1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 */
9 #include <linux/kernel.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/elf.h>
14 #include <linux/smp.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/uaccess.h>
21 #include <linux/perf_event.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/regset.h>
24 #include <linux/audit.h>
25 #include <linux/unistd.h>
26
27 #include <asm/syscall.h>
28 #include <asm/traps.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/syscalls.h>
32
33 #define REG_PC 15
34 #define REG_PSR 16
35 /*
36 * does not yet catch signals sent when the child dies.
37 * in exit.c or in signal.c.
38 */
39
40 #if 0
41 /*
42 * Breakpoint SWI instruction: SWI &9F0001
43 */
44 #define BREAKINST_ARM 0xef9f0001
45 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
46 #else
47 /*
48 * New breakpoints - use an undefined instruction. The ARM architecture
49 * reference manual guarantees that the following instruction space
50 * will produce an undefined instruction exception on all CPUs:
51 *
52 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
53 * Thumb: 1101 1110 xxxx xxxx
54 */
55 #define BREAKINST_ARM 0xe7f001f0
56 #define BREAKINST_THUMB 0xde01
57 #endif
58
59 struct pt_regs_offset {
60 const char *name;
61 int offset;
62 };
63
64 #define REG_OFFSET_NAME(r) \
65 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
66 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67
68 static const struct pt_regs_offset regoffset_table[] = {
69 REG_OFFSET_NAME(r0),
70 REG_OFFSET_NAME(r1),
71 REG_OFFSET_NAME(r2),
72 REG_OFFSET_NAME(r3),
73 REG_OFFSET_NAME(r4),
74 REG_OFFSET_NAME(r5),
75 REG_OFFSET_NAME(r6),
76 REG_OFFSET_NAME(r7),
77 REG_OFFSET_NAME(r8),
78 REG_OFFSET_NAME(r9),
79 REG_OFFSET_NAME(r10),
80 REG_OFFSET_NAME(fp),
81 REG_OFFSET_NAME(ip),
82 REG_OFFSET_NAME(sp),
83 REG_OFFSET_NAME(lr),
84 REG_OFFSET_NAME(pc),
85 REG_OFFSET_NAME(cpsr),
86 REG_OFFSET_NAME(ORIG_r0),
87 REG_OFFSET_END,
88 };
89
90 /**
91 * regs_query_register_offset() - query register offset from its name
92 * @name: the name of a register
93 *
94 * regs_query_register_offset() returns the offset of a register in struct
95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96 */
regs_query_register_offset(const char * name)97 int regs_query_register_offset(const char *name)
98 {
99 const struct pt_regs_offset *roff;
100 for (roff = regoffset_table; roff->name != NULL; roff++)
101 if (!strcmp(roff->name, name))
102 return roff->offset;
103 return -EINVAL;
104 }
105
106 /**
107 * regs_query_register_name() - query register name from its offset
108 * @offset: the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
regs_query_register_name(unsigned int offset)113 const char *regs_query_register_name(unsigned int offset)
114 {
115 const struct pt_regs_offset *roff;
116 for (roff = regoffset_table; roff->name != NULL; roff++)
117 if (roff->offset == offset)
118 return roff->name;
119 return NULL;
120 }
121
122 /**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs: pt_regs which contains kernel stack pointer.
125 * @addr: address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)130 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 {
132 return ((addr & ~(THREAD_SIZE - 1)) ==
133 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134 }
135
136 /**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs: pt_regs which contains kernel stack pointer.
139 * @n: stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)145 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146 {
147 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148 addr += n;
149 if (regs_within_kernel_stack(regs, (unsigned long)addr))
150 return *addr;
151 else
152 return 0;
153 }
154
155 /*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
get_user_reg(struct task_struct * task,int offset)161 static inline long get_user_reg(struct task_struct *task, int offset)
162 {
163 return task_pt_regs(task)->uregs[offset];
164 }
165
166 /*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172 static inline int
put_user_reg(struct task_struct * task,int offset,long data)173 put_user_reg(struct task_struct *task, int offset, long data)
174 {
175 struct pt_regs newregs, *regs = task_pt_regs(task);
176 int ret = -EINVAL;
177
178 newregs = *regs;
179 newregs.uregs[offset] = data;
180
181 if (valid_user_regs(&newregs)) {
182 regs->uregs[offset] = data;
183 ret = 0;
184 }
185
186 return ret;
187 }
188
189 /*
190 * Called by kernel/ptrace.c when detaching..
191 */
ptrace_disable(struct task_struct * child)192 void ptrace_disable(struct task_struct *child)
193 {
194 /* Nothing to do. */
195 }
196
197 /*
198 * Handle hitting a breakpoint.
199 */
ptrace_break(struct pt_regs * regs)200 void ptrace_break(struct pt_regs *regs)
201 {
202 force_sig_fault(SIGTRAP, TRAP_BRKPT,
203 (void __user *)instruction_pointer(regs));
204 }
205
break_trap(struct pt_regs * regs,unsigned int instr)206 static int break_trap(struct pt_regs *regs, unsigned int instr)
207 {
208 ptrace_break(regs);
209 return 0;
210 }
211
212 static struct undef_hook arm_break_hook = {
213 .instr_mask = 0x0fffffff,
214 .instr_val = 0x07f001f0,
215 .cpsr_mask = PSR_T_BIT,
216 .cpsr_val = 0,
217 .fn = break_trap,
218 };
219
220 static struct undef_hook thumb_break_hook = {
221 .instr_mask = 0xffffffff,
222 .instr_val = 0x0000de01,
223 .cpsr_mask = PSR_T_BIT,
224 .cpsr_val = PSR_T_BIT,
225 .fn = break_trap,
226 };
227
228 static struct undef_hook thumb2_break_hook = {
229 .instr_mask = 0xffffffff,
230 .instr_val = 0xf7f0a000,
231 .cpsr_mask = PSR_T_BIT,
232 .cpsr_val = PSR_T_BIT,
233 .fn = break_trap,
234 };
235
ptrace_break_init(void)236 static int __init ptrace_break_init(void)
237 {
238 register_undef_hook(&arm_break_hook);
239 register_undef_hook(&thumb_break_hook);
240 register_undef_hook(&thumb2_break_hook);
241 return 0;
242 }
243
244 core_initcall(ptrace_break_init);
245
246 /*
247 * Read the word at offset "off" into the "struct user". We
248 * actually access the pt_regs stored on the kernel stack.
249 */
ptrace_read_user(struct task_struct * tsk,unsigned long off,unsigned long __user * ret)250 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251 unsigned long __user *ret)
252 {
253 unsigned long tmp;
254
255 if (off & 3)
256 return -EIO;
257
258 tmp = 0;
259 if (off == PT_TEXT_ADDR)
260 tmp = tsk->mm->start_code;
261 else if (off == PT_DATA_ADDR)
262 tmp = tsk->mm->start_data;
263 else if (off == PT_TEXT_END_ADDR)
264 tmp = tsk->mm->end_code;
265 else if (off < sizeof(struct pt_regs))
266 tmp = get_user_reg(tsk, off >> 2);
267 else if (off >= sizeof(struct user))
268 return -EIO;
269
270 return put_user(tmp, ret);
271 }
272
273 /*
274 * Write the word at offset "off" into "struct user". We
275 * actually access the pt_regs stored on the kernel stack.
276 */
ptrace_write_user(struct task_struct * tsk,unsigned long off,unsigned long val)277 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278 unsigned long val)
279 {
280 if (off & 3 || off >= sizeof(struct user))
281 return -EIO;
282
283 if (off >= sizeof(struct pt_regs))
284 return 0;
285
286 return put_user_reg(tsk, off >> 2, val);
287 }
288
289 #ifdef CONFIG_IWMMXT
290
291 /*
292 * Get the child iWMMXt state.
293 */
ptrace_getwmmxregs(struct task_struct * tsk,void __user * ufp)294 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295 {
296 struct thread_info *thread = task_thread_info(tsk);
297
298 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299 return -ENODATA;
300 iwmmxt_task_disable(thread); /* force it to ram */
301 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302 ? -EFAULT : 0;
303 }
304
305 /*
306 * Set the child iWMMXt state.
307 */
ptrace_setwmmxregs(struct task_struct * tsk,void __user * ufp)308 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309 {
310 struct thread_info *thread = task_thread_info(tsk);
311
312 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313 return -EACCES;
314 iwmmxt_task_release(thread); /* force a reload */
315 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316 ? -EFAULT : 0;
317 }
318
319 #endif
320
321 #ifdef CONFIG_HAVE_HW_BREAKPOINT
322 /*
323 * Convert a virtual register number into an index for a thread_info
324 * breakpoint array. Breakpoints are identified using positive numbers
325 * whilst watchpoints are negative. The registers are laid out as pairs
326 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
327 * Register 0 is reserved for describing resource information.
328 */
ptrace_hbp_num_to_idx(long num)329 static int ptrace_hbp_num_to_idx(long num)
330 {
331 if (num < 0)
332 num = (ARM_MAX_BRP << 1) - num;
333 return (num - 1) >> 1;
334 }
335
336 /*
337 * Returns the virtual register number for the address of the
338 * breakpoint at index idx.
339 */
ptrace_hbp_idx_to_num(int idx)340 static long ptrace_hbp_idx_to_num(int idx)
341 {
342 long mid = ARM_MAX_BRP << 1;
343 long num = (idx << 1) + 1;
344 return num > mid ? mid - num : num;
345 }
346
347 /*
348 * Handle hitting a HW-breakpoint.
349 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)350 static void ptrace_hbptriggered(struct perf_event *bp,
351 struct perf_sample_data *data,
352 struct pt_regs *regs)
353 {
354 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
355 long num;
356 int i;
357
358 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
359 if (current->thread.debug.hbp[i] == bp)
360 break;
361
362 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
363
364 force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
365 }
366
367 /*
368 * Set ptrace breakpoint pointers to zero for this task.
369 * This is required in order to prevent child processes from unregistering
370 * breakpoints held by their parent.
371 */
clear_ptrace_hw_breakpoint(struct task_struct * tsk)372 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
373 {
374 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
375 }
376
377 /*
378 * Unregister breakpoints from this task and reset the pointers in
379 * the thread_struct.
380 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)381 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
382 {
383 int i;
384 struct thread_struct *t = &tsk->thread;
385
386 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
387 if (t->debug.hbp[i]) {
388 unregister_hw_breakpoint(t->debug.hbp[i]);
389 t->debug.hbp[i] = NULL;
390 }
391 }
392 }
393
ptrace_get_hbp_resource_info(void)394 static u32 ptrace_get_hbp_resource_info(void)
395 {
396 u8 num_brps, num_wrps, debug_arch, wp_len;
397 u32 reg = 0;
398
399 num_brps = hw_breakpoint_slots(TYPE_INST);
400 num_wrps = hw_breakpoint_slots(TYPE_DATA);
401 debug_arch = arch_get_debug_arch();
402 wp_len = arch_get_max_wp_len();
403
404 reg |= debug_arch;
405 reg <<= 8;
406 reg |= wp_len;
407 reg <<= 8;
408 reg |= num_wrps;
409 reg <<= 8;
410 reg |= num_brps;
411
412 return reg;
413 }
414
ptrace_hbp_create(struct task_struct * tsk,int type)415 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
416 {
417 struct perf_event_attr attr;
418
419 ptrace_breakpoint_init(&attr);
420
421 /* Initialise fields to sane defaults. */
422 attr.bp_addr = 0;
423 attr.bp_len = HW_BREAKPOINT_LEN_4;
424 attr.bp_type = type;
425 attr.disabled = 1;
426
427 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
428 tsk);
429 }
430
ptrace_gethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)431 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
432 unsigned long __user *data)
433 {
434 u32 reg;
435 int idx, ret = 0;
436 struct perf_event *bp;
437 struct arch_hw_breakpoint_ctrl arch_ctrl;
438
439 if (num == 0) {
440 reg = ptrace_get_hbp_resource_info();
441 } else {
442 idx = ptrace_hbp_num_to_idx(num);
443 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
444 ret = -EINVAL;
445 goto out;
446 }
447
448 bp = tsk->thread.debug.hbp[idx];
449 if (!bp) {
450 reg = 0;
451 goto put;
452 }
453
454 arch_ctrl = counter_arch_bp(bp)->ctrl;
455
456 /*
457 * Fix up the len because we may have adjusted it
458 * to compensate for an unaligned address.
459 */
460 while (!(arch_ctrl.len & 0x1))
461 arch_ctrl.len >>= 1;
462
463 if (num & 0x1)
464 reg = bp->attr.bp_addr;
465 else
466 reg = encode_ctrl_reg(arch_ctrl);
467 }
468
469 put:
470 if (put_user(reg, data))
471 ret = -EFAULT;
472
473 out:
474 return ret;
475 }
476
ptrace_sethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)477 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
478 unsigned long __user *data)
479 {
480 int idx, gen_len, gen_type, implied_type, ret = 0;
481 u32 user_val;
482 struct perf_event *bp;
483 struct arch_hw_breakpoint_ctrl ctrl;
484 struct perf_event_attr attr;
485
486 if (num == 0)
487 goto out;
488 else if (num < 0)
489 implied_type = HW_BREAKPOINT_RW;
490 else
491 implied_type = HW_BREAKPOINT_X;
492
493 idx = ptrace_hbp_num_to_idx(num);
494 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
495 ret = -EINVAL;
496 goto out;
497 }
498
499 if (get_user(user_val, data)) {
500 ret = -EFAULT;
501 goto out;
502 }
503
504 bp = tsk->thread.debug.hbp[idx];
505 if (!bp) {
506 bp = ptrace_hbp_create(tsk, implied_type);
507 if (IS_ERR(bp)) {
508 ret = PTR_ERR(bp);
509 goto out;
510 }
511 tsk->thread.debug.hbp[idx] = bp;
512 }
513
514 attr = bp->attr;
515
516 if (num & 0x1) {
517 /* Address */
518 attr.bp_addr = user_val;
519 } else {
520 /* Control */
521 decode_ctrl_reg(user_val, &ctrl);
522 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
523 if (ret)
524 goto out;
525
526 if ((gen_type & implied_type) != gen_type) {
527 ret = -EINVAL;
528 goto out;
529 }
530
531 attr.bp_len = gen_len;
532 attr.bp_type = gen_type;
533 attr.disabled = !ctrl.enabled;
534 }
535
536 ret = modify_user_hw_breakpoint(bp, &attr);
537 out:
538 return ret;
539 }
540 #endif
541
542 /* regset get/set implementations */
543
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)544 static int gpr_get(struct task_struct *target,
545 const struct user_regset *regset,
546 struct membuf to)
547 {
548 return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
549 }
550
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)551 static int gpr_set(struct task_struct *target,
552 const struct user_regset *regset,
553 unsigned int pos, unsigned int count,
554 const void *kbuf, const void __user *ubuf)
555 {
556 int ret;
557 struct pt_regs newregs = *task_pt_regs(target);
558
559 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
560 &newregs,
561 0, sizeof(newregs));
562 if (ret)
563 return ret;
564
565 if (!valid_user_regs(&newregs))
566 return -EINVAL;
567
568 *task_pt_regs(target) = newregs;
569 return 0;
570 }
571
fpa_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)572 static int fpa_get(struct task_struct *target,
573 const struct user_regset *regset,
574 struct membuf to)
575 {
576 return membuf_write(&to, &task_thread_info(target)->fpstate,
577 sizeof(struct user_fp));
578 }
579
fpa_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)580 static int fpa_set(struct task_struct *target,
581 const struct user_regset *regset,
582 unsigned int pos, unsigned int count,
583 const void *kbuf, const void __user *ubuf)
584 {
585 struct thread_info *thread = task_thread_info(target);
586
587 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
588 &thread->fpstate,
589 0, sizeof(struct user_fp));
590 }
591
592 #ifdef CONFIG_VFP
593 /*
594 * VFP register get/set implementations.
595 *
596 * With respect to the kernel, struct user_fp is divided into three chunks:
597 * 16 or 32 real VFP registers (d0-d15 or d0-31)
598 * These are transferred to/from the real registers in the task's
599 * vfp_hard_struct. The number of registers depends on the kernel
600 * configuration.
601 *
602 * 16 or 0 fake VFP registers (d16-d31 or empty)
603 * i.e., the user_vfp structure has space for 32 registers even if
604 * the kernel doesn't have them all.
605 *
606 * vfp_get() reads this chunk as zero where applicable
607 * vfp_set() ignores this chunk
608 *
609 * 1 word for the FPSCR
610 */
vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)611 static int vfp_get(struct task_struct *target,
612 const struct user_regset *regset,
613 struct membuf to)
614 {
615 struct thread_info *thread = task_thread_info(target);
616 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
617 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
618
619 vfp_sync_hwstate(thread);
620
621 membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
622 membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
623 return membuf_store(&to, vfp->fpscr);
624 }
625
626 /*
627 * For vfp_set() a read-modify-write is done on the VFP registers,
628 * in order to avoid writing back a half-modified set of registers on
629 * failure.
630 */
vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)631 static int vfp_set(struct task_struct *target,
632 const struct user_regset *regset,
633 unsigned int pos, unsigned int count,
634 const void *kbuf, const void __user *ubuf)
635 {
636 int ret;
637 struct thread_info *thread = task_thread_info(target);
638 struct vfp_hard_struct new_vfp;
639 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
640 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
641
642 vfp_sync_hwstate(thread);
643 new_vfp = thread->vfpstate.hard;
644
645 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
646 &new_vfp.fpregs,
647 user_fpregs_offset,
648 user_fpregs_offset + sizeof(new_vfp.fpregs));
649 if (ret)
650 return ret;
651
652 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
653 user_fpregs_offset + sizeof(new_vfp.fpregs),
654 user_fpscr_offset);
655
656 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
657 &new_vfp.fpscr,
658 user_fpscr_offset,
659 user_fpscr_offset + sizeof(new_vfp.fpscr));
660 if (ret)
661 return ret;
662
663 thread->vfpstate.hard = new_vfp;
664 vfp_flush_hwstate(thread);
665
666 return 0;
667 }
668 #endif /* CONFIG_VFP */
669
670 enum arm_regset {
671 REGSET_GPR,
672 REGSET_FPR,
673 #ifdef CONFIG_VFP
674 REGSET_VFP,
675 #endif
676 };
677
678 static const struct user_regset arm_regsets[] = {
679 [REGSET_GPR] = {
680 .core_note_type = NT_PRSTATUS,
681 .n = ELF_NGREG,
682 .size = sizeof(u32),
683 .align = sizeof(u32),
684 .regset_get = gpr_get,
685 .set = gpr_set
686 },
687 [REGSET_FPR] = {
688 /*
689 * For the FPA regs in fpstate, the real fields are a mixture
690 * of sizes, so pretend that the registers are word-sized:
691 */
692 .core_note_type = NT_PRFPREG,
693 .n = sizeof(struct user_fp) / sizeof(u32),
694 .size = sizeof(u32),
695 .align = sizeof(u32),
696 .regset_get = fpa_get,
697 .set = fpa_set
698 },
699 #ifdef CONFIG_VFP
700 [REGSET_VFP] = {
701 /*
702 * Pretend that the VFP regs are word-sized, since the FPSCR is
703 * a single word dangling at the end of struct user_vfp:
704 */
705 .core_note_type = NT_ARM_VFP,
706 .n = ARM_VFPREGS_SIZE / sizeof(u32),
707 .size = sizeof(u32),
708 .align = sizeof(u32),
709 .regset_get = vfp_get,
710 .set = vfp_set
711 },
712 #endif /* CONFIG_VFP */
713 };
714
715 static const struct user_regset_view user_arm_view = {
716 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
717 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
718 };
719
task_user_regset_view(struct task_struct * task)720 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
721 {
722 return &user_arm_view;
723 }
724
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)725 long arch_ptrace(struct task_struct *child, long request,
726 unsigned long addr, unsigned long data)
727 {
728 int ret;
729 unsigned long __user *datap = (unsigned long __user *) data;
730
731 switch (request) {
732 case PTRACE_PEEKUSR:
733 ret = ptrace_read_user(child, addr, datap);
734 break;
735
736 case PTRACE_POKEUSR:
737 ret = ptrace_write_user(child, addr, data);
738 break;
739
740 case PTRACE_GETREGS:
741 ret = copy_regset_to_user(child,
742 &user_arm_view, REGSET_GPR,
743 0, sizeof(struct pt_regs),
744 datap);
745 break;
746
747 case PTRACE_SETREGS:
748 ret = copy_regset_from_user(child,
749 &user_arm_view, REGSET_GPR,
750 0, sizeof(struct pt_regs),
751 datap);
752 break;
753
754 case PTRACE_GETFPREGS:
755 ret = copy_regset_to_user(child,
756 &user_arm_view, REGSET_FPR,
757 0, sizeof(union fp_state),
758 datap);
759 break;
760
761 case PTRACE_SETFPREGS:
762 ret = copy_regset_from_user(child,
763 &user_arm_view, REGSET_FPR,
764 0, sizeof(union fp_state),
765 datap);
766 break;
767
768 #ifdef CONFIG_IWMMXT
769 case PTRACE_GETWMMXREGS:
770 ret = ptrace_getwmmxregs(child, datap);
771 break;
772
773 case PTRACE_SETWMMXREGS:
774 ret = ptrace_setwmmxregs(child, datap);
775 break;
776 #endif
777
778 case PTRACE_GET_THREAD_AREA:
779 ret = put_user(task_thread_info(child)->tp_value[0],
780 datap);
781 break;
782
783 case PTRACE_SET_SYSCALL:
784 if (data != -1)
785 data &= __NR_SYSCALL_MASK;
786 task_thread_info(child)->abi_syscall = data;
787 ret = 0;
788 break;
789
790 #ifdef CONFIG_VFP
791 case PTRACE_GETVFPREGS:
792 ret = copy_regset_to_user(child,
793 &user_arm_view, REGSET_VFP,
794 0, ARM_VFPREGS_SIZE,
795 datap);
796 break;
797
798 case PTRACE_SETVFPREGS:
799 ret = copy_regset_from_user(child,
800 &user_arm_view, REGSET_VFP,
801 0, ARM_VFPREGS_SIZE,
802 datap);
803 break;
804 #endif
805
806 #ifdef CONFIG_HAVE_HW_BREAKPOINT
807 case PTRACE_GETHBPREGS:
808 ret = ptrace_gethbpregs(child, addr,
809 (unsigned long __user *)data);
810 break;
811 case PTRACE_SETHBPREGS:
812 ret = ptrace_sethbpregs(child, addr,
813 (unsigned long __user *)data);
814 break;
815 #endif
816
817 default:
818 ret = ptrace_request(child, request, addr, data);
819 break;
820 }
821
822 return ret;
823 }
824
825 enum ptrace_syscall_dir {
826 PTRACE_SYSCALL_ENTER = 0,
827 PTRACE_SYSCALL_EXIT,
828 };
829
report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)830 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
831 {
832 unsigned long ip;
833
834 /*
835 * IP is used to denote syscall entry/exit:
836 * IP = 0 -> entry, =1 -> exit
837 */
838 ip = regs->ARM_ip;
839 regs->ARM_ip = dir;
840
841 if (dir == PTRACE_SYSCALL_EXIT)
842 ptrace_report_syscall_exit(regs, 0);
843 else if (ptrace_report_syscall_entry(regs))
844 current_thread_info()->abi_syscall = -1;
845
846 regs->ARM_ip = ip;
847 }
848
syscall_trace_enter(struct pt_regs * regs)849 asmlinkage int syscall_trace_enter(struct pt_regs *regs)
850 {
851 int scno;
852
853 if (test_thread_flag(TIF_SYSCALL_TRACE))
854 report_syscall(regs, PTRACE_SYSCALL_ENTER);
855
856 /* Do seccomp after ptrace; syscall may have changed. */
857 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
858 if (secure_computing() == -1)
859 return -1;
860 #else
861 /* XXX: remove this once OABI gets fixed */
862 secure_computing_strict(syscall_get_nr(current, regs));
863 #endif
864
865 /* Tracer or seccomp may have changed syscall. */
866 scno = syscall_get_nr(current, regs);
867
868 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
869 trace_sys_enter(regs, scno);
870
871 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
872 regs->ARM_r3);
873
874 return scno;
875 }
876
syscall_trace_exit(struct pt_regs * regs)877 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
878 {
879 /*
880 * Audit the syscall before anything else, as a debugger may
881 * come in and change the current registers.
882 */
883 audit_syscall_exit(regs);
884
885 /*
886 * Note that we haven't updated the ->syscall field for the
887 * current thread. This isn't a problem because it will have
888 * been set on syscall entry and there hasn't been an opportunity
889 * for a PTRACE_SET_SYSCALL since then.
890 */
891 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
892 trace_sys_exit(regs, regs_return_value(regs));
893
894 if (test_thread_flag(TIF_SYSCALL_TRACE))
895 report_syscall(regs, PTRACE_SYSCALL_EXIT);
896 }
897