xref: /openbmc/linux/arch/arm/kernel/ptrace.c (revision 046b212a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/ptrace.c
4  *
5  *  By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  */
9 #include <linux/kernel.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/elf.h>
14 #include <linux/smp.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/uaccess.h>
21 #include <linux/perf_event.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/regset.h>
24 #include <linux/audit.h>
25 #include <linux/unistd.h>
26 
27 #include <asm/syscall.h>
28 #include <asm/traps.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/syscalls.h>
32 
33 #define REG_PC	15
34 #define REG_PSR	16
35 /*
36  * does not yet catch signals sent when the child dies.
37  * in exit.c or in signal.c.
38  */
39 
40 #if 0
41 /*
42  * Breakpoint SWI instruction: SWI &9F0001
43  */
44 #define BREAKINST_ARM	0xef9f0001
45 #define BREAKINST_THUMB	0xdf00		/* fill this in later */
46 #else
47 /*
48  * New breakpoints - use an undefined instruction.  The ARM architecture
49  * reference manual guarantees that the following instruction space
50  * will produce an undefined instruction exception on all CPUs:
51  *
52  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
53  *  Thumb: 1101 1110 xxxx xxxx
54  */
55 #define BREAKINST_ARM	0xe7f001f0
56 #define BREAKINST_THUMB	0xde01
57 #endif
58 
59 struct pt_regs_offset {
60 	const char *name;
61 	int offset;
62 };
63 
64 #define REG_OFFSET_NAME(r) \
65 	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
66 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67 
68 static const struct pt_regs_offset regoffset_table[] = {
69 	REG_OFFSET_NAME(r0),
70 	REG_OFFSET_NAME(r1),
71 	REG_OFFSET_NAME(r2),
72 	REG_OFFSET_NAME(r3),
73 	REG_OFFSET_NAME(r4),
74 	REG_OFFSET_NAME(r5),
75 	REG_OFFSET_NAME(r6),
76 	REG_OFFSET_NAME(r7),
77 	REG_OFFSET_NAME(r8),
78 	REG_OFFSET_NAME(r9),
79 	REG_OFFSET_NAME(r10),
80 	REG_OFFSET_NAME(fp),
81 	REG_OFFSET_NAME(ip),
82 	REG_OFFSET_NAME(sp),
83 	REG_OFFSET_NAME(lr),
84 	REG_OFFSET_NAME(pc),
85 	REG_OFFSET_NAME(cpsr),
86 	REG_OFFSET_NAME(ORIG_r0),
87 	REG_OFFSET_END,
88 };
89 
90 /**
91  * regs_query_register_offset() - query register offset from its name
92  * @name:	the name of a register
93  *
94  * regs_query_register_offset() returns the offset of a register in struct
95  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96  */
97 int regs_query_register_offset(const char *name)
98 {
99 	const struct pt_regs_offset *roff;
100 	for (roff = regoffset_table; roff->name != NULL; roff++)
101 		if (!strcmp(roff->name, name))
102 			return roff->offset;
103 	return -EINVAL;
104 }
105 
106 /**
107  * regs_query_register_name() - query register name from its offset
108  * @offset:	the offset of a register in struct pt_regs.
109  *
110  * regs_query_register_name() returns the name of a register from its
111  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112  */
113 const char *regs_query_register_name(unsigned int offset)
114 {
115 	const struct pt_regs_offset *roff;
116 	for (roff = regoffset_table; roff->name != NULL; roff++)
117 		if (roff->offset == offset)
118 			return roff->name;
119 	return NULL;
120 }
121 
122 /**
123  * regs_within_kernel_stack() - check the address in the stack
124  * @regs:      pt_regs which contains kernel stack pointer.
125  * @addr:      address which is checked.
126  *
127  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128  * If @addr is within the kernel stack, it returns true. If not, returns false.
129  */
130 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 {
132 	return ((addr & ~(THREAD_SIZE - 1))  ==
133 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134 }
135 
136 /**
137  * regs_get_kernel_stack_nth() - get Nth entry of the stack
138  * @regs:	pt_regs which contains kernel stack pointer.
139  * @n:		stack entry number.
140  *
141  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143  * this returns 0.
144  */
145 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146 {
147 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148 	addr += n;
149 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
150 		return *addr;
151 	else
152 		return 0;
153 }
154 
155 /*
156  * this routine will get a word off of the processes privileged stack.
157  * the offset is how far from the base addr as stored in the THREAD.
158  * this routine assumes that all the privileged stacks are in our
159  * data space.
160  */
161 static inline long get_user_reg(struct task_struct *task, int offset)
162 {
163 	return task_pt_regs(task)->uregs[offset];
164 }
165 
166 /*
167  * this routine will put a word on the processes privileged stack.
168  * the offset is how far from the base addr as stored in the THREAD.
169  * this routine assumes that all the privileged stacks are in our
170  * data space.
171  */
172 static inline int
173 put_user_reg(struct task_struct *task, int offset, long data)
174 {
175 	struct pt_regs newregs, *regs = task_pt_regs(task);
176 	int ret = -EINVAL;
177 
178 	newregs = *regs;
179 	newregs.uregs[offset] = data;
180 
181 	if (valid_user_regs(&newregs)) {
182 		regs->uregs[offset] = data;
183 		ret = 0;
184 	}
185 
186 	return ret;
187 }
188 
189 /*
190  * Called by kernel/ptrace.c when detaching..
191  */
192 void ptrace_disable(struct task_struct *child)
193 {
194 	/* Nothing to do. */
195 }
196 
197 /*
198  * Handle hitting a breakpoint.
199  */
200 void ptrace_break(struct pt_regs *regs)
201 {
202 	force_sig_fault(SIGTRAP, TRAP_BRKPT,
203 			(void __user *)instruction_pointer(regs));
204 }
205 
206 static int break_trap(struct pt_regs *regs, unsigned int instr)
207 {
208 	ptrace_break(regs);
209 	return 0;
210 }
211 
212 static struct undef_hook arm_break_hook = {
213 	.instr_mask	= 0x0fffffff,
214 	.instr_val	= 0x07f001f0,
215 	.cpsr_mask	= PSR_T_BIT,
216 	.cpsr_val	= 0,
217 	.fn		= break_trap,
218 };
219 
220 static struct undef_hook thumb_break_hook = {
221 	.instr_mask	= 0xffffffff,
222 	.instr_val	= 0x0000de01,
223 	.cpsr_mask	= PSR_T_BIT,
224 	.cpsr_val	= PSR_T_BIT,
225 	.fn		= break_trap,
226 };
227 
228 static struct undef_hook thumb2_break_hook = {
229 	.instr_mask	= 0xffffffff,
230 	.instr_val	= 0xf7f0a000,
231 	.cpsr_mask	= PSR_T_BIT,
232 	.cpsr_val	= PSR_T_BIT,
233 	.fn		= break_trap,
234 };
235 
236 static int __init ptrace_break_init(void)
237 {
238 	register_undef_hook(&arm_break_hook);
239 	register_undef_hook(&thumb_break_hook);
240 	register_undef_hook(&thumb2_break_hook);
241 	return 0;
242 }
243 
244 core_initcall(ptrace_break_init);
245 
246 /*
247  * Read the word at offset "off" into the "struct user".  We
248  * actually access the pt_regs stored on the kernel stack.
249  */
250 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251 			    unsigned long __user *ret)
252 {
253 	unsigned long tmp;
254 
255 	if (off & 3)
256 		return -EIO;
257 
258 	tmp = 0;
259 	if (off == PT_TEXT_ADDR)
260 		tmp = tsk->mm->start_code;
261 	else if (off == PT_DATA_ADDR)
262 		tmp = tsk->mm->start_data;
263 	else if (off == PT_TEXT_END_ADDR)
264 		tmp = tsk->mm->end_code;
265 	else if (off < sizeof(struct pt_regs))
266 		tmp = get_user_reg(tsk, off >> 2);
267 	else if (off >= sizeof(struct user))
268 		return -EIO;
269 
270 	return put_user(tmp, ret);
271 }
272 
273 /*
274  * Write the word at offset "off" into "struct user".  We
275  * actually access the pt_regs stored on the kernel stack.
276  */
277 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278 			     unsigned long val)
279 {
280 	if (off & 3 || off >= sizeof(struct user))
281 		return -EIO;
282 
283 	if (off >= sizeof(struct pt_regs))
284 		return 0;
285 
286 	return put_user_reg(tsk, off >> 2, val);
287 }
288 
289 #ifdef CONFIG_IWMMXT
290 
291 /*
292  * Get the child iWMMXt state.
293  */
294 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295 {
296 	struct thread_info *thread = task_thread_info(tsk);
297 
298 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299 		return -ENODATA;
300 	iwmmxt_task_disable(thread);  /* force it to ram */
301 	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302 		? -EFAULT : 0;
303 }
304 
305 /*
306  * Set the child iWMMXt state.
307  */
308 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309 {
310 	struct thread_info *thread = task_thread_info(tsk);
311 
312 	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313 		return -EACCES;
314 	iwmmxt_task_release(thread);  /* force a reload */
315 	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316 		? -EFAULT : 0;
317 }
318 
319 #endif
320 
321 #ifdef CONFIG_HAVE_HW_BREAKPOINT
322 /*
323  * Convert a virtual register number into an index for a thread_info
324  * breakpoint array. Breakpoints are identified using positive numbers
325  * whilst watchpoints are negative. The registers are laid out as pairs
326  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
327  * Register 0 is reserved for describing resource information.
328  */
329 static int ptrace_hbp_num_to_idx(long num)
330 {
331 	if (num < 0)
332 		num = (ARM_MAX_BRP << 1) - num;
333 	return (num - 1) >> 1;
334 }
335 
336 /*
337  * Returns the virtual register number for the address of the
338  * breakpoint at index idx.
339  */
340 static long ptrace_hbp_idx_to_num(int idx)
341 {
342 	long mid = ARM_MAX_BRP << 1;
343 	long num = (idx << 1) + 1;
344 	return num > mid ? mid - num : num;
345 }
346 
347 /*
348  * Handle hitting a HW-breakpoint.
349  */
350 static void ptrace_hbptriggered(struct perf_event *bp,
351 				     struct perf_sample_data *data,
352 				     struct pt_regs *regs)
353 {
354 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
355 	long num;
356 	int i;
357 
358 	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
359 		if (current->thread.debug.hbp[i] == bp)
360 			break;
361 
362 	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
363 
364 	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
365 }
366 
367 /*
368  * Set ptrace breakpoint pointers to zero for this task.
369  * This is required in order to prevent child processes from unregistering
370  * breakpoints held by their parent.
371  */
372 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
373 {
374 	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
375 }
376 
377 /*
378  * Unregister breakpoints from this task and reset the pointers in
379  * the thread_struct.
380  */
381 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
382 {
383 	int i;
384 	struct thread_struct *t = &tsk->thread;
385 
386 	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
387 		if (t->debug.hbp[i]) {
388 			unregister_hw_breakpoint(t->debug.hbp[i]);
389 			t->debug.hbp[i] = NULL;
390 		}
391 	}
392 }
393 
394 static u32 ptrace_get_hbp_resource_info(void)
395 {
396 	u8 num_brps, num_wrps, debug_arch, wp_len;
397 	u32 reg = 0;
398 
399 	num_brps	= hw_breakpoint_slots(TYPE_INST);
400 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
401 	debug_arch	= arch_get_debug_arch();
402 	wp_len		= arch_get_max_wp_len();
403 
404 	reg		|= debug_arch;
405 	reg		<<= 8;
406 	reg		|= wp_len;
407 	reg		<<= 8;
408 	reg		|= num_wrps;
409 	reg		<<= 8;
410 	reg		|= num_brps;
411 
412 	return reg;
413 }
414 
415 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
416 {
417 	struct perf_event_attr attr;
418 
419 	ptrace_breakpoint_init(&attr);
420 
421 	/* Initialise fields to sane defaults. */
422 	attr.bp_addr	= 0;
423 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
424 	attr.bp_type	= type;
425 	attr.disabled	= 1;
426 
427 	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
428 					   tsk);
429 }
430 
431 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
432 			     unsigned long  __user *data)
433 {
434 	u32 reg;
435 	int idx, ret = 0;
436 	struct perf_event *bp;
437 	struct arch_hw_breakpoint_ctrl arch_ctrl;
438 
439 	if (num == 0) {
440 		reg = ptrace_get_hbp_resource_info();
441 	} else {
442 		idx = ptrace_hbp_num_to_idx(num);
443 		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
444 			ret = -EINVAL;
445 			goto out;
446 		}
447 
448 		bp = tsk->thread.debug.hbp[idx];
449 		if (!bp) {
450 			reg = 0;
451 			goto put;
452 		}
453 
454 		arch_ctrl = counter_arch_bp(bp)->ctrl;
455 
456 		/*
457 		 * Fix up the len because we may have adjusted it
458 		 * to compensate for an unaligned address.
459 		 */
460 		while (!(arch_ctrl.len & 0x1))
461 			arch_ctrl.len >>= 1;
462 
463 		if (num & 0x1)
464 			reg = bp->attr.bp_addr;
465 		else
466 			reg = encode_ctrl_reg(arch_ctrl);
467 	}
468 
469 put:
470 	if (put_user(reg, data))
471 		ret = -EFAULT;
472 
473 out:
474 	return ret;
475 }
476 
477 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
478 			     unsigned long __user *data)
479 {
480 	int idx, gen_len, gen_type, implied_type, ret = 0;
481 	u32 user_val;
482 	struct perf_event *bp;
483 	struct arch_hw_breakpoint_ctrl ctrl;
484 	struct perf_event_attr attr;
485 
486 	if (num == 0)
487 		goto out;
488 	else if (num < 0)
489 		implied_type = HW_BREAKPOINT_RW;
490 	else
491 		implied_type = HW_BREAKPOINT_X;
492 
493 	idx = ptrace_hbp_num_to_idx(num);
494 	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
495 		ret = -EINVAL;
496 		goto out;
497 	}
498 
499 	if (get_user(user_val, data)) {
500 		ret = -EFAULT;
501 		goto out;
502 	}
503 
504 	bp = tsk->thread.debug.hbp[idx];
505 	if (!bp) {
506 		bp = ptrace_hbp_create(tsk, implied_type);
507 		if (IS_ERR(bp)) {
508 			ret = PTR_ERR(bp);
509 			goto out;
510 		}
511 		tsk->thread.debug.hbp[idx] = bp;
512 	}
513 
514 	attr = bp->attr;
515 
516 	if (num & 0x1) {
517 		/* Address */
518 		attr.bp_addr	= user_val;
519 	} else {
520 		/* Control */
521 		decode_ctrl_reg(user_val, &ctrl);
522 		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
523 		if (ret)
524 			goto out;
525 
526 		if ((gen_type & implied_type) != gen_type) {
527 			ret = -EINVAL;
528 			goto out;
529 		}
530 
531 		attr.bp_len	= gen_len;
532 		attr.bp_type	= gen_type;
533 		attr.disabled	= !ctrl.enabled;
534 	}
535 
536 	ret = modify_user_hw_breakpoint(bp, &attr);
537 out:
538 	return ret;
539 }
540 #endif
541 
542 /* regset get/set implementations */
543 
544 static int gpr_get(struct task_struct *target,
545 		   const struct user_regset *regset,
546 		   struct membuf to)
547 {
548 	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
549 }
550 
551 static int gpr_set(struct task_struct *target,
552 		   const struct user_regset *regset,
553 		   unsigned int pos, unsigned int count,
554 		   const void *kbuf, const void __user *ubuf)
555 {
556 	int ret;
557 	struct pt_regs newregs = *task_pt_regs(target);
558 
559 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
560 				 &newregs,
561 				 0, sizeof(newregs));
562 	if (ret)
563 		return ret;
564 
565 	if (!valid_user_regs(&newregs))
566 		return -EINVAL;
567 
568 	*task_pt_regs(target) = newregs;
569 	return 0;
570 }
571 
572 static int fpa_get(struct task_struct *target,
573 		   const struct user_regset *regset,
574 		   struct membuf to)
575 {
576 	return membuf_write(&to, &task_thread_info(target)->fpstate,
577 				 sizeof(struct user_fp));
578 }
579 
580 static int fpa_set(struct task_struct *target,
581 		   const struct user_regset *regset,
582 		   unsigned int pos, unsigned int count,
583 		   const void *kbuf, const void __user *ubuf)
584 {
585 	struct thread_info *thread = task_thread_info(target);
586 
587 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
588 		&thread->fpstate,
589 		0, sizeof(struct user_fp));
590 }
591 
592 #ifdef CONFIG_VFP
593 /*
594  * VFP register get/set implementations.
595  *
596  * With respect to the kernel, struct user_fp is divided into three chunks:
597  * 16 or 32 real VFP registers (d0-d15 or d0-31)
598  *	These are transferred to/from the real registers in the task's
599  *	vfp_hard_struct.  The number of registers depends on the kernel
600  *	configuration.
601  *
602  * 16 or 0 fake VFP registers (d16-d31 or empty)
603  *	i.e., the user_vfp structure has space for 32 registers even if
604  *	the kernel doesn't have them all.
605  *
606  *	vfp_get() reads this chunk as zero where applicable
607  *	vfp_set() ignores this chunk
608  *
609  * 1 word for the FPSCR
610  */
611 static int vfp_get(struct task_struct *target,
612 		   const struct user_regset *regset,
613 		   struct membuf to)
614 {
615 	struct thread_info *thread = task_thread_info(target);
616 	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
617 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
618 
619 	vfp_sync_hwstate(thread);
620 
621 	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
622 	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
623 	return membuf_store(&to, vfp->fpscr);
624 }
625 
626 /*
627  * For vfp_set() a read-modify-write is done on the VFP registers,
628  * in order to avoid writing back a half-modified set of registers on
629  * failure.
630  */
631 static int vfp_set(struct task_struct *target,
632 			  const struct user_regset *regset,
633 			  unsigned int pos, unsigned int count,
634 			  const void *kbuf, const void __user *ubuf)
635 {
636 	int ret;
637 	struct thread_info *thread = task_thread_info(target);
638 	struct vfp_hard_struct new_vfp;
639 	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
640 	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
641 
642 	vfp_sync_hwstate(thread);
643 	new_vfp = thread->vfpstate.hard;
644 
645 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
646 				  &new_vfp.fpregs,
647 				  user_fpregs_offset,
648 				  user_fpregs_offset + sizeof(new_vfp.fpregs));
649 	if (ret)
650 		return ret;
651 
652 	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
653 				  user_fpregs_offset + sizeof(new_vfp.fpregs),
654 				  user_fpscr_offset);
655 
656 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
657 				 &new_vfp.fpscr,
658 				 user_fpscr_offset,
659 				 user_fpscr_offset + sizeof(new_vfp.fpscr));
660 	if (ret)
661 		return ret;
662 
663 	thread->vfpstate.hard = new_vfp;
664 	vfp_flush_hwstate(thread);
665 
666 	return 0;
667 }
668 #endif /* CONFIG_VFP */
669 
670 enum arm_regset {
671 	REGSET_GPR,
672 	REGSET_FPR,
673 #ifdef CONFIG_VFP
674 	REGSET_VFP,
675 #endif
676 };
677 
678 static const struct user_regset arm_regsets[] = {
679 	[REGSET_GPR] = {
680 		.core_note_type = NT_PRSTATUS,
681 		.n = ELF_NGREG,
682 		.size = sizeof(u32),
683 		.align = sizeof(u32),
684 		.regset_get = gpr_get,
685 		.set = gpr_set
686 	},
687 	[REGSET_FPR] = {
688 		/*
689 		 * For the FPA regs in fpstate, the real fields are a mixture
690 		 * of sizes, so pretend that the registers are word-sized:
691 		 */
692 		.core_note_type = NT_PRFPREG,
693 		.n = sizeof(struct user_fp) / sizeof(u32),
694 		.size = sizeof(u32),
695 		.align = sizeof(u32),
696 		.regset_get = fpa_get,
697 		.set = fpa_set
698 	},
699 #ifdef CONFIG_VFP
700 	[REGSET_VFP] = {
701 		/*
702 		 * Pretend that the VFP regs are word-sized, since the FPSCR is
703 		 * a single word dangling at the end of struct user_vfp:
704 		 */
705 		.core_note_type = NT_ARM_VFP,
706 		.n = ARM_VFPREGS_SIZE / sizeof(u32),
707 		.size = sizeof(u32),
708 		.align = sizeof(u32),
709 		.regset_get = vfp_get,
710 		.set = vfp_set
711 	},
712 #endif /* CONFIG_VFP */
713 };
714 
715 static const struct user_regset_view user_arm_view = {
716 	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
717 	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
718 };
719 
720 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
721 {
722 	return &user_arm_view;
723 }
724 
725 long arch_ptrace(struct task_struct *child, long request,
726 		 unsigned long addr, unsigned long data)
727 {
728 	int ret;
729 	unsigned long __user *datap = (unsigned long __user *) data;
730 
731 	switch (request) {
732 		case PTRACE_PEEKUSR:
733 			ret = ptrace_read_user(child, addr, datap);
734 			break;
735 
736 		case PTRACE_POKEUSR:
737 			ret = ptrace_write_user(child, addr, data);
738 			break;
739 
740 		case PTRACE_GETREGS:
741 			ret = copy_regset_to_user(child,
742 						  &user_arm_view, REGSET_GPR,
743 						  0, sizeof(struct pt_regs),
744 						  datap);
745 			break;
746 
747 		case PTRACE_SETREGS:
748 			ret = copy_regset_from_user(child,
749 						    &user_arm_view, REGSET_GPR,
750 						    0, sizeof(struct pt_regs),
751 						    datap);
752 			break;
753 
754 		case PTRACE_GETFPREGS:
755 			ret = copy_regset_to_user(child,
756 						  &user_arm_view, REGSET_FPR,
757 						  0, sizeof(union fp_state),
758 						  datap);
759 			break;
760 
761 		case PTRACE_SETFPREGS:
762 			ret = copy_regset_from_user(child,
763 						    &user_arm_view, REGSET_FPR,
764 						    0, sizeof(union fp_state),
765 						    datap);
766 			break;
767 
768 #ifdef CONFIG_IWMMXT
769 		case PTRACE_GETWMMXREGS:
770 			ret = ptrace_getwmmxregs(child, datap);
771 			break;
772 
773 		case PTRACE_SETWMMXREGS:
774 			ret = ptrace_setwmmxregs(child, datap);
775 			break;
776 #endif
777 
778 		case PTRACE_GET_THREAD_AREA:
779 			ret = put_user(task_thread_info(child)->tp_value[0],
780 				       datap);
781 			break;
782 
783 		case PTRACE_SET_SYSCALL:
784 			if (data != -1)
785 				data &= __NR_SYSCALL_MASK;
786 			task_thread_info(child)->abi_syscall = data;
787 			ret = 0;
788 			break;
789 
790 #ifdef CONFIG_VFP
791 		case PTRACE_GETVFPREGS:
792 			ret = copy_regset_to_user(child,
793 						  &user_arm_view, REGSET_VFP,
794 						  0, ARM_VFPREGS_SIZE,
795 						  datap);
796 			break;
797 
798 		case PTRACE_SETVFPREGS:
799 			ret = copy_regset_from_user(child,
800 						    &user_arm_view, REGSET_VFP,
801 						    0, ARM_VFPREGS_SIZE,
802 						    datap);
803 			break;
804 #endif
805 
806 #ifdef CONFIG_HAVE_HW_BREAKPOINT
807 		case PTRACE_GETHBPREGS:
808 			ret = ptrace_gethbpregs(child, addr,
809 						(unsigned long __user *)data);
810 			break;
811 		case PTRACE_SETHBPREGS:
812 			ret = ptrace_sethbpregs(child, addr,
813 						(unsigned long __user *)data);
814 			break;
815 #endif
816 
817 		default:
818 			ret = ptrace_request(child, request, addr, data);
819 			break;
820 	}
821 
822 	return ret;
823 }
824 
825 enum ptrace_syscall_dir {
826 	PTRACE_SYSCALL_ENTER = 0,
827 	PTRACE_SYSCALL_EXIT,
828 };
829 
830 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
831 {
832 	unsigned long ip;
833 
834 	/*
835 	 * IP is used to denote syscall entry/exit:
836 	 * IP = 0 -> entry, =1 -> exit
837 	 */
838 	ip = regs->ARM_ip;
839 	regs->ARM_ip = dir;
840 
841 	if (dir == PTRACE_SYSCALL_EXIT)
842 		ptrace_report_syscall_exit(regs, 0);
843 	else if (ptrace_report_syscall_entry(regs))
844 		current_thread_info()->abi_syscall = -1;
845 
846 	regs->ARM_ip = ip;
847 }
848 
849 asmlinkage int syscall_trace_enter(struct pt_regs *regs)
850 {
851 	int scno;
852 
853 	if (test_thread_flag(TIF_SYSCALL_TRACE))
854 		report_syscall(regs, PTRACE_SYSCALL_ENTER);
855 
856 	/* Do seccomp after ptrace; syscall may have changed. */
857 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
858 	if (secure_computing() == -1)
859 		return -1;
860 #else
861 	/* XXX: remove this once OABI gets fixed */
862 	secure_computing_strict(syscall_get_nr(current, regs));
863 #endif
864 
865 	/* Tracer or seccomp may have changed syscall. */
866 	scno = syscall_get_nr(current, regs);
867 
868 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
869 		trace_sys_enter(regs, scno);
870 
871 	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
872 			    regs->ARM_r3);
873 
874 	return scno;
875 }
876 
877 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
878 {
879 	/*
880 	 * Audit the syscall before anything else, as a debugger may
881 	 * come in and change the current registers.
882 	 */
883 	audit_syscall_exit(regs);
884 
885 	/*
886 	 * Note that we haven't updated the ->syscall field for the
887 	 * current thread. This isn't a problem because it will have
888 	 * been set on syscall entry and there hasn't been an opportunity
889 	 * for a PTRACE_SET_SYSCALL since then.
890 	 */
891 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
892 		trace_sys_exit(regs, regs_return_value(regs));
893 
894 	if (test_thread_flag(TIF_SYSCALL_TRACE))
895 		report_syscall(regs, PTRACE_SYSCALL_EXIT);
896 }
897