xref: /openbmc/linux/arch/arm/kernel/process.c (revision c4ee0af3)
1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12 
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/hw_breakpoint.h>
33 #include <linux/cpuidle.h>
34 #include <linux/leds.h>
35 #include <linux/reboot.h>
36 
37 #include <asm/cacheflush.h>
38 #include <asm/idmap.h>
39 #include <asm/processor.h>
40 #include <asm/thread_notify.h>
41 #include <asm/stacktrace.h>
42 #include <asm/mach/time.h>
43 #include <asm/tls.h>
44 
45 #ifdef CONFIG_CC_STACKPROTECTOR
46 #include <linux/stackprotector.h>
47 unsigned long __stack_chk_guard __read_mostly;
48 EXPORT_SYMBOL(__stack_chk_guard);
49 #endif
50 
51 static const char *processor_modes[] = {
52   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
53   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
54   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
55   "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
56 };
57 
58 static const char *isa_modes[] = {
59   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
60 };
61 
62 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
63 typedef void (*phys_reset_t)(unsigned long);
64 
65 /*
66  * A temporary stack to use for CPU reset. This is static so that we
67  * don't clobber it with the identity mapping. When running with this
68  * stack, any references to the current task *will not work* so you
69  * should really do as little as possible before jumping to your reset
70  * code.
71  */
72 static u64 soft_restart_stack[16];
73 
74 static void __soft_restart(void *addr)
75 {
76 	phys_reset_t phys_reset;
77 
78 	/* Take out a flat memory mapping. */
79 	setup_mm_for_reboot();
80 
81 	/* Clean and invalidate caches */
82 	flush_cache_all();
83 
84 	/* Turn off caching */
85 	cpu_proc_fin();
86 
87 	/* Push out any further dirty data, and ensure cache is empty */
88 	flush_cache_all();
89 
90 	/* Switch to the identity mapping. */
91 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
92 	phys_reset((unsigned long)addr);
93 
94 	/* Should never get here. */
95 	BUG();
96 }
97 
98 void soft_restart(unsigned long addr)
99 {
100 	u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
101 
102 	/* Disable interrupts first */
103 	local_irq_disable();
104 	local_fiq_disable();
105 
106 	/* Disable the L2 if we're the last man standing. */
107 	if (num_online_cpus() == 1)
108 		outer_disable();
109 
110 	/* Change to the new stack and continue with the reset. */
111 	call_with_stack(__soft_restart, (void *)addr, (void *)stack);
112 
113 	/* Should never get here. */
114 	BUG();
115 }
116 
117 static void null_restart(enum reboot_mode reboot_mode, const char *cmd)
118 {
119 }
120 
121 /*
122  * Function pointers to optional machine specific functions
123  */
124 void (*pm_power_off)(void);
125 EXPORT_SYMBOL(pm_power_off);
126 
127 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd) = null_restart;
128 EXPORT_SYMBOL_GPL(arm_pm_restart);
129 
130 /*
131  * This is our default idle handler.
132  */
133 
134 void (*arm_pm_idle)(void);
135 
136 static void default_idle(void)
137 {
138 	if (arm_pm_idle)
139 		arm_pm_idle();
140 	else
141 		cpu_do_idle();
142 	local_irq_enable();
143 }
144 
145 void arch_cpu_idle_prepare(void)
146 {
147 	local_fiq_enable();
148 }
149 
150 void arch_cpu_idle_enter(void)
151 {
152 	ledtrig_cpu(CPU_LED_IDLE_START);
153 #ifdef CONFIG_PL310_ERRATA_769419
154 	wmb();
155 #endif
156 }
157 
158 void arch_cpu_idle_exit(void)
159 {
160 	ledtrig_cpu(CPU_LED_IDLE_END);
161 }
162 
163 #ifdef CONFIG_HOTPLUG_CPU
164 void arch_cpu_idle_dead(void)
165 {
166 	cpu_die();
167 }
168 #endif
169 
170 /*
171  * Called from the core idle loop.
172  */
173 void arch_cpu_idle(void)
174 {
175 	if (cpuidle_idle_call())
176 		default_idle();
177 }
178 
179 /*
180  * Called by kexec, immediately prior to machine_kexec().
181  *
182  * This must completely disable all secondary CPUs; simply causing those CPUs
183  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
184  * kexec'd kernel to use any and all RAM as it sees fit, without having to
185  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
186  * functionality embodied in disable_nonboot_cpus() to achieve this.
187  */
188 void machine_shutdown(void)
189 {
190 	disable_nonboot_cpus();
191 }
192 
193 /*
194  * Halting simply requires that the secondary CPUs stop performing any
195  * activity (executing tasks, handling interrupts). smp_send_stop()
196  * achieves this.
197  */
198 void machine_halt(void)
199 {
200 	local_irq_disable();
201 	smp_send_stop();
202 
203 	local_irq_disable();
204 	while (1);
205 }
206 
207 /*
208  * Power-off simply requires that the secondary CPUs stop performing any
209  * activity (executing tasks, handling interrupts). smp_send_stop()
210  * achieves this. When the system power is turned off, it will take all CPUs
211  * with it.
212  */
213 void machine_power_off(void)
214 {
215 	local_irq_disable();
216 	smp_send_stop();
217 
218 	if (pm_power_off)
219 		pm_power_off();
220 }
221 
222 /*
223  * Restart requires that the secondary CPUs stop performing any activity
224  * while the primary CPU resets the system. Systems with a single CPU can
225  * use soft_restart() as their machine descriptor's .restart hook, since that
226  * will cause the only available CPU to reset. Systems with multiple CPUs must
227  * provide a HW restart implementation, to ensure that all CPUs reset at once.
228  * This is required so that any code running after reset on the primary CPU
229  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
230  * executing pre-reset code, and using RAM that the primary CPU's code wishes
231  * to use. Implementing such co-ordination would be essentially impossible.
232  */
233 void machine_restart(char *cmd)
234 {
235 	local_irq_disable();
236 	smp_send_stop();
237 
238 	arm_pm_restart(reboot_mode, cmd);
239 
240 	/* Give a grace period for failure to restart of 1s */
241 	mdelay(1000);
242 
243 	/* Whoops - the platform was unable to reboot. Tell the user! */
244 	printk("Reboot failed -- System halted\n");
245 	local_irq_disable();
246 	while (1);
247 }
248 
249 void __show_regs(struct pt_regs *regs)
250 {
251 	unsigned long flags;
252 	char buf[64];
253 
254 	show_regs_print_info(KERN_DEFAULT);
255 
256 	print_symbol("PC is at %s\n", instruction_pointer(regs));
257 	print_symbol("LR is at %s\n", regs->ARM_lr);
258 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
259 	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
260 		regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
261 		regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
262 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
263 		regs->ARM_r10, regs->ARM_r9,
264 		regs->ARM_r8);
265 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
266 		regs->ARM_r7, regs->ARM_r6,
267 		regs->ARM_r5, regs->ARM_r4);
268 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
269 		regs->ARM_r3, regs->ARM_r2,
270 		regs->ARM_r1, regs->ARM_r0);
271 
272 	flags = regs->ARM_cpsr;
273 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
274 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
275 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
276 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
277 	buf[4] = '\0';
278 
279 	printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
280 		buf, interrupts_enabled(regs) ? "n" : "ff",
281 		fast_interrupts_enabled(regs) ? "n" : "ff",
282 		processor_modes[processor_mode(regs)],
283 		isa_modes[isa_mode(regs)],
284 		get_fs() == get_ds() ? "kernel" : "user");
285 #ifdef CONFIG_CPU_CP15
286 	{
287 		unsigned int ctrl;
288 
289 		buf[0] = '\0';
290 #ifdef CONFIG_CPU_CP15_MMU
291 		{
292 			unsigned int transbase, dac;
293 			asm("mrc p15, 0, %0, c2, c0\n\t"
294 			    "mrc p15, 0, %1, c3, c0\n"
295 			    : "=r" (transbase), "=r" (dac));
296 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
297 			  	transbase, dac);
298 		}
299 #endif
300 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
301 
302 		printk("Control: %08x%s\n", ctrl, buf);
303 	}
304 #endif
305 }
306 
307 void show_regs(struct pt_regs * regs)
308 {
309 	printk("\n");
310 	__show_regs(regs);
311 	dump_stack();
312 }
313 
314 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
315 
316 EXPORT_SYMBOL_GPL(thread_notify_head);
317 
318 /*
319  * Free current thread data structures etc..
320  */
321 void exit_thread(void)
322 {
323 	thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
324 }
325 
326 void flush_thread(void)
327 {
328 	struct thread_info *thread = current_thread_info();
329 	struct task_struct *tsk = current;
330 
331 	flush_ptrace_hw_breakpoint(tsk);
332 
333 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
334 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
335 	memset(&thread->fpstate, 0, sizeof(union fp_state));
336 
337 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
338 }
339 
340 void release_thread(struct task_struct *dead_task)
341 {
342 }
343 
344 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
345 
346 int
347 copy_thread(unsigned long clone_flags, unsigned long stack_start,
348 	    unsigned long stk_sz, struct task_struct *p)
349 {
350 	struct thread_info *thread = task_thread_info(p);
351 	struct pt_regs *childregs = task_pt_regs(p);
352 
353 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
354 
355 	if (likely(!(p->flags & PF_KTHREAD))) {
356 		*childregs = *current_pt_regs();
357 		childregs->ARM_r0 = 0;
358 		if (stack_start)
359 			childregs->ARM_sp = stack_start;
360 	} else {
361 		memset(childregs, 0, sizeof(struct pt_regs));
362 		thread->cpu_context.r4 = stk_sz;
363 		thread->cpu_context.r5 = stack_start;
364 		childregs->ARM_cpsr = SVC_MODE;
365 	}
366 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
367 	thread->cpu_context.sp = (unsigned long)childregs;
368 
369 	clear_ptrace_hw_breakpoint(p);
370 
371 	if (clone_flags & CLONE_SETTLS)
372 		thread->tp_value[0] = childregs->ARM_r3;
373 	thread->tp_value[1] = get_tpuser();
374 
375 	thread_notify(THREAD_NOTIFY_COPY, thread);
376 
377 	return 0;
378 }
379 
380 /*
381  * Fill in the task's elfregs structure for a core dump.
382  */
383 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
384 {
385 	elf_core_copy_regs(elfregs, task_pt_regs(t));
386 	return 1;
387 }
388 
389 /*
390  * fill in the fpe structure for a core dump...
391  */
392 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
393 {
394 	struct thread_info *thread = current_thread_info();
395 	int used_math = thread->used_cp[1] | thread->used_cp[2];
396 
397 	if (used_math)
398 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
399 
400 	return used_math != 0;
401 }
402 EXPORT_SYMBOL(dump_fpu);
403 
404 unsigned long get_wchan(struct task_struct *p)
405 {
406 	struct stackframe frame;
407 	unsigned long stack_page;
408 	int count = 0;
409 	if (!p || p == current || p->state == TASK_RUNNING)
410 		return 0;
411 
412 	frame.fp = thread_saved_fp(p);
413 	frame.sp = thread_saved_sp(p);
414 	frame.lr = 0;			/* recovered from the stack */
415 	frame.pc = thread_saved_pc(p);
416 	stack_page = (unsigned long)task_stack_page(p);
417 	do {
418 		if (frame.sp < stack_page ||
419 		    frame.sp >= stack_page + THREAD_SIZE ||
420 		    unwind_frame(&frame) < 0)
421 			return 0;
422 		if (!in_sched_functions(frame.pc))
423 			return frame.pc;
424 	} while (count ++ < 16);
425 	return 0;
426 }
427 
428 unsigned long arch_randomize_brk(struct mm_struct *mm)
429 {
430 	unsigned long range_end = mm->brk + 0x02000000;
431 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
432 }
433 
434 #ifdef CONFIG_MMU
435 #ifdef CONFIG_KUSER_HELPERS
436 /*
437  * The vectors page is always readable from user space for the
438  * atomic helpers. Insert it into the gate_vma so that it is visible
439  * through ptrace and /proc/<pid>/mem.
440  */
441 static struct vm_area_struct gate_vma = {
442 	.vm_start	= 0xffff0000,
443 	.vm_end		= 0xffff0000 + PAGE_SIZE,
444 	.vm_flags	= VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
445 };
446 
447 static int __init gate_vma_init(void)
448 {
449 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
450 	return 0;
451 }
452 arch_initcall(gate_vma_init);
453 
454 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
455 {
456 	return &gate_vma;
457 }
458 
459 int in_gate_area(struct mm_struct *mm, unsigned long addr)
460 {
461 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
462 }
463 
464 int in_gate_area_no_mm(unsigned long addr)
465 {
466 	return in_gate_area(NULL, addr);
467 }
468 #define is_gate_vma(vma)	((vma) == &gate_vma)
469 #else
470 #define is_gate_vma(vma)	0
471 #endif
472 
473 const char *arch_vma_name(struct vm_area_struct *vma)
474 {
475 	return is_gate_vma(vma) ? "[vectors]" :
476 		(vma->vm_mm && vma->vm_start == vma->vm_mm->context.sigpage) ?
477 		 "[sigpage]" : NULL;
478 }
479 
480 static struct page *signal_page;
481 extern struct page *get_signal_page(void);
482 
483 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
484 {
485 	struct mm_struct *mm = current->mm;
486 	unsigned long addr;
487 	int ret;
488 
489 	if (!signal_page)
490 		signal_page = get_signal_page();
491 	if (!signal_page)
492 		return -ENOMEM;
493 
494 	down_write(&mm->mmap_sem);
495 	addr = get_unmapped_area(NULL, 0, PAGE_SIZE, 0, 0);
496 	if (IS_ERR_VALUE(addr)) {
497 		ret = addr;
498 		goto up_fail;
499 	}
500 
501 	ret = install_special_mapping(mm, addr, PAGE_SIZE,
502 		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
503 		&signal_page);
504 
505 	if (ret == 0)
506 		mm->context.sigpage = addr;
507 
508  up_fail:
509 	up_write(&mm->mmap_sem);
510 	return ret;
511 }
512 #endif
513