xref: /openbmc/linux/arch/arm/kernel/irq.c (revision 87c2ce3b)
1 /*
2  *  linux/arch/arm/kernel/irq.c
3  *
4  *  Copyright (C) 1992 Linus Torvalds
5  *  Modifications for ARM processor Copyright (C) 1995-2000 Russell King.
6  *
7  *  Support for Dynamic Tick Timer Copyright (C) 2004-2005 Nokia Corporation.
8  *  Dynamic Tick Timer written by Tony Lindgren <tony@atomide.com> and
9  *  Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  *  This file contains the code used by various IRQ handling routines:
16  *  asking for different IRQ's should be done through these routines
17  *  instead of just grabbing them. Thus setups with different IRQ numbers
18  *  shouldn't result in any weird surprises, and installing new handlers
19  *  should be easier.
20  *
21  *  IRQ's are in fact implemented a bit like signal handlers for the kernel.
22  *  Naturally it's not a 1:1 relation, but there are similarities.
23  */
24 #include <linux/config.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/signal.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/ptrace.h>
31 #include <linux/slab.h>
32 #include <linux/random.h>
33 #include <linux/smp.h>
34 #include <linux/init.h>
35 #include <linux/seq_file.h>
36 #include <linux/errno.h>
37 #include <linux/list.h>
38 #include <linux/kallsyms.h>
39 #include <linux/proc_fs.h>
40 
41 #include <asm/irq.h>
42 #include <asm/system.h>
43 #include <asm/mach/irq.h>
44 #include <asm/mach/time.h>
45 
46 /*
47  * Maximum IRQ count.  Currently, this is arbitary.  However, it should
48  * not be set too low to prevent false triggering.  Conversely, if it
49  * is set too high, then you could miss a stuck IRQ.
50  *
51  * Maybe we ought to set a timer and re-enable the IRQ at a later time?
52  */
53 #define MAX_IRQ_CNT	100000
54 
55 static int noirqdebug;
56 static volatile unsigned long irq_err_count;
57 static DEFINE_SPINLOCK(irq_controller_lock);
58 static LIST_HEAD(irq_pending);
59 
60 struct irqdesc irq_desc[NR_IRQS];
61 void (*init_arch_irq)(void) __initdata = NULL;
62 
63 /*
64  * No architecture-specific irq_finish function defined in arm/arch/irqs.h.
65  */
66 #ifndef irq_finish
67 #define irq_finish(irq) do { } while (0)
68 #endif
69 
70 /*
71  * Dummy mask/unmask handler
72  */
73 void dummy_mask_unmask_irq(unsigned int irq)
74 {
75 }
76 
77 irqreturn_t no_action(int irq, void *dev_id, struct pt_regs *regs)
78 {
79 	return IRQ_NONE;
80 }
81 
82 void do_bad_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
83 {
84 	irq_err_count += 1;
85 	printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq);
86 }
87 
88 static struct irqchip bad_chip = {
89 	.ack	= dummy_mask_unmask_irq,
90 	.mask	= dummy_mask_unmask_irq,
91 	.unmask = dummy_mask_unmask_irq,
92 };
93 
94 static struct irqdesc bad_irq_desc = {
95 	.chip		= &bad_chip,
96 	.handle		= do_bad_IRQ,
97 	.pend		= LIST_HEAD_INIT(bad_irq_desc.pend),
98 	.disable_depth	= 1,
99 };
100 
101 #ifdef CONFIG_SMP
102 void synchronize_irq(unsigned int irq)
103 {
104 	struct irqdesc *desc = irq_desc + irq;
105 
106 	while (desc->running)
107 		barrier();
108 }
109 EXPORT_SYMBOL(synchronize_irq);
110 
111 #define smp_set_running(desc)	do { desc->running = 1; } while (0)
112 #define smp_clear_running(desc)	do { desc->running = 0; } while (0)
113 #else
114 #define smp_set_running(desc)	do { } while (0)
115 #define smp_clear_running(desc)	do { } while (0)
116 #endif
117 
118 /**
119  *	disable_irq_nosync - disable an irq without waiting
120  *	@irq: Interrupt to disable
121  *
122  *	Disable the selected interrupt line.  Enables and disables
123  *	are nested.  We do this lazily.
124  *
125  *	This function may be called from IRQ context.
126  */
127 void disable_irq_nosync(unsigned int irq)
128 {
129 	struct irqdesc *desc = irq_desc + irq;
130 	unsigned long flags;
131 
132 	spin_lock_irqsave(&irq_controller_lock, flags);
133 	desc->disable_depth++;
134 	list_del_init(&desc->pend);
135 	spin_unlock_irqrestore(&irq_controller_lock, flags);
136 }
137 EXPORT_SYMBOL(disable_irq_nosync);
138 
139 /**
140  *	disable_irq - disable an irq and wait for completion
141  *	@irq: Interrupt to disable
142  *
143  *	Disable the selected interrupt line.  Enables and disables
144  *	are nested.  This functions waits for any pending IRQ
145  *	handlers for this interrupt to complete before returning.
146  *	If you use this function while holding a resource the IRQ
147  *	handler may need you will deadlock.
148  *
149  *	This function may be called - with care - from IRQ context.
150  */
151 void disable_irq(unsigned int irq)
152 {
153 	struct irqdesc *desc = irq_desc + irq;
154 
155 	disable_irq_nosync(irq);
156 	if (desc->action)
157 		synchronize_irq(irq);
158 }
159 EXPORT_SYMBOL(disable_irq);
160 
161 /**
162  *	enable_irq - enable interrupt handling on an irq
163  *	@irq: Interrupt to enable
164  *
165  *	Re-enables the processing of interrupts on this IRQ line.
166  *	Note that this may call the interrupt handler, so you may
167  *	get unexpected results if you hold IRQs disabled.
168  *
169  *	This function may be called from IRQ context.
170  */
171 void enable_irq(unsigned int irq)
172 {
173 	struct irqdesc *desc = irq_desc + irq;
174 	unsigned long flags;
175 
176 	spin_lock_irqsave(&irq_controller_lock, flags);
177 	if (unlikely(!desc->disable_depth)) {
178 		printk("enable_irq(%u) unbalanced from %p\n", irq,
179 			__builtin_return_address(0));
180 	} else if (!--desc->disable_depth) {
181 		desc->probing = 0;
182 		desc->chip->unmask(irq);
183 
184 		/*
185 		 * If the interrupt is waiting to be processed,
186 		 * try to re-run it.  We can't directly run it
187 		 * from here since the caller might be in an
188 		 * interrupt-protected region.
189 		 */
190 		if (desc->pending && list_empty(&desc->pend)) {
191 			desc->pending = 0;
192 			if (!desc->chip->retrigger ||
193 			    desc->chip->retrigger(irq))
194 				list_add(&desc->pend, &irq_pending);
195 		}
196 	}
197 	spin_unlock_irqrestore(&irq_controller_lock, flags);
198 }
199 EXPORT_SYMBOL(enable_irq);
200 
201 /*
202  * Enable wake on selected irq
203  */
204 void enable_irq_wake(unsigned int irq)
205 {
206 	struct irqdesc *desc = irq_desc + irq;
207 	unsigned long flags;
208 
209 	spin_lock_irqsave(&irq_controller_lock, flags);
210 	if (desc->chip->set_wake)
211 		desc->chip->set_wake(irq, 1);
212 	spin_unlock_irqrestore(&irq_controller_lock, flags);
213 }
214 EXPORT_SYMBOL(enable_irq_wake);
215 
216 void disable_irq_wake(unsigned int irq)
217 {
218 	struct irqdesc *desc = irq_desc + irq;
219 	unsigned long flags;
220 
221 	spin_lock_irqsave(&irq_controller_lock, flags);
222 	if (desc->chip->set_wake)
223 		desc->chip->set_wake(irq, 0);
224 	spin_unlock_irqrestore(&irq_controller_lock, flags);
225 }
226 EXPORT_SYMBOL(disable_irq_wake);
227 
228 int show_interrupts(struct seq_file *p, void *v)
229 {
230 	int i = *(loff_t *) v, cpu;
231 	struct irqaction * action;
232 	unsigned long flags;
233 
234 	if (i == 0) {
235 		char cpuname[12];
236 
237 		seq_printf(p, "    ");
238 		for_each_present_cpu(cpu) {
239 			sprintf(cpuname, "CPU%d", cpu);
240 			seq_printf(p, " %10s", cpuname);
241 		}
242 		seq_putc(p, '\n');
243 	}
244 
245 	if (i < NR_IRQS) {
246 		spin_lock_irqsave(&irq_controller_lock, flags);
247 	    	action = irq_desc[i].action;
248 		if (!action)
249 			goto unlock;
250 
251 		seq_printf(p, "%3d: ", i);
252 		for_each_present_cpu(cpu)
253 			seq_printf(p, "%10u ", kstat_cpu(cpu).irqs[i]);
254 		seq_printf(p, "  %s", action->name);
255 		for (action = action->next; action; action = action->next)
256 			seq_printf(p, ", %s", action->name);
257 
258 		seq_putc(p, '\n');
259 unlock:
260 		spin_unlock_irqrestore(&irq_controller_lock, flags);
261 	} else if (i == NR_IRQS) {
262 #ifdef CONFIG_ARCH_ACORN
263 		show_fiq_list(p, v);
264 #endif
265 #ifdef CONFIG_SMP
266 		show_ipi_list(p);
267 		show_local_irqs(p);
268 #endif
269 		seq_printf(p, "Err: %10lu\n", irq_err_count);
270 	}
271 	return 0;
272 }
273 
274 /*
275  * IRQ lock detection.
276  *
277  * Hopefully, this should get us out of a few locked situations.
278  * However, it may take a while for this to happen, since we need
279  * a large number if IRQs to appear in the same jiffie with the
280  * same instruction pointer (or within 2 instructions).
281  */
282 static int check_irq_lock(struct irqdesc *desc, int irq, struct pt_regs *regs)
283 {
284 	unsigned long instr_ptr = instruction_pointer(regs);
285 
286 	if (desc->lck_jif == jiffies &&
287 	    desc->lck_pc >= instr_ptr && desc->lck_pc < instr_ptr + 8) {
288 		desc->lck_cnt += 1;
289 
290 		if (desc->lck_cnt > MAX_IRQ_CNT) {
291 			printk(KERN_ERR "IRQ LOCK: IRQ%d is locking the system, disabled\n", irq);
292 			return 1;
293 		}
294 	} else {
295 		desc->lck_cnt = 0;
296 		desc->lck_pc  = instruction_pointer(regs);
297 		desc->lck_jif = jiffies;
298 	}
299 	return 0;
300 }
301 
302 static void
303 report_bad_irq(unsigned int irq, struct pt_regs *regs, struct irqdesc *desc, int ret)
304 {
305 	static int count = 100;
306 	struct irqaction *action;
307 
308 	if (!count || noirqdebug)
309 		return;
310 
311 	count--;
312 
313 	if (ret != IRQ_HANDLED && ret != IRQ_NONE) {
314 		printk("irq%u: bogus retval mask %x\n", irq, ret);
315 	} else {
316 		printk("irq%u: nobody cared\n", irq);
317 	}
318 	show_regs(regs);
319 	dump_stack();
320 	printk(KERN_ERR "handlers:");
321 	action = desc->action;
322 	do {
323 		printk("\n" KERN_ERR "[<%p>]", action->handler);
324 		print_symbol(" (%s)", (unsigned long)action->handler);
325 		action = action->next;
326 	} while (action);
327 	printk("\n");
328 }
329 
330 static int
331 __do_irq(unsigned int irq, struct irqaction *action, struct pt_regs *regs)
332 {
333 	unsigned int status;
334 	int ret, retval = 0;
335 
336 	spin_unlock(&irq_controller_lock);
337 
338 #ifdef CONFIG_NO_IDLE_HZ
339 	if (!(action->flags & SA_TIMER) && system_timer->dyn_tick != NULL) {
340 		write_seqlock(&xtime_lock);
341 		if (system_timer->dyn_tick->state & DYN_TICK_ENABLED)
342 			system_timer->dyn_tick->handler(irq, 0, regs);
343 		write_sequnlock(&xtime_lock);
344 	}
345 #endif
346 
347 	if (!(action->flags & SA_INTERRUPT))
348 		local_irq_enable();
349 
350 	status = 0;
351 	do {
352 		ret = action->handler(irq, action->dev_id, regs);
353 		if (ret == IRQ_HANDLED)
354 			status |= action->flags;
355 		retval |= ret;
356 		action = action->next;
357 	} while (action);
358 
359 	if (status & SA_SAMPLE_RANDOM)
360 		add_interrupt_randomness(irq);
361 
362 	spin_lock_irq(&irq_controller_lock);
363 
364 	return retval;
365 }
366 
367 /*
368  * This is for software-decoded IRQs.  The caller is expected to
369  * handle the ack, clear, mask and unmask issues.
370  */
371 void
372 do_simple_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
373 {
374 	struct irqaction *action;
375 	const unsigned int cpu = smp_processor_id();
376 
377 	desc->triggered = 1;
378 
379 	kstat_cpu(cpu).irqs[irq]++;
380 
381 	smp_set_running(desc);
382 
383 	action = desc->action;
384 	if (action) {
385 		int ret = __do_irq(irq, action, regs);
386 		if (ret != IRQ_HANDLED)
387 			report_bad_irq(irq, regs, desc, ret);
388 	}
389 
390 	smp_clear_running(desc);
391 }
392 
393 /*
394  * Most edge-triggered IRQ implementations seem to take a broken
395  * approach to this.  Hence the complexity.
396  */
397 void
398 do_edge_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
399 {
400 	const unsigned int cpu = smp_processor_id();
401 
402 	desc->triggered = 1;
403 
404 	/*
405 	 * If we're currently running this IRQ, or its disabled,
406 	 * we shouldn't process the IRQ.  Instead, turn on the
407 	 * hardware masks.
408 	 */
409 	if (unlikely(desc->running || desc->disable_depth))
410 		goto running;
411 
412 	/*
413 	 * Acknowledge and clear the IRQ, but don't mask it.
414 	 */
415 	desc->chip->ack(irq);
416 
417 	/*
418 	 * Mark the IRQ currently in progress.
419 	 */
420 	desc->running = 1;
421 
422 	kstat_cpu(cpu).irqs[irq]++;
423 
424 	do {
425 		struct irqaction *action;
426 
427 		action = desc->action;
428 		if (!action)
429 			break;
430 
431 		if (desc->pending && !desc->disable_depth) {
432 			desc->pending = 0;
433 			desc->chip->unmask(irq);
434 		}
435 
436 		__do_irq(irq, action, regs);
437 	} while (desc->pending && !desc->disable_depth);
438 
439 	desc->running = 0;
440 
441 	/*
442 	 * If we were disabled or freed, shut down the handler.
443 	 */
444 	if (likely(desc->action && !check_irq_lock(desc, irq, regs)))
445 		return;
446 
447  running:
448 	/*
449 	 * We got another IRQ while this one was masked or
450 	 * currently running.  Delay it.
451 	 */
452 	desc->pending = 1;
453 	desc->chip->mask(irq);
454 	desc->chip->ack(irq);
455 }
456 
457 /*
458  * Level-based IRQ handler.  Nice and simple.
459  */
460 void
461 do_level_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
462 {
463 	struct irqaction *action;
464 	const unsigned int cpu = smp_processor_id();
465 
466 	desc->triggered = 1;
467 
468 	/*
469 	 * Acknowledge, clear _AND_ disable the interrupt.
470 	 */
471 	desc->chip->ack(irq);
472 
473 	if (likely(!desc->disable_depth)) {
474 		kstat_cpu(cpu).irqs[irq]++;
475 
476 		smp_set_running(desc);
477 
478 		/*
479 		 * Return with this interrupt masked if no action
480 		 */
481 		action = desc->action;
482 		if (action) {
483 			int ret = __do_irq(irq, desc->action, regs);
484 
485 			if (ret != IRQ_HANDLED)
486 				report_bad_irq(irq, regs, desc, ret);
487 
488 			if (likely(!desc->disable_depth &&
489 				   !check_irq_lock(desc, irq, regs)))
490 				desc->chip->unmask(irq);
491 		}
492 
493 		smp_clear_running(desc);
494 	}
495 }
496 
497 static void do_pending_irqs(struct pt_regs *regs)
498 {
499 	struct list_head head, *l, *n;
500 
501 	do {
502 		struct irqdesc *desc;
503 
504 		/*
505 		 * First, take the pending interrupts off the list.
506 		 * The act of calling the handlers may add some IRQs
507 		 * back onto the list.
508 		 */
509 		head = irq_pending;
510 		INIT_LIST_HEAD(&irq_pending);
511 		head.next->prev = &head;
512 		head.prev->next = &head;
513 
514 		/*
515 		 * Now run each entry.  We must delete it from our
516 		 * list before calling the handler.
517 		 */
518 		list_for_each_safe(l, n, &head) {
519 			desc = list_entry(l, struct irqdesc, pend);
520 			list_del_init(&desc->pend);
521 			desc_handle_irq(desc - irq_desc, desc, regs);
522 		}
523 
524 		/*
525 		 * The list must be empty.
526 		 */
527 		BUG_ON(!list_empty(&head));
528 	} while (!list_empty(&irq_pending));
529 }
530 
531 /*
532  * do_IRQ handles all hardware IRQ's.  Decoded IRQs should not
533  * come via this function.  Instead, they should provide their
534  * own 'handler'
535  */
536 asmlinkage void asm_do_IRQ(unsigned int irq, struct pt_regs *regs)
537 {
538 	struct irqdesc *desc = irq_desc + irq;
539 
540 	/*
541 	 * Some hardware gives randomly wrong interrupts.  Rather
542 	 * than crashing, do something sensible.
543 	 */
544 	if (irq >= NR_IRQS)
545 		desc = &bad_irq_desc;
546 
547 	irq_enter();
548 	spin_lock(&irq_controller_lock);
549 	desc_handle_irq(irq, desc, regs);
550 
551 	/*
552 	 * Now re-run any pending interrupts.
553 	 */
554 	if (!list_empty(&irq_pending))
555 		do_pending_irqs(regs);
556 
557 	irq_finish(irq);
558 
559 	spin_unlock(&irq_controller_lock);
560 	irq_exit();
561 }
562 
563 void __set_irq_handler(unsigned int irq, irq_handler_t handle, int is_chained)
564 {
565 	struct irqdesc *desc;
566 	unsigned long flags;
567 
568 	if (irq >= NR_IRQS) {
569 		printk(KERN_ERR "Trying to install handler for IRQ%d\n", irq);
570 		return;
571 	}
572 
573 	if (handle == NULL)
574 		handle = do_bad_IRQ;
575 
576 	desc = irq_desc + irq;
577 
578 	if (is_chained && desc->chip == &bad_chip)
579 		printk(KERN_WARNING "Trying to install chained handler for IRQ%d\n", irq);
580 
581 	spin_lock_irqsave(&irq_controller_lock, flags);
582 	if (handle == do_bad_IRQ) {
583 		desc->chip->mask(irq);
584 		desc->chip->ack(irq);
585 		desc->disable_depth = 1;
586 	}
587 	desc->handle = handle;
588 	if (handle != do_bad_IRQ && is_chained) {
589 		desc->valid = 0;
590 		desc->probe_ok = 0;
591 		desc->disable_depth = 0;
592 		desc->chip->unmask(irq);
593 	}
594 	spin_unlock_irqrestore(&irq_controller_lock, flags);
595 }
596 
597 void set_irq_chip(unsigned int irq, struct irqchip *chip)
598 {
599 	struct irqdesc *desc;
600 	unsigned long flags;
601 
602 	if (irq >= NR_IRQS) {
603 		printk(KERN_ERR "Trying to install chip for IRQ%d\n", irq);
604 		return;
605 	}
606 
607 	if (chip == NULL)
608 		chip = &bad_chip;
609 
610 	desc = irq_desc + irq;
611 	spin_lock_irqsave(&irq_controller_lock, flags);
612 	desc->chip = chip;
613 	spin_unlock_irqrestore(&irq_controller_lock, flags);
614 }
615 
616 int set_irq_type(unsigned int irq, unsigned int type)
617 {
618 	struct irqdesc *desc;
619 	unsigned long flags;
620 	int ret = -ENXIO;
621 
622 	if (irq >= NR_IRQS) {
623 		printk(KERN_ERR "Trying to set irq type for IRQ%d\n", irq);
624 		return -ENODEV;
625 	}
626 
627 	desc = irq_desc + irq;
628 	if (desc->chip->set_type) {
629 		spin_lock_irqsave(&irq_controller_lock, flags);
630 		ret = desc->chip->set_type(irq, type);
631 		spin_unlock_irqrestore(&irq_controller_lock, flags);
632 	}
633 
634 	return ret;
635 }
636 EXPORT_SYMBOL(set_irq_type);
637 
638 void set_irq_flags(unsigned int irq, unsigned int iflags)
639 {
640 	struct irqdesc *desc;
641 	unsigned long flags;
642 
643 	if (irq >= NR_IRQS) {
644 		printk(KERN_ERR "Trying to set irq flags for IRQ%d\n", irq);
645 		return;
646 	}
647 
648 	desc = irq_desc + irq;
649 	spin_lock_irqsave(&irq_controller_lock, flags);
650 	desc->valid = (iflags & IRQF_VALID) != 0;
651 	desc->probe_ok = (iflags & IRQF_PROBE) != 0;
652 	desc->noautoenable = (iflags & IRQF_NOAUTOEN) != 0;
653 	spin_unlock_irqrestore(&irq_controller_lock, flags);
654 }
655 
656 int setup_irq(unsigned int irq, struct irqaction *new)
657 {
658 	int shared = 0;
659 	struct irqaction *old, **p;
660 	unsigned long flags;
661 	struct irqdesc *desc;
662 
663 	/*
664 	 * Some drivers like serial.c use request_irq() heavily,
665 	 * so we have to be careful not to interfere with a
666 	 * running system.
667 	 */
668 	if (new->flags & SA_SAMPLE_RANDOM) {
669 		/*
670 		 * This function might sleep, we want to call it first,
671 		 * outside of the atomic block.
672 		 * Yes, this might clear the entropy pool if the wrong
673 		 * driver is attempted to be loaded, without actually
674 		 * installing a new handler, but is this really a problem,
675 		 * only the sysadmin is able to do this.
676 		 */
677 	        rand_initialize_irq(irq);
678 	}
679 
680 	/*
681 	 * The following block of code has to be executed atomically
682 	 */
683 	desc = irq_desc + irq;
684 	spin_lock_irqsave(&irq_controller_lock, flags);
685 	p = &desc->action;
686 	if ((old = *p) != NULL) {
687 		/*
688 		 * Can't share interrupts unless both agree to and are
689 		 * the same type.
690 		 */
691 		if (!(old->flags & new->flags & SA_SHIRQ) ||
692 		    (~old->flags & new->flags) & SA_TRIGGER_MASK) {
693 			spin_unlock_irqrestore(&irq_controller_lock, flags);
694 			return -EBUSY;
695 		}
696 
697 		/* add new interrupt at end of irq queue */
698 		do {
699 			p = &old->next;
700 			old = *p;
701 		} while (old);
702 		shared = 1;
703 	}
704 
705 	*p = new;
706 
707 	if (!shared) {
708  		desc->probing = 0;
709 		desc->running = 0;
710 		desc->pending = 0;
711 		desc->disable_depth = 1;
712 
713 		if (new->flags & SA_TRIGGER_MASK &&
714 		    desc->chip->set_type) {
715 			unsigned int type = new->flags & SA_TRIGGER_MASK;
716 			desc->chip->set_type(irq, type);
717 		}
718 
719 		if (!desc->noautoenable) {
720 			desc->disable_depth = 0;
721 			desc->chip->unmask(irq);
722 		}
723 	}
724 
725 	spin_unlock_irqrestore(&irq_controller_lock, flags);
726 	return 0;
727 }
728 
729 /**
730  *	request_irq - allocate an interrupt line
731  *	@irq: Interrupt line to allocate
732  *	@handler: Function to be called when the IRQ occurs
733  *	@irqflags: Interrupt type flags
734  *	@devname: An ascii name for the claiming device
735  *	@dev_id: A cookie passed back to the handler function
736  *
737  *	This call allocates interrupt resources and enables the
738  *	interrupt line and IRQ handling. From the point this
739  *	call is made your handler function may be invoked. Since
740  *	your handler function must clear any interrupt the board
741  *	raises, you must take care both to initialise your hardware
742  *	and to set up the interrupt handler in the right order.
743  *
744  *	Dev_id must be globally unique. Normally the address of the
745  *	device data structure is used as the cookie. Since the handler
746  *	receives this value it makes sense to use it.
747  *
748  *	If your interrupt is shared you must pass a non NULL dev_id
749  *	as this is required when freeing the interrupt.
750  *
751  *	Flags:
752  *
753  *	SA_SHIRQ		Interrupt is shared
754  *
755  *	SA_INTERRUPT		Disable local interrupts while processing
756  *
757  *	SA_SAMPLE_RANDOM	The interrupt can be used for entropy
758  *
759  */
760 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
761 		 unsigned long irq_flags, const char * devname, void *dev_id)
762 {
763 	unsigned long retval;
764 	struct irqaction *action;
765 
766 	if (irq >= NR_IRQS || !irq_desc[irq].valid || !handler ||
767 	    (irq_flags & SA_SHIRQ && !dev_id))
768 		return -EINVAL;
769 
770 	action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL);
771 	if (!action)
772 		return -ENOMEM;
773 
774 	action->handler = handler;
775 	action->flags = irq_flags;
776 	cpus_clear(action->mask);
777 	action->name = devname;
778 	action->next = NULL;
779 	action->dev_id = dev_id;
780 
781 	retval = setup_irq(irq, action);
782 
783 	if (retval)
784 		kfree(action);
785 	return retval;
786 }
787 
788 EXPORT_SYMBOL(request_irq);
789 
790 /**
791  *	free_irq - free an interrupt
792  *	@irq: Interrupt line to free
793  *	@dev_id: Device identity to free
794  *
795  *	Remove an interrupt handler. The handler is removed and if the
796  *	interrupt line is no longer in use by any driver it is disabled.
797  *	On a shared IRQ the caller must ensure the interrupt is disabled
798  *	on the card it drives before calling this function.
799  *
800  *	This function must not be called from interrupt context.
801  */
802 void free_irq(unsigned int irq, void *dev_id)
803 {
804 	struct irqaction * action, **p;
805 	unsigned long flags;
806 
807 	if (irq >= NR_IRQS || !irq_desc[irq].valid) {
808 		printk(KERN_ERR "Trying to free IRQ%d\n",irq);
809 		dump_stack();
810 		return;
811 	}
812 
813 	spin_lock_irqsave(&irq_controller_lock, flags);
814 	for (p = &irq_desc[irq].action; (action = *p) != NULL; p = &action->next) {
815 		if (action->dev_id != dev_id)
816 			continue;
817 
818 	    	/* Found it - now free it */
819 		*p = action->next;
820 		break;
821 	}
822 	spin_unlock_irqrestore(&irq_controller_lock, flags);
823 
824 	if (!action) {
825 		printk(KERN_ERR "Trying to free free IRQ%d\n",irq);
826 		dump_stack();
827 	} else {
828 		synchronize_irq(irq);
829 		kfree(action);
830 	}
831 }
832 
833 EXPORT_SYMBOL(free_irq);
834 
835 static DECLARE_MUTEX(probe_sem);
836 
837 /* Start the interrupt probing.  Unlike other architectures,
838  * we don't return a mask of interrupts from probe_irq_on,
839  * but return the number of interrupts enabled for the probe.
840  * The interrupts which have been enabled for probing is
841  * instead recorded in the irq_desc structure.
842  */
843 unsigned long probe_irq_on(void)
844 {
845 	unsigned int i, irqs = 0;
846 	unsigned long delay;
847 
848 	down(&probe_sem);
849 
850 	/*
851 	 * first snaffle up any unassigned but
852 	 * probe-able interrupts
853 	 */
854 	spin_lock_irq(&irq_controller_lock);
855 	for (i = 0; i < NR_IRQS; i++) {
856 		if (!irq_desc[i].probe_ok || irq_desc[i].action)
857 			continue;
858 
859 		irq_desc[i].probing = 1;
860 		irq_desc[i].triggered = 0;
861 		if (irq_desc[i].chip->set_type)
862 			irq_desc[i].chip->set_type(i, IRQT_PROBE);
863 		irq_desc[i].chip->unmask(i);
864 		irqs += 1;
865 	}
866 	spin_unlock_irq(&irq_controller_lock);
867 
868 	/*
869 	 * wait for spurious interrupts to mask themselves out again
870 	 */
871 	for (delay = jiffies + HZ/10; time_before(jiffies, delay); )
872 		/* min 100ms delay */;
873 
874 	/*
875 	 * now filter out any obviously spurious interrupts
876 	 */
877 	spin_lock_irq(&irq_controller_lock);
878 	for (i = 0; i < NR_IRQS; i++) {
879 		if (irq_desc[i].probing && irq_desc[i].triggered) {
880 			irq_desc[i].probing = 0;
881 			irqs -= 1;
882 		}
883 	}
884 	spin_unlock_irq(&irq_controller_lock);
885 
886 	return irqs;
887 }
888 
889 EXPORT_SYMBOL(probe_irq_on);
890 
891 unsigned int probe_irq_mask(unsigned long irqs)
892 {
893 	unsigned int mask = 0, i;
894 
895 	spin_lock_irq(&irq_controller_lock);
896 	for (i = 0; i < 16 && i < NR_IRQS; i++)
897 		if (irq_desc[i].probing && irq_desc[i].triggered)
898 			mask |= 1 << i;
899 	spin_unlock_irq(&irq_controller_lock);
900 
901 	up(&probe_sem);
902 
903 	return mask;
904 }
905 EXPORT_SYMBOL(probe_irq_mask);
906 
907 /*
908  * Possible return values:
909  *  >= 0 - interrupt number
910  *    -1 - no interrupt/many interrupts
911  */
912 int probe_irq_off(unsigned long irqs)
913 {
914 	unsigned int i;
915 	int irq_found = NO_IRQ;
916 
917 	/*
918 	 * look at the interrupts, and find exactly one
919 	 * that we were probing has been triggered
920 	 */
921 	spin_lock_irq(&irq_controller_lock);
922 	for (i = 0; i < NR_IRQS; i++) {
923 		if (irq_desc[i].probing &&
924 		    irq_desc[i].triggered) {
925 			if (irq_found != NO_IRQ) {
926 				irq_found = NO_IRQ;
927 				goto out;
928 			}
929 			irq_found = i;
930 		}
931 	}
932 
933 	if (irq_found == -1)
934 		irq_found = NO_IRQ;
935 out:
936 	spin_unlock_irq(&irq_controller_lock);
937 
938 	up(&probe_sem);
939 
940 	return irq_found;
941 }
942 
943 EXPORT_SYMBOL(probe_irq_off);
944 
945 #ifdef CONFIG_SMP
946 static void route_irq(struct irqdesc *desc, unsigned int irq, unsigned int cpu)
947 {
948 	pr_debug("IRQ%u: moving from cpu%u to cpu%u\n", irq, desc->cpu, cpu);
949 
950 	spin_lock_irq(&irq_controller_lock);
951 	desc->cpu = cpu;
952 	desc->chip->set_cpu(desc, irq, cpu);
953 	spin_unlock_irq(&irq_controller_lock);
954 }
955 
956 #ifdef CONFIG_PROC_FS
957 static int
958 irq_affinity_read_proc(char *page, char **start, off_t off, int count,
959 		       int *eof, void *data)
960 {
961 	struct irqdesc *desc = irq_desc + ((int)data);
962 	int len = cpumask_scnprintf(page, count, desc->affinity);
963 
964 	if (count - len < 2)
965 		return -EINVAL;
966 	page[len++] = '\n';
967 	page[len] = '\0';
968 
969 	return len;
970 }
971 
972 static int
973 irq_affinity_write_proc(struct file *file, const char __user *buffer,
974 			unsigned long count, void *data)
975 {
976 	unsigned int irq = (unsigned int)data;
977 	struct irqdesc *desc = irq_desc + irq;
978 	cpumask_t affinity, tmp;
979 	int ret = -EIO;
980 
981 	if (!desc->chip->set_cpu)
982 		goto out;
983 
984 	ret = cpumask_parse(buffer, count, affinity);
985 	if (ret)
986 		goto out;
987 
988 	cpus_and(tmp, affinity, cpu_online_map);
989 	if (cpus_empty(tmp)) {
990 		ret = -EINVAL;
991 		goto out;
992 	}
993 
994 	desc->affinity = affinity;
995 	route_irq(desc, irq, first_cpu(tmp));
996 	ret = count;
997 
998  out:
999 	return ret;
1000 }
1001 #endif
1002 #endif
1003 
1004 void __init init_irq_proc(void)
1005 {
1006 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
1007 	struct proc_dir_entry *dir;
1008 	int irq;
1009 
1010 	dir = proc_mkdir("irq", NULL);
1011 	if (!dir)
1012 		return;
1013 
1014 	for (irq = 0; irq < NR_IRQS; irq++) {
1015 		struct proc_dir_entry *entry;
1016 		struct irqdesc *desc;
1017 		char name[16];
1018 
1019 		desc = irq_desc + irq;
1020 		memset(name, 0, sizeof(name));
1021 		snprintf(name, sizeof(name) - 1, "%u", irq);
1022 
1023 		desc->procdir = proc_mkdir(name, dir);
1024 		if (!desc->procdir)
1025 			continue;
1026 
1027 		entry = create_proc_entry("smp_affinity", 0600, desc->procdir);
1028 		if (entry) {
1029 			entry->nlink = 1;
1030 			entry->data = (void *)irq;
1031 			entry->read_proc = irq_affinity_read_proc;
1032 			entry->write_proc = irq_affinity_write_proc;
1033 		}
1034 	}
1035 #endif
1036 }
1037 
1038 void __init init_IRQ(void)
1039 {
1040 	struct irqdesc *desc;
1041 	int irq;
1042 
1043 #ifdef CONFIG_SMP
1044 	bad_irq_desc.affinity = CPU_MASK_ALL;
1045 	bad_irq_desc.cpu = smp_processor_id();
1046 #endif
1047 
1048 	for (irq = 0, desc = irq_desc; irq < NR_IRQS; irq++, desc++) {
1049 		*desc = bad_irq_desc;
1050 		INIT_LIST_HEAD(&desc->pend);
1051 	}
1052 
1053 	init_arch_irq();
1054 }
1055 
1056 static int __init noirqdebug_setup(char *str)
1057 {
1058 	noirqdebug = 1;
1059 	return 1;
1060 }
1061 
1062 __setup("noirqdebug", noirqdebug_setup);
1063 
1064 #ifdef CONFIG_HOTPLUG_CPU
1065 /*
1066  * The CPU has been marked offline.  Migrate IRQs off this CPU.  If
1067  * the affinity settings do not allow other CPUs, force them onto any
1068  * available CPU.
1069  */
1070 void migrate_irqs(void)
1071 {
1072 	unsigned int i, cpu = smp_processor_id();
1073 
1074 	for (i = 0; i < NR_IRQS; i++) {
1075 		struct irqdesc *desc = irq_desc + i;
1076 
1077 		if (desc->cpu == cpu) {
1078 			unsigned int newcpu = any_online_cpu(desc->affinity);
1079 
1080 			if (newcpu == NR_CPUS) {
1081 				if (printk_ratelimit())
1082 					printk(KERN_INFO "IRQ%u no longer affine to CPU%u\n",
1083 					       i, cpu);
1084 
1085 				cpus_setall(desc->affinity);
1086 				newcpu = any_online_cpu(desc->affinity);
1087 			}
1088 
1089 			route_irq(desc, i, newcpu);
1090 		}
1091 	}
1092 }
1093 #endif /* CONFIG_HOTPLUG_CPU */
1094