 518 struct arch_hw_breakpoint_ctrl ctrl; 519 struct perf_event_attr attr; 520 521 if (num == 0) 522 goto out; 523 else if (num < 0) 524 implied_type = HW_BREAKPOINT_RW; 525 else 526 implied_type = HW_BREAKPOINT_X; 527 528 idx = ptrace_hbp_num_to_idx(num); 529 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { 530 ret = -EINVAL; 531 goto out; 532 } 533 534 if (get_user(user_val, data)) { 535 ret = -EFAULT; 536 goto out; 537 } 538 539 bp = tsk->thread.debug.hbp[idx]; 540 if (!bp) { 541 bp = ptrace_hbp_create(tsk, implied_type); 542 if (IS_ERR(bp)) { 543 ret = PTR_ERR(bp); 544 goto out; 545 } 546 tsk->thread.debug.hbp[idx] = bp; 547 } 548 549 attr = bp->attr; 550 551 if (num & 0x1) { 552 /* Address */ 553 attr.bp_addr = user_val; 554 } else { 555 /* Control */ 556 decode_ctrl_reg(user_val, &ctrl); 557 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); 558 if (ret) 559 goto out; 560 561 if ((gen_type & implied_type) != gen_type) { 562 ret = -EINVAL; 563 goto out; 564 } 565 566 attr.bp_len = gen_len; 567 attr.bp_type = gen_type; 568 attr.disabled = !ctrl.enabled; 569 } 570 571 ret = modify_user_hw_breakpoint(bp, &attr); 572 out: 573 return ret; 574 } 575 #endif 576 577 /* regset get/set implementations */ 578 579 static int gpr_get(struct task_struct *target, 580 const struct user_regset *regset, 581 unsigned int pos, unsigned int count, 582 void *kbuf, void __user *ubuf) 583 { 584 struct pt_regs *regs = task_pt_regs(target); 585 586 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 587 regs, 588 0, sizeof(*regs)); 589 } 590 591 static int gpr_set(struct task_struct *target, 592 const struct user_regset *regset, 593 unsigned int pos, unsigned int count, 594 const void *kbuf, const void __user *ubuf) 595 { 596 int ret; 597 struct pt_regs newregs; 598 599 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 600 &newregs, 601 0, sizeof(newregs)); 602 if (ret) 603 return ret; 604 605 if (!valid_user_regs(&newregs)) 606 return -EINVAL; 607 608 *task_pt_regs(target) = newregs; 609 return 0; 610 } 611 612 static int fpa_get(struct task_struct *target, 613 const struct user_regset *regset, 614 unsigned int pos, unsigned int count, 615 void *kbuf, void __user *ubuf) 616 { 617 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 618 &task_thread_info(target)->fpstate, 619 0, sizeof(struct user_fp)); 620 } 621 622 static int fpa_set(struct task_struct *target, 623 const struct user_regset *regset, 624 unsigned int pos, unsigned int count, 625 const void *kbuf, const void __user *ubuf) 626 { 627 struct thread_info *thread = task_thread_info(target); 628 629 thread->used_cp[1] = thread->used_cp[2] = 1; 630 631 return user_regset_copyin(&pos, &count, &kbuf, &ubuf, 632 &thread->fpstate, 633 0, sizeof(struct user_fp)); 634 } 635 636 #ifdef CONFIG_VFP 637 /* 638 * VFP register get/set implementations. 639 * 640 * With respect to the kernel, struct user_fp is divided into three chunks: 641 * 16 or 32 real VFP registers (d0-d15 or d0-31) 642 * These are transferred to/from the real registers in the task's 643 * vfp_hard_struct. The number of registers depends on the kernel 644 * configuration. 645 * 646 * 16 or 0 fake VFP registers (d16-d31 or empty) 647 * i.e., the user_vfp structure has space for 32 registers even if 648 * the kernel doesn't have them all. 649 * 650 * vfp_get() reads this chunk as zero where applicable 651 * vfp_set() ignores this chunk 652 * 653 * 1 word for the FPSCR 654 * 655 * The bounds-checking logic built into user_regset_copyout and friends 656 * means that we can make a simple sequence of calls to map the relevant data 657 * to/from the specified slice of the user regset structure. 658 */ 659 static int vfp_get(struct task_struct *target, 660 const struct user_regset *regset, 661 unsigned int pos, unsigned int count, 662 void *kbuf, void __user *ubuf) 663 { 664 int ret; 665 struct thread_info *thread = task_thread_info(target); 666 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; 667 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 668 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 669 670 vfp_sync_hwstate(thread); 671 672 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, 673 &vfp->fpregs, 674 user_fpregs_offset, 675 user_fpregs_offset + sizeof(vfp->fpregs)); 676 if (ret) 677 return ret; 678 679 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, 680 user_fpregs_offset + sizeof(vfp->fpregs), 681 user_fpscr_offset); 682 if (ret) 683 return ret; 684 685 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, 686 &vfp->fpscr, 687 user_fpscr_offset, 688 user_fpscr_offset + sizeof(vfp->fpscr)); 689 } 690 691 /* 692 * For vfp_set() a read-modify-write is done on the VFP registers, 693 * in order to avoid writing back a half-modified set of registers on 694 * failure. 695 */ 696 static int vfp_set(struct task_struct *target, 697 const struct user_regset *regset, 698 unsigned int pos, unsigned int count, 699 const void *kbuf, const void __user *ubuf) 700 { 701 int ret; 702 struct thread_info *thread = task_thread_info(target); 703 struct vfp_hard_struct new_vfp; 704 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); 705 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); 706 707 vfp_sync_hwstate(thread); 708 new_vfp = thread->vfpstate.hard; 709 710 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 711 &new_vfp.fpregs, 712 user_fpregs_offset, 713 user_fpregs_offset + sizeof(new_vfp.fpregs)); 714 if (ret) 715 return ret; 716 717 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 718 user_fpregs_offset + sizeof(new_vfp.fpregs), 719 user_fpscr_offset); 720 if (ret) 721 return ret; 722 723 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 724 &new_vfp.fpscr, 725 user_fpscr_offset, 726 user_fpscr_offset + sizeof(new_vfp.fpscr)); 727 if (ret) 728 return ret; 729 730 vfp_flush_hwstate(thread); 731 thread->vfpstate.hard = new_vfp; 732 733 return 0; 734 } 735 #endif /* CONFIG_VFP */ 736 737 enum arm_regset { 738 REGSET_GPR, 739 REGSET_FPR, 740 #ifdef CONFIG_VFP 741 REGSET_VFP, 742 #endif 743 }; 744 745 static const struct user_regset arm_regsets[] = { 746 [REGSET_GPR] = { 747 .core_note_type = NT_PRSTATUS, 748 .n = ELF_NGREG, 749 .size = sizeof(u32), 750 .align = sizeof(u32), 751 .get = gpr_get, 752 .set = gpr_set 753 }, 754 [REGSET_FPR] = { 755 /* 756 * For the FPA regs in fpstate, the real fields are a mixture 757 * of sizes, so pretend that the registers are word-sized: 758 */ 759 .core_note_type = NT_PRFPREG, 760 .n = sizeof(struct user_fp) / sizeof(u32), 761 .size = sizeof(u32), 762 .align = sizeof(u32), 763 .get = fpa_get, 764 .set = fpa_set 765 }, 766 #ifdef CONFIG_VFP 767 [REGSET_VFP] = { 768 /* 769 * Pretend that the VFP regs are word-sized, since the FPSCR is 770 * a single word dangling at the end of struct user_vfp: 771 */ 772 .core_note_type = NT_ARM_VFP, 773 .n = ARM_VFPREGS_SIZE / sizeof(u32), 774 .size = sizeof(u32), 775 .align = sizeof(u32), 776 .get = vfp_get, 777 .set = vfp_set 778 }, 779 #endif /* CONFIG_VFP */ 780 }; 781 782 static const struct user_regset_view user_arm_view = { 783 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, 784 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) 785 }; 786 787 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 788 { 789 return &user_arm_view; 790 } 791 792 long arch_ptrace(struct task_struct *child, long request, 793 unsigned long addr, unsigned long data) 794 { 795 int ret; 796 unsigned long __user *datap = (unsigned long __user *) data; 797 798 switch (request) { 799 case PTRACE_PEEKUSR: 800 ret = ptrace_read_user(child, addr, datap); 801 break; 802 803 case PTRACE_POKEUSR: 804 ret = ptrace_write_user(child, addr, data); 805 break; 806 807 case PTRACE_GETREGS: 808 ret = copy_regset_to_user(child, 809 &user_arm_view, REGSET_GPR, 810 0, sizeof(struct pt_regs), 811 datap); 812 break; 813 814 case PTRACE_SETREGS: 815 ret = copy_regset_from_user(child, 816 &user_arm_view, REGSET_GPR, 817 0, sizeof(struct pt_regs), 818 datap); 819 break; 820 821 case PTRACE_GETFPREGS: 822 ret = copy_regset_to_user(child, 823 &user_arm_view, REGSET_FPR, 824 0, sizeof(union fp_state), 825 datap); 826 break; 827 828 case PTRACE_SETFPREGS: 829 ret = copy_regset_from_user(child, 830 &user_arm_view, REGSET_FPR, 831 0, sizeof(union fp_state), 832 datap); 833 break; 834 835 #ifdef CONFIG_IWMMXT 836 case PTRACE_GETWMMXREGS: 837 ret = ptrace_getwmmxregs(child, datap); 838 break; 839 840 case PTRACE_SETWMMXREGS: 841 ret = ptrace_setwmmxregs(child, datap); 842 break; 843 #endif 844 845 case PTRACE_GET_THREAD_AREA: 846 ret = put_user(task_thread_info(child)->tp_value, 847 datap); 848 break; 849 850 case PTRACE_SET_SYSCALL: 851 task_thread_info(child)->syscall = data; 852 ret = 0; 853 break; 854 855 #ifdef CONFIG_CRUNCH 856 case PTRACE_GETCRUNCHREGS: 857 ret = ptrace_getcrunchregs(child, datap); 858 break; 859 860 case PTRACE_SETCRUNCHREGS: 861 ret = ptrace_setcrunchregs(child, datap); 862 break; 863 #endif 864 865 #ifdef CONFIG_VFP 866 case PTRACE_GETVFPREGS: 867 ret = copy_regset_to_user(child, 868 &user_arm_view, REGSET_VFP, 869 0, ARM_VFPREGS_SIZE, 870 datap); 871 break; 872 873 case PTRACE_SETVFPREGS: 874 ret = copy_regset_from_user(child, 875 &user_arm_view, REGSET_VFP, 876 0, ARM_VFPREGS_SIZE, 877 datap); 878 break; 879 #endif 880 881 #ifdef CONFIG_HAVE_HW_BREAKPOINT 882 case PTRACE_GETHBPREGS: 883 if (ptrace_get_breakpoints(child) < 0) 884 return -ESRCH; 885 886 ret = ptrace_gethbpregs(child, addr, 887 (unsigned long __user *)data); 888 ptrace_put_breakpoints(child); 889 break; 890 case PTRACE_SETHBPREGS: 891 if (ptrace_get_breakpoints(child) < 0) 892 return -ESRCH; 893 894 ret = ptrace_sethbpregs(child, addr, 895 (unsigned long __user *)data); 896 ptrace_put_breakpoints(child); 897 break; 898 #endif 899 900 default: 901 ret = ptrace_request(child, request, addr, data); 902 break; 903 } 904 905 return ret; 906 } 907 908 #ifdef __ARMEB__ 909 #define AUDIT_ARCH_NR AUDIT_ARCH_ARMEB 910 #else 911 #define AUDIT_ARCH_NR AUDIT_ARCH_ARM 912 #endif 913 914 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) 915 { 916 unsigned long ip; 917 918 /* 919 * Save IP. IP is used to denote syscall entry/exit: 920 * IP = 0 -> entry, = 1 -> exit 921 */ 922 ip = regs->ARM_ip; 923 regs->ARM_ip = why; 924 925 if (!ip) 926 audit_syscall_exit(regs); 927 else 928 audit_syscall_entry(AUDIT_ARCH_NR, scno, regs->ARM_r0, 929 regs->ARM_r1, regs->ARM_r2, regs->ARM_r3); 930 931 if (!test_thread_flag(TIF_SYSCALL_TRACE)) 932 return scno; 933 if (!(current->ptrace & PT_PTRACED)) 934 return scno; 935 936 current_thread_info()->syscall = scno; 937 938 /* the 0x80 provides a way for the tracing parent to distinguish 939 between a syscall stop and SIGTRAP delivery */ 940 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) 941 ? 0x80 : 0)); 942 /* 943 * this isn't the same as continuing with a signal, but it will do 944 * for normal use. strace only continues with a signal if the 945 * stopping signal is not SIGTRAP. -brl 946 */ 947 if (current->exit_code) { 948 send_sig(current->exit_code, current, 1); 949 current->exit_code = 0; 950 } 951 regs->ARM_ip = ip; 952 953 return current_thread_info()->syscall; 954 } 955