xref: /openbmc/linux/arch/arm/kernel/module-plts.c (revision 0cac60c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5 
6 #include <linux/elf.h>
7 #include <linux/ftrace.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/sort.h>
11 #include <linux/moduleloader.h>
12 
13 #include <asm/cache.h>
14 #include <asm/opcodes.h>
15 
16 #ifdef CONFIG_THUMB2_KERNEL
17 #define PLT_ENT_LDR		__opcode_to_mem_thumb32(0xf8dff000 | \
18 							(PLT_ENT_STRIDE - 4))
19 #else
20 #define PLT_ENT_LDR		__opcode_to_mem_arm(0xe59ff000 | \
21 						    (PLT_ENT_STRIDE - 8))
22 #endif
23 
24 static const u32 fixed_plts[] = {
25 #ifdef CONFIG_DYNAMIC_FTRACE
26 	FTRACE_ADDR,
27 	MCOUNT_ADDR,
28 #endif
29 };
30 
31 static bool in_init(const struct module *mod, unsigned long loc)
32 {
33 	return loc - (u32)mod->init_layout.base < mod->init_layout.size;
34 }
35 
36 static void prealloc_fixed(struct mod_plt_sec *pltsec, struct plt_entries *plt)
37 {
38 	int i;
39 
40 	if (!ARRAY_SIZE(fixed_plts) || pltsec->plt_count)
41 		return;
42 	pltsec->plt_count = ARRAY_SIZE(fixed_plts);
43 
44 	for (i = 0; i < ARRAY_SIZE(plt->ldr); ++i)
45 		plt->ldr[i] = PLT_ENT_LDR;
46 
47 	BUILD_BUG_ON(sizeof(fixed_plts) > sizeof(plt->lit));
48 	memcpy(plt->lit, fixed_plts, sizeof(fixed_plts));
49 }
50 
51 u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val)
52 {
53 	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
54 							  &mod->arch.init;
55 	struct plt_entries *plt;
56 	int idx;
57 
58 	/* cache the address, ELF header is available only during module load */
59 	if (!pltsec->plt_ent)
60 		pltsec->plt_ent = (struct plt_entries *)pltsec->plt->sh_addr;
61 	plt = pltsec->plt_ent;
62 
63 	prealloc_fixed(pltsec, plt);
64 
65 	for (idx = 0; idx < ARRAY_SIZE(fixed_plts); ++idx)
66 		if (plt->lit[idx] == val)
67 			return (u32)&plt->ldr[idx];
68 
69 	idx = 0;
70 	/*
71 	 * Look for an existing entry pointing to 'val'. Given that the
72 	 * relocations are sorted, this will be the last entry we allocated.
73 	 * (if one exists).
74 	 */
75 	if (pltsec->plt_count > 0) {
76 		plt += (pltsec->plt_count - 1) / PLT_ENT_COUNT;
77 		idx = (pltsec->plt_count - 1) % PLT_ENT_COUNT;
78 
79 		if (plt->lit[idx] == val)
80 			return (u32)&plt->ldr[idx];
81 
82 		idx = (idx + 1) % PLT_ENT_COUNT;
83 		if (!idx)
84 			plt++;
85 	}
86 
87 	pltsec->plt_count++;
88 	BUG_ON(pltsec->plt_count * PLT_ENT_SIZE > pltsec->plt->sh_size);
89 
90 	if (!idx)
91 		/* Populate a new set of entries */
92 		*plt = (struct plt_entries){
93 			{ [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, },
94 			{ val, }
95 		};
96 	else
97 		plt->lit[idx] = val;
98 
99 	return (u32)&plt->ldr[idx];
100 }
101 
102 #define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))
103 
104 static int cmp_rel(const void *a, const void *b)
105 {
106 	const Elf32_Rel *x = a, *y = b;
107 	int i;
108 
109 	/* sort by type and symbol index */
110 	i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info));
111 	if (i == 0)
112 		i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info));
113 	return i;
114 }
115 
116 static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel)
117 {
118 	u32 *tval = (u32 *)(base + rel->r_offset);
119 
120 	/*
121 	 * Do a bitwise compare on the raw addend rather than fully decoding
122 	 * the offset and doing an arithmetic comparison.
123 	 * Note that a zero-addend jump/call relocation is encoded taking the
124 	 * PC bias into account, i.e., -8 for ARM and -4 for Thumb2.
125 	 */
126 	switch (ELF32_R_TYPE(rel->r_info)) {
127 		u16 upper, lower;
128 
129 	case R_ARM_THM_CALL:
130 	case R_ARM_THM_JUMP24:
131 		upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]);
132 		lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]);
133 
134 		return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe;
135 
136 	case R_ARM_CALL:
137 	case R_ARM_PC24:
138 	case R_ARM_JUMP24:
139 		return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe;
140 	}
141 	BUG();
142 }
143 
144 static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num)
145 {
146 	const Elf32_Rel *prev;
147 
148 	/*
149 	 * Entries are sorted by type and symbol index. That means that,
150 	 * if a duplicate entry exists, it must be in the preceding
151 	 * slot.
152 	 */
153 	if (!num)
154 		return false;
155 
156 	prev = rel + num - 1;
157 	return cmp_rel(rel + num, prev) == 0 &&
158 	       is_zero_addend_relocation(base, prev);
159 }
160 
161 /* Count how many PLT entries we may need */
162 static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base,
163 			       const Elf32_Rel *rel, int num, Elf32_Word dstidx)
164 {
165 	unsigned int ret = 0;
166 	const Elf32_Sym *s;
167 	int i;
168 
169 	for (i = 0; i < num; i++) {
170 		switch (ELF32_R_TYPE(rel[i].r_info)) {
171 		case R_ARM_CALL:
172 		case R_ARM_PC24:
173 		case R_ARM_JUMP24:
174 		case R_ARM_THM_CALL:
175 		case R_ARM_THM_JUMP24:
176 			/*
177 			 * We only have to consider branch targets that resolve
178 			 * to symbols that are defined in a different section.
179 			 * This is not simply a heuristic, it is a fundamental
180 			 * limitation, since there is no guaranteed way to emit
181 			 * PLT entries sufficiently close to the branch if the
182 			 * section size exceeds the range of a branch
183 			 * instruction. So ignore relocations against defined
184 			 * symbols if they live in the same section as the
185 			 * relocation target.
186 			 */
187 			s = syms + ELF32_R_SYM(rel[i].r_info);
188 			if (s->st_shndx == dstidx)
189 				break;
190 
191 			/*
192 			 * Jump relocations with non-zero addends against
193 			 * undefined symbols are supported by the ELF spec, but
194 			 * do not occur in practice (e.g., 'jump n bytes past
195 			 * the entry point of undefined function symbol f').
196 			 * So we need to support them, but there is no need to
197 			 * take them into consideration when trying to optimize
198 			 * this code. So let's only check for duplicates when
199 			 * the addend is zero. (Note that calls into the core
200 			 * module via init PLT entries could involve section
201 			 * relative symbol references with non-zero addends, for
202 			 * which we may end up emitting duplicates, but the init
203 			 * PLT is released along with the rest of the .init
204 			 * region as soon as module loading completes.)
205 			 */
206 			if (!is_zero_addend_relocation(base, rel + i) ||
207 			    !duplicate_rel(base, rel, i))
208 				ret++;
209 		}
210 	}
211 	return ret;
212 }
213 
214 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
215 			      char *secstrings, struct module *mod)
216 {
217 	unsigned long core_plts = ARRAY_SIZE(fixed_plts);
218 	unsigned long init_plts = ARRAY_SIZE(fixed_plts);
219 	Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
220 	Elf32_Sym *syms = NULL;
221 
222 	/*
223 	 * To store the PLTs, we expand the .text section for core module code
224 	 * and for initialization code.
225 	 */
226 	for (s = sechdrs; s < sechdrs_end; ++s) {
227 		if (strcmp(".plt", secstrings + s->sh_name) == 0)
228 			mod->arch.core.plt = s;
229 		else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
230 			mod->arch.init.plt = s;
231 		else if (s->sh_type == SHT_SYMTAB)
232 			syms = (Elf32_Sym *)s->sh_addr;
233 	}
234 
235 	if (!mod->arch.core.plt || !mod->arch.init.plt) {
236 		pr_err("%s: module PLT section(s) missing\n", mod->name);
237 		return -ENOEXEC;
238 	}
239 	if (!syms) {
240 		pr_err("%s: module symtab section missing\n", mod->name);
241 		return -ENOEXEC;
242 	}
243 
244 	for (s = sechdrs + 1; s < sechdrs_end; ++s) {
245 		Elf32_Rel *rels = (void *)ehdr + s->sh_offset;
246 		int numrels = s->sh_size / sizeof(Elf32_Rel);
247 		Elf32_Shdr *dstsec = sechdrs + s->sh_info;
248 
249 		if (s->sh_type != SHT_REL)
250 			continue;
251 
252 		/* ignore relocations that operate on non-exec sections */
253 		if (!(dstsec->sh_flags & SHF_EXECINSTR))
254 			continue;
255 
256 		/* sort by type and symbol index */
257 		sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL);
258 
259 		if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
260 			core_plts += count_plts(syms, dstsec->sh_addr, rels,
261 						numrels, s->sh_info);
262 		else
263 			init_plts += count_plts(syms, dstsec->sh_addr, rels,
264 						numrels, s->sh_info);
265 	}
266 
267 	mod->arch.core.plt->sh_type = SHT_NOBITS;
268 	mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
269 	mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
270 	mod->arch.core.plt->sh_size = round_up(core_plts * PLT_ENT_SIZE,
271 					       sizeof(struct plt_entries));
272 	mod->arch.core.plt_count = 0;
273 	mod->arch.core.plt_ent = NULL;
274 
275 	mod->arch.init.plt->sh_type = SHT_NOBITS;
276 	mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
277 	mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
278 	mod->arch.init.plt->sh_size = round_up(init_plts * PLT_ENT_SIZE,
279 					       sizeof(struct plt_entries));
280 	mod->arch.init.plt_count = 0;
281 	mod->arch.init.plt_ent = NULL;
282 
283 	pr_debug("%s: plt=%x, init.plt=%x\n", __func__,
284 		 mod->arch.core.plt->sh_size, mod->arch.init.plt->sh_size);
285 	return 0;
286 }
287 
288 bool in_module_plt(unsigned long loc)
289 {
290 	struct module *mod;
291 	bool ret;
292 
293 	preempt_disable();
294 	mod = __module_text_address(loc);
295 	ret = mod && (loc - (u32)mod->arch.core.plt_ent < mod->arch.core.plt_count * PLT_ENT_SIZE ||
296 		      loc - (u32)mod->arch.init.plt_ent < mod->arch.init.plt_count * PLT_ENT_SIZE);
297 	preempt_enable();
298 
299 	return ret;
300 }
301