xref: /openbmc/linux/arch/arm/kernel/process.c (revision 93d90ad7)
1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12 
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/hw_breakpoint.h>
33 #include <linux/leds.h>
34 #include <linux/reboot.h>
35 
36 #include <asm/cacheflush.h>
37 #include <asm/idmap.h>
38 #include <asm/processor.h>
39 #include <asm/thread_notify.h>
40 #include <asm/stacktrace.h>
41 #include <asm/system_misc.h>
42 #include <asm/mach/time.h>
43 #include <asm/tls.h>
44 
45 #ifdef CONFIG_CC_STACKPROTECTOR
46 #include <linux/stackprotector.h>
47 unsigned long __stack_chk_guard __read_mostly;
48 EXPORT_SYMBOL(__stack_chk_guard);
49 #endif
50 
51 static const char *processor_modes[] __maybe_unused = {
52   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
53   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
54   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
55   "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
56 };
57 
58 static const char *isa_modes[] __maybe_unused = {
59   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
60 };
61 
62 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
63 typedef void (*phys_reset_t)(unsigned long);
64 
65 /*
66  * A temporary stack to use for CPU reset. This is static so that we
67  * don't clobber it with the identity mapping. When running with this
68  * stack, any references to the current task *will not work* so you
69  * should really do as little as possible before jumping to your reset
70  * code.
71  */
72 static u64 soft_restart_stack[16];
73 
74 static void __soft_restart(void *addr)
75 {
76 	phys_reset_t phys_reset;
77 
78 	/* Take out a flat memory mapping. */
79 	setup_mm_for_reboot();
80 
81 	/* Clean and invalidate caches */
82 	flush_cache_all();
83 
84 	/* Turn off caching */
85 	cpu_proc_fin();
86 
87 	/* Push out any further dirty data, and ensure cache is empty */
88 	flush_cache_all();
89 
90 	/* Switch to the identity mapping. */
91 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
92 	phys_reset((unsigned long)addr);
93 
94 	/* Should never get here. */
95 	BUG();
96 }
97 
98 void soft_restart(unsigned long addr)
99 {
100 	u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
101 
102 	/* Disable interrupts first */
103 	raw_local_irq_disable();
104 	local_fiq_disable();
105 
106 	/* Disable the L2 if we're the last man standing. */
107 	if (num_online_cpus() == 1)
108 		outer_disable();
109 
110 	/* Change to the new stack and continue with the reset. */
111 	call_with_stack(__soft_restart, (void *)addr, (void *)stack);
112 
113 	/* Should never get here. */
114 	BUG();
115 }
116 
117 /*
118  * Function pointers to optional machine specific functions
119  */
120 void (*pm_power_off)(void);
121 EXPORT_SYMBOL(pm_power_off);
122 
123 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
124 
125 /*
126  * This is our default idle handler.
127  */
128 
129 void (*arm_pm_idle)(void);
130 
131 /*
132  * Called from the core idle loop.
133  */
134 
135 void arch_cpu_idle(void)
136 {
137 	if (arm_pm_idle)
138 		arm_pm_idle();
139 	else
140 		cpu_do_idle();
141 	local_irq_enable();
142 }
143 
144 void arch_cpu_idle_prepare(void)
145 {
146 	local_fiq_enable();
147 }
148 
149 void arch_cpu_idle_enter(void)
150 {
151 	ledtrig_cpu(CPU_LED_IDLE_START);
152 #ifdef CONFIG_PL310_ERRATA_769419
153 	wmb();
154 #endif
155 }
156 
157 void arch_cpu_idle_exit(void)
158 {
159 	ledtrig_cpu(CPU_LED_IDLE_END);
160 }
161 
162 #ifdef CONFIG_HOTPLUG_CPU
163 void arch_cpu_idle_dead(void)
164 {
165 	cpu_die();
166 }
167 #endif
168 
169 /*
170  * Called by kexec, immediately prior to machine_kexec().
171  *
172  * This must completely disable all secondary CPUs; simply causing those CPUs
173  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
174  * kexec'd kernel to use any and all RAM as it sees fit, without having to
175  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
176  * functionality embodied in disable_nonboot_cpus() to achieve this.
177  */
178 void machine_shutdown(void)
179 {
180 	disable_nonboot_cpus();
181 }
182 
183 /*
184  * Halting simply requires that the secondary CPUs stop performing any
185  * activity (executing tasks, handling interrupts). smp_send_stop()
186  * achieves this.
187  */
188 void machine_halt(void)
189 {
190 	local_irq_disable();
191 	smp_send_stop();
192 
193 	local_irq_disable();
194 	while (1);
195 }
196 
197 /*
198  * Power-off simply requires that the secondary CPUs stop performing any
199  * activity (executing tasks, handling interrupts). smp_send_stop()
200  * achieves this. When the system power is turned off, it will take all CPUs
201  * with it.
202  */
203 void machine_power_off(void)
204 {
205 	local_irq_disable();
206 	smp_send_stop();
207 
208 	if (pm_power_off)
209 		pm_power_off();
210 }
211 
212 /*
213  * Restart requires that the secondary CPUs stop performing any activity
214  * while the primary CPU resets the system. Systems with a single CPU can
215  * use soft_restart() as their machine descriptor's .restart hook, since that
216  * will cause the only available CPU to reset. Systems with multiple CPUs must
217  * provide a HW restart implementation, to ensure that all CPUs reset at once.
218  * This is required so that any code running after reset on the primary CPU
219  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
220  * executing pre-reset code, and using RAM that the primary CPU's code wishes
221  * to use. Implementing such co-ordination would be essentially impossible.
222  */
223 void machine_restart(char *cmd)
224 {
225 	local_irq_disable();
226 	smp_send_stop();
227 
228 	if (arm_pm_restart)
229 		arm_pm_restart(reboot_mode, cmd);
230 	else
231 		do_kernel_restart(cmd);
232 
233 	/* Give a grace period for failure to restart of 1s */
234 	mdelay(1000);
235 
236 	/* Whoops - the platform was unable to reboot. Tell the user! */
237 	printk("Reboot failed -- System halted\n");
238 	local_irq_disable();
239 	while (1);
240 }
241 
242 void __show_regs(struct pt_regs *regs)
243 {
244 	unsigned long flags;
245 	char buf[64];
246 
247 	show_regs_print_info(KERN_DEFAULT);
248 
249 	print_symbol("PC is at %s\n", instruction_pointer(regs));
250 	print_symbol("LR is at %s\n", regs->ARM_lr);
251 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
252 	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
253 		regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
254 		regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
255 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
256 		regs->ARM_r10, regs->ARM_r9,
257 		regs->ARM_r8);
258 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
259 		regs->ARM_r7, regs->ARM_r6,
260 		regs->ARM_r5, regs->ARM_r4);
261 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
262 		regs->ARM_r3, regs->ARM_r2,
263 		regs->ARM_r1, regs->ARM_r0);
264 
265 	flags = regs->ARM_cpsr;
266 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
267 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
268 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
269 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
270 	buf[4] = '\0';
271 
272 #ifndef CONFIG_CPU_V7M
273 	printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
274 		buf, interrupts_enabled(regs) ? "n" : "ff",
275 		fast_interrupts_enabled(regs) ? "n" : "ff",
276 		processor_modes[processor_mode(regs)],
277 		isa_modes[isa_mode(regs)],
278 		get_fs() == get_ds() ? "kernel" : "user");
279 #else
280 	printk("xPSR: %08lx\n", regs->ARM_cpsr);
281 #endif
282 
283 #ifdef CONFIG_CPU_CP15
284 	{
285 		unsigned int ctrl;
286 
287 		buf[0] = '\0';
288 #ifdef CONFIG_CPU_CP15_MMU
289 		{
290 			unsigned int transbase, dac;
291 			asm("mrc p15, 0, %0, c2, c0\n\t"
292 			    "mrc p15, 0, %1, c3, c0\n"
293 			    : "=r" (transbase), "=r" (dac));
294 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
295 			  	transbase, dac);
296 		}
297 #endif
298 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
299 
300 		printk("Control: %08x%s\n", ctrl, buf);
301 	}
302 #endif
303 }
304 
305 void show_regs(struct pt_regs * regs)
306 {
307 	__show_regs(regs);
308 	dump_stack();
309 }
310 
311 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
312 
313 EXPORT_SYMBOL_GPL(thread_notify_head);
314 
315 /*
316  * Free current thread data structures etc..
317  */
318 void exit_thread(void)
319 {
320 	thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
321 }
322 
323 void flush_thread(void)
324 {
325 	struct thread_info *thread = current_thread_info();
326 	struct task_struct *tsk = current;
327 
328 	flush_ptrace_hw_breakpoint(tsk);
329 
330 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
331 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
332 	memset(&thread->fpstate, 0, sizeof(union fp_state));
333 
334 	flush_tls();
335 
336 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
337 }
338 
339 void release_thread(struct task_struct *dead_task)
340 {
341 }
342 
343 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
344 
345 int
346 copy_thread(unsigned long clone_flags, unsigned long stack_start,
347 	    unsigned long stk_sz, struct task_struct *p)
348 {
349 	struct thread_info *thread = task_thread_info(p);
350 	struct pt_regs *childregs = task_pt_regs(p);
351 
352 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
353 
354 	if (likely(!(p->flags & PF_KTHREAD))) {
355 		*childregs = *current_pt_regs();
356 		childregs->ARM_r0 = 0;
357 		if (stack_start)
358 			childregs->ARM_sp = stack_start;
359 	} else {
360 		memset(childregs, 0, sizeof(struct pt_regs));
361 		thread->cpu_context.r4 = stk_sz;
362 		thread->cpu_context.r5 = stack_start;
363 		childregs->ARM_cpsr = SVC_MODE;
364 	}
365 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
366 	thread->cpu_context.sp = (unsigned long)childregs;
367 
368 	clear_ptrace_hw_breakpoint(p);
369 
370 	if (clone_flags & CLONE_SETTLS)
371 		thread->tp_value[0] = childregs->ARM_r3;
372 	thread->tp_value[1] = get_tpuser();
373 
374 	thread_notify(THREAD_NOTIFY_COPY, thread);
375 
376 	return 0;
377 }
378 
379 /*
380  * Fill in the task's elfregs structure for a core dump.
381  */
382 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
383 {
384 	elf_core_copy_regs(elfregs, task_pt_regs(t));
385 	return 1;
386 }
387 
388 /*
389  * fill in the fpe structure for a core dump...
390  */
391 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
392 {
393 	struct thread_info *thread = current_thread_info();
394 	int used_math = thread->used_cp[1] | thread->used_cp[2];
395 
396 	if (used_math)
397 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
398 
399 	return used_math != 0;
400 }
401 EXPORT_SYMBOL(dump_fpu);
402 
403 unsigned long get_wchan(struct task_struct *p)
404 {
405 	struct stackframe frame;
406 	unsigned long stack_page;
407 	int count = 0;
408 	if (!p || p == current || p->state == TASK_RUNNING)
409 		return 0;
410 
411 	frame.fp = thread_saved_fp(p);
412 	frame.sp = thread_saved_sp(p);
413 	frame.lr = 0;			/* recovered from the stack */
414 	frame.pc = thread_saved_pc(p);
415 	stack_page = (unsigned long)task_stack_page(p);
416 	do {
417 		if (frame.sp < stack_page ||
418 		    frame.sp >= stack_page + THREAD_SIZE ||
419 		    unwind_frame(&frame) < 0)
420 			return 0;
421 		if (!in_sched_functions(frame.pc))
422 			return frame.pc;
423 	} while (count ++ < 16);
424 	return 0;
425 }
426 
427 unsigned long arch_randomize_brk(struct mm_struct *mm)
428 {
429 	unsigned long range_end = mm->brk + 0x02000000;
430 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
431 }
432 
433 #ifdef CONFIG_MMU
434 #ifdef CONFIG_KUSER_HELPERS
435 /*
436  * The vectors page is always readable from user space for the
437  * atomic helpers. Insert it into the gate_vma so that it is visible
438  * through ptrace and /proc/<pid>/mem.
439  */
440 static struct vm_area_struct gate_vma = {
441 	.vm_start	= 0xffff0000,
442 	.vm_end		= 0xffff0000 + PAGE_SIZE,
443 	.vm_flags	= VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
444 };
445 
446 static int __init gate_vma_init(void)
447 {
448 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
449 	return 0;
450 }
451 arch_initcall(gate_vma_init);
452 
453 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
454 {
455 	return &gate_vma;
456 }
457 
458 int in_gate_area(struct mm_struct *mm, unsigned long addr)
459 {
460 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
461 }
462 
463 int in_gate_area_no_mm(unsigned long addr)
464 {
465 	return in_gate_area(NULL, addr);
466 }
467 #define is_gate_vma(vma)	((vma) == &gate_vma)
468 #else
469 #define is_gate_vma(vma)	0
470 #endif
471 
472 const char *arch_vma_name(struct vm_area_struct *vma)
473 {
474 	return is_gate_vma(vma) ? "[vectors]" : NULL;
475 }
476 
477 /* If possible, provide a placement hint at a random offset from the
478  * stack for the signal page.
479  */
480 static unsigned long sigpage_addr(const struct mm_struct *mm,
481 				  unsigned int npages)
482 {
483 	unsigned long offset;
484 	unsigned long first;
485 	unsigned long last;
486 	unsigned long addr;
487 	unsigned int slots;
488 
489 	first = PAGE_ALIGN(mm->start_stack);
490 
491 	last = TASK_SIZE - (npages << PAGE_SHIFT);
492 
493 	/* No room after stack? */
494 	if (first > last)
495 		return 0;
496 
497 	/* Just enough room? */
498 	if (first == last)
499 		return first;
500 
501 	slots = ((last - first) >> PAGE_SHIFT) + 1;
502 
503 	offset = get_random_int() % slots;
504 
505 	addr = first + (offset << PAGE_SHIFT);
506 
507 	return addr;
508 }
509 
510 static struct page *signal_page;
511 extern struct page *get_signal_page(void);
512 
513 static const struct vm_special_mapping sigpage_mapping = {
514 	.name = "[sigpage]",
515 	.pages = &signal_page,
516 };
517 
518 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
519 {
520 	struct mm_struct *mm = current->mm;
521 	struct vm_area_struct *vma;
522 	unsigned long addr;
523 	unsigned long hint;
524 	int ret = 0;
525 
526 	if (!signal_page)
527 		signal_page = get_signal_page();
528 	if (!signal_page)
529 		return -ENOMEM;
530 
531 	down_write(&mm->mmap_sem);
532 	hint = sigpage_addr(mm, 1);
533 	addr = get_unmapped_area(NULL, hint, PAGE_SIZE, 0, 0);
534 	if (IS_ERR_VALUE(addr)) {
535 		ret = addr;
536 		goto up_fail;
537 	}
538 
539 	vma = _install_special_mapping(mm, addr, PAGE_SIZE,
540 		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
541 		&sigpage_mapping);
542 
543 	if (IS_ERR(vma)) {
544 		ret = PTR_ERR(vma);
545 		goto up_fail;
546 	}
547 
548 	mm->context.sigpage = addr;
549 
550  up_fail:
551 	up_write(&mm->mmap_sem);
552 	return ret;
553 }
554 #endif
555