xref: /openbmc/linux/arch/arm/kernel/hw_breakpoint.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2009, 2010 ARM Limited
5  *
6  * Author: Will Deacon <will.deacon@arm.com>
7  */
8 
9 /*
10  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
11  * using the CPU's debug registers.
12  */
13 #define pr_fmt(fmt) "hw-breakpoint: " fmt
14 
15 #include <linux/errno.h>
16 #include <linux/hardirq.h>
17 #include <linux/perf_event.h>
18 #include <linux/hw_breakpoint.h>
19 #include <linux/smp.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/coresight.h>
22 
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/current.h>
26 #include <asm/hw_breakpoint.h>
27 #include <asm/traps.h>
28 
29 /* Breakpoint currently in use for each BRP. */
30 static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
31 
32 /* Watchpoint currently in use for each WRP. */
33 static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
34 
35 /* Number of BRP/WRP registers on this CPU. */
36 static int core_num_brps __ro_after_init;
37 static int core_num_wrps __ro_after_init;
38 
39 /* Debug architecture version. */
40 static u8 debug_arch __ro_after_init;
41 
42 /* Does debug architecture support OS Save and Restore? */
43 static bool has_ossr __ro_after_init;
44 
45 /* Maximum supported watchpoint length. */
46 static u8 max_watchpoint_len __ro_after_init;
47 
48 #define READ_WB_REG_CASE(OP2, M, VAL)			\
49 	case ((OP2 << 4) + M):				\
50 		ARM_DBG_READ(c0, c ## M, OP2, VAL);	\
51 		break
52 
53 #define WRITE_WB_REG_CASE(OP2, M, VAL)			\
54 	case ((OP2 << 4) + M):				\
55 		ARM_DBG_WRITE(c0, c ## M, OP2, VAL);	\
56 		break
57 
58 #define GEN_READ_WB_REG_CASES(OP2, VAL)		\
59 	READ_WB_REG_CASE(OP2, 0, VAL);		\
60 	READ_WB_REG_CASE(OP2, 1, VAL);		\
61 	READ_WB_REG_CASE(OP2, 2, VAL);		\
62 	READ_WB_REG_CASE(OP2, 3, VAL);		\
63 	READ_WB_REG_CASE(OP2, 4, VAL);		\
64 	READ_WB_REG_CASE(OP2, 5, VAL);		\
65 	READ_WB_REG_CASE(OP2, 6, VAL);		\
66 	READ_WB_REG_CASE(OP2, 7, VAL);		\
67 	READ_WB_REG_CASE(OP2, 8, VAL);		\
68 	READ_WB_REG_CASE(OP2, 9, VAL);		\
69 	READ_WB_REG_CASE(OP2, 10, VAL);		\
70 	READ_WB_REG_CASE(OP2, 11, VAL);		\
71 	READ_WB_REG_CASE(OP2, 12, VAL);		\
72 	READ_WB_REG_CASE(OP2, 13, VAL);		\
73 	READ_WB_REG_CASE(OP2, 14, VAL);		\
74 	READ_WB_REG_CASE(OP2, 15, VAL)
75 
76 #define GEN_WRITE_WB_REG_CASES(OP2, VAL)	\
77 	WRITE_WB_REG_CASE(OP2, 0, VAL);		\
78 	WRITE_WB_REG_CASE(OP2, 1, VAL);		\
79 	WRITE_WB_REG_CASE(OP2, 2, VAL);		\
80 	WRITE_WB_REG_CASE(OP2, 3, VAL);		\
81 	WRITE_WB_REG_CASE(OP2, 4, VAL);		\
82 	WRITE_WB_REG_CASE(OP2, 5, VAL);		\
83 	WRITE_WB_REG_CASE(OP2, 6, VAL);		\
84 	WRITE_WB_REG_CASE(OP2, 7, VAL);		\
85 	WRITE_WB_REG_CASE(OP2, 8, VAL);		\
86 	WRITE_WB_REG_CASE(OP2, 9, VAL);		\
87 	WRITE_WB_REG_CASE(OP2, 10, VAL);	\
88 	WRITE_WB_REG_CASE(OP2, 11, VAL);	\
89 	WRITE_WB_REG_CASE(OP2, 12, VAL);	\
90 	WRITE_WB_REG_CASE(OP2, 13, VAL);	\
91 	WRITE_WB_REG_CASE(OP2, 14, VAL);	\
92 	WRITE_WB_REG_CASE(OP2, 15, VAL)
93 
94 static u32 read_wb_reg(int n)
95 {
96 	u32 val = 0;
97 
98 	switch (n) {
99 	GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val);
100 	GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val);
101 	GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val);
102 	GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val);
103 	default:
104 		pr_warn("attempt to read from unknown breakpoint register %d\n",
105 			n);
106 	}
107 
108 	return val;
109 }
110 
111 static void write_wb_reg(int n, u32 val)
112 {
113 	switch (n) {
114 	GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val);
115 	GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val);
116 	GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val);
117 	GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val);
118 	default:
119 		pr_warn("attempt to write to unknown breakpoint register %d\n",
120 			n);
121 	}
122 	isb();
123 }
124 
125 /* Determine debug architecture. */
126 static u8 get_debug_arch(void)
127 {
128 	u32 didr;
129 
130 	/* Do we implement the extended CPUID interface? */
131 	if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
132 		pr_warn_once("CPUID feature registers not supported. "
133 			     "Assuming v6 debug is present.\n");
134 		return ARM_DEBUG_ARCH_V6;
135 	}
136 
137 	ARM_DBG_READ(c0, c0, 0, didr);
138 	return (didr >> 16) & 0xf;
139 }
140 
141 u8 arch_get_debug_arch(void)
142 {
143 	return debug_arch;
144 }
145 
146 static int debug_arch_supported(void)
147 {
148 	u8 arch = get_debug_arch();
149 
150 	/* We don't support the memory-mapped interface. */
151 	return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) ||
152 		arch >= ARM_DEBUG_ARCH_V7_1;
153 }
154 
155 /* Can we determine the watchpoint access type from the fsr? */
156 static int debug_exception_updates_fsr(void)
157 {
158 	return get_debug_arch() >= ARM_DEBUG_ARCH_V8;
159 }
160 
161 /* Determine number of WRP registers available. */
162 static int get_num_wrp_resources(void)
163 {
164 	u32 didr;
165 	ARM_DBG_READ(c0, c0, 0, didr);
166 	return ((didr >> 28) & 0xf) + 1;
167 }
168 
169 /* Determine number of BRP registers available. */
170 static int get_num_brp_resources(void)
171 {
172 	u32 didr;
173 	ARM_DBG_READ(c0, c0, 0, didr);
174 	return ((didr >> 24) & 0xf) + 1;
175 }
176 
177 /* Does this core support mismatch breakpoints? */
178 static int core_has_mismatch_brps(void)
179 {
180 	return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
181 		get_num_brp_resources() > 1);
182 }
183 
184 /* Determine number of usable WRPs available. */
185 static int get_num_wrps(void)
186 {
187 	/*
188 	 * On debug architectures prior to 7.1, when a watchpoint fires, the
189 	 * only way to work out which watchpoint it was is by disassembling
190 	 * the faulting instruction and working out the address of the memory
191 	 * access.
192 	 *
193 	 * Furthermore, we can only do this if the watchpoint was precise
194 	 * since imprecise watchpoints prevent us from calculating register
195 	 * based addresses.
196 	 *
197 	 * Providing we have more than 1 breakpoint register, we only report
198 	 * a single watchpoint register for the time being. This way, we always
199 	 * know which watchpoint fired. In the future we can either add a
200 	 * disassembler and address generation emulator, or we can insert a
201 	 * check to see if the DFAR is set on watchpoint exception entry
202 	 * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
203 	 * that it is set on some implementations].
204 	 */
205 	if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1)
206 		return 1;
207 
208 	return get_num_wrp_resources();
209 }
210 
211 /* Determine number of usable BRPs available. */
212 static int get_num_brps(void)
213 {
214 	int brps = get_num_brp_resources();
215 	return core_has_mismatch_brps() ? brps - 1 : brps;
216 }
217 
218 /*
219  * In order to access the breakpoint/watchpoint control registers,
220  * we must be running in debug monitor mode. Unfortunately, we can
221  * be put into halting debug mode at any time by an external debugger
222  * but there is nothing we can do to prevent that.
223  */
224 static int monitor_mode_enabled(void)
225 {
226 	u32 dscr;
227 	ARM_DBG_READ(c0, c1, 0, dscr);
228 	return !!(dscr & ARM_DSCR_MDBGEN);
229 }
230 
231 static int enable_monitor_mode(void)
232 {
233 	u32 dscr;
234 	ARM_DBG_READ(c0, c1, 0, dscr);
235 
236 	/* If monitor mode is already enabled, just return. */
237 	if (dscr & ARM_DSCR_MDBGEN)
238 		goto out;
239 
240 	/* Write to the corresponding DSCR. */
241 	switch (get_debug_arch()) {
242 	case ARM_DEBUG_ARCH_V6:
243 	case ARM_DEBUG_ARCH_V6_1:
244 		ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
245 		break;
246 	case ARM_DEBUG_ARCH_V7_ECP14:
247 	case ARM_DEBUG_ARCH_V7_1:
248 	case ARM_DEBUG_ARCH_V8:
249 		ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
250 		isb();
251 		break;
252 	default:
253 		return -ENODEV;
254 	}
255 
256 	/* Check that the write made it through. */
257 	ARM_DBG_READ(c0, c1, 0, dscr);
258 	if (!(dscr & ARM_DSCR_MDBGEN)) {
259 		pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
260 				smp_processor_id());
261 		return -EPERM;
262 	}
263 
264 out:
265 	return 0;
266 }
267 
268 int hw_breakpoint_slots(int type)
269 {
270 	if (!debug_arch_supported())
271 		return 0;
272 
273 	/*
274 	 * We can be called early, so don't rely on
275 	 * our static variables being initialised.
276 	 */
277 	switch (type) {
278 	case TYPE_INST:
279 		return get_num_brps();
280 	case TYPE_DATA:
281 		return get_num_wrps();
282 	default:
283 		pr_warn("unknown slot type: %d\n", type);
284 		return 0;
285 	}
286 }
287 
288 /*
289  * Check if 8-bit byte-address select is available.
290  * This clobbers WRP 0.
291  */
292 static u8 get_max_wp_len(void)
293 {
294 	u32 ctrl_reg;
295 	struct arch_hw_breakpoint_ctrl ctrl;
296 	u8 size = 4;
297 
298 	if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
299 		goto out;
300 
301 	memset(&ctrl, 0, sizeof(ctrl));
302 	ctrl.len = ARM_BREAKPOINT_LEN_8;
303 	ctrl_reg = encode_ctrl_reg(ctrl);
304 
305 	write_wb_reg(ARM_BASE_WVR, 0);
306 	write_wb_reg(ARM_BASE_WCR, ctrl_reg);
307 	if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg)
308 		size = 8;
309 
310 out:
311 	return size;
312 }
313 
314 u8 arch_get_max_wp_len(void)
315 {
316 	return max_watchpoint_len;
317 }
318 
319 /*
320  * Install a perf counter breakpoint.
321  */
322 int arch_install_hw_breakpoint(struct perf_event *bp)
323 {
324 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
325 	struct perf_event **slot, **slots;
326 	int i, max_slots, ctrl_base, val_base;
327 	u32 addr, ctrl;
328 
329 	addr = info->address;
330 	ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
331 
332 	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
333 		/* Breakpoint */
334 		ctrl_base = ARM_BASE_BCR;
335 		val_base = ARM_BASE_BVR;
336 		slots = this_cpu_ptr(bp_on_reg);
337 		max_slots = core_num_brps;
338 	} else {
339 		/* Watchpoint */
340 		ctrl_base = ARM_BASE_WCR;
341 		val_base = ARM_BASE_WVR;
342 		slots = this_cpu_ptr(wp_on_reg);
343 		max_slots = core_num_wrps;
344 	}
345 
346 	for (i = 0; i < max_slots; ++i) {
347 		slot = &slots[i];
348 
349 		if (!*slot) {
350 			*slot = bp;
351 			break;
352 		}
353 	}
354 
355 	if (i == max_slots) {
356 		pr_warn("Can't find any breakpoint slot\n");
357 		return -EBUSY;
358 	}
359 
360 	/* Override the breakpoint data with the step data. */
361 	if (info->step_ctrl.enabled) {
362 		addr = info->trigger & ~0x3;
363 		ctrl = encode_ctrl_reg(info->step_ctrl);
364 		if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) {
365 			i = 0;
366 			ctrl_base = ARM_BASE_BCR + core_num_brps;
367 			val_base = ARM_BASE_BVR + core_num_brps;
368 		}
369 	}
370 
371 	/* Setup the address register. */
372 	write_wb_reg(val_base + i, addr);
373 
374 	/* Setup the control register. */
375 	write_wb_reg(ctrl_base + i, ctrl);
376 	return 0;
377 }
378 
379 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
380 {
381 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
382 	struct perf_event **slot, **slots;
383 	int i, max_slots, base;
384 
385 	if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
386 		/* Breakpoint */
387 		base = ARM_BASE_BCR;
388 		slots = this_cpu_ptr(bp_on_reg);
389 		max_slots = core_num_brps;
390 	} else {
391 		/* Watchpoint */
392 		base = ARM_BASE_WCR;
393 		slots = this_cpu_ptr(wp_on_reg);
394 		max_slots = core_num_wrps;
395 	}
396 
397 	/* Remove the breakpoint. */
398 	for (i = 0; i < max_slots; ++i) {
399 		slot = &slots[i];
400 
401 		if (*slot == bp) {
402 			*slot = NULL;
403 			break;
404 		}
405 	}
406 
407 	if (i == max_slots) {
408 		pr_warn("Can't find any breakpoint slot\n");
409 		return;
410 	}
411 
412 	/* Ensure that we disable the mismatch breakpoint. */
413 	if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
414 	    info->step_ctrl.enabled) {
415 		i = 0;
416 		base = ARM_BASE_BCR + core_num_brps;
417 	}
418 
419 	/* Reset the control register. */
420 	write_wb_reg(base + i, 0);
421 }
422 
423 static int get_hbp_len(u8 hbp_len)
424 {
425 	unsigned int len_in_bytes = 0;
426 
427 	switch (hbp_len) {
428 	case ARM_BREAKPOINT_LEN_1:
429 		len_in_bytes = 1;
430 		break;
431 	case ARM_BREAKPOINT_LEN_2:
432 		len_in_bytes = 2;
433 		break;
434 	case ARM_BREAKPOINT_LEN_4:
435 		len_in_bytes = 4;
436 		break;
437 	case ARM_BREAKPOINT_LEN_8:
438 		len_in_bytes = 8;
439 		break;
440 	}
441 
442 	return len_in_bytes;
443 }
444 
445 /*
446  * Check whether bp virtual address is in kernel space.
447  */
448 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
449 {
450 	unsigned int len;
451 	unsigned long va;
452 
453 	va = hw->address;
454 	len = get_hbp_len(hw->ctrl.len);
455 
456 	return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
457 }
458 
459 /*
460  * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
461  * Hopefully this will disappear when ptrace can bypass the conversion
462  * to generic breakpoint descriptions.
463  */
464 int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
465 			   int *gen_len, int *gen_type)
466 {
467 	/* Type */
468 	switch (ctrl.type) {
469 	case ARM_BREAKPOINT_EXECUTE:
470 		*gen_type = HW_BREAKPOINT_X;
471 		break;
472 	case ARM_BREAKPOINT_LOAD:
473 		*gen_type = HW_BREAKPOINT_R;
474 		break;
475 	case ARM_BREAKPOINT_STORE:
476 		*gen_type = HW_BREAKPOINT_W;
477 		break;
478 	case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
479 		*gen_type = HW_BREAKPOINT_RW;
480 		break;
481 	default:
482 		return -EINVAL;
483 	}
484 
485 	/* Len */
486 	switch (ctrl.len) {
487 	case ARM_BREAKPOINT_LEN_1:
488 		*gen_len = HW_BREAKPOINT_LEN_1;
489 		break;
490 	case ARM_BREAKPOINT_LEN_2:
491 		*gen_len = HW_BREAKPOINT_LEN_2;
492 		break;
493 	case ARM_BREAKPOINT_LEN_4:
494 		*gen_len = HW_BREAKPOINT_LEN_4;
495 		break;
496 	case ARM_BREAKPOINT_LEN_8:
497 		*gen_len = HW_BREAKPOINT_LEN_8;
498 		break;
499 	default:
500 		return -EINVAL;
501 	}
502 
503 	return 0;
504 }
505 
506 /*
507  * Construct an arch_hw_breakpoint from a perf_event.
508  */
509 static int arch_build_bp_info(struct perf_event *bp,
510 			      const struct perf_event_attr *attr,
511 			      struct arch_hw_breakpoint *hw)
512 {
513 	/* Type */
514 	switch (attr->bp_type) {
515 	case HW_BREAKPOINT_X:
516 		hw->ctrl.type = ARM_BREAKPOINT_EXECUTE;
517 		break;
518 	case HW_BREAKPOINT_R:
519 		hw->ctrl.type = ARM_BREAKPOINT_LOAD;
520 		break;
521 	case HW_BREAKPOINT_W:
522 		hw->ctrl.type = ARM_BREAKPOINT_STORE;
523 		break;
524 	case HW_BREAKPOINT_RW:
525 		hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
526 		break;
527 	default:
528 		return -EINVAL;
529 	}
530 
531 	/* Len */
532 	switch (attr->bp_len) {
533 	case HW_BREAKPOINT_LEN_1:
534 		hw->ctrl.len = ARM_BREAKPOINT_LEN_1;
535 		break;
536 	case HW_BREAKPOINT_LEN_2:
537 		hw->ctrl.len = ARM_BREAKPOINT_LEN_2;
538 		break;
539 	case HW_BREAKPOINT_LEN_4:
540 		hw->ctrl.len = ARM_BREAKPOINT_LEN_4;
541 		break;
542 	case HW_BREAKPOINT_LEN_8:
543 		hw->ctrl.len = ARM_BREAKPOINT_LEN_8;
544 		if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE)
545 			&& max_watchpoint_len >= 8)
546 			break;
547 		/* Else, fall through */
548 	default:
549 		return -EINVAL;
550 	}
551 
552 	/*
553 	 * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
554 	 * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
555 	 * by the hardware and must be aligned to the appropriate number of
556 	 * bytes.
557 	 */
558 	if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
559 	    hw->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
560 	    hw->ctrl.len != ARM_BREAKPOINT_LEN_4)
561 		return -EINVAL;
562 
563 	/* Address */
564 	hw->address = attr->bp_addr;
565 
566 	/* Privilege */
567 	hw->ctrl.privilege = ARM_BREAKPOINT_USER;
568 	if (arch_check_bp_in_kernelspace(hw))
569 		hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
570 
571 	/* Enabled? */
572 	hw->ctrl.enabled = !attr->disabled;
573 
574 	/* Mismatch */
575 	hw->ctrl.mismatch = 0;
576 
577 	return 0;
578 }
579 
580 /*
581  * Validate the arch-specific HW Breakpoint register settings.
582  */
583 int hw_breakpoint_arch_parse(struct perf_event *bp,
584 			     const struct perf_event_attr *attr,
585 			     struct arch_hw_breakpoint *hw)
586 {
587 	int ret = 0;
588 	u32 offset, alignment_mask = 0x3;
589 
590 	/* Ensure that we are in monitor debug mode. */
591 	if (!monitor_mode_enabled())
592 		return -ENODEV;
593 
594 	/* Build the arch_hw_breakpoint. */
595 	ret = arch_build_bp_info(bp, attr, hw);
596 	if (ret)
597 		goto out;
598 
599 	/* Check address alignment. */
600 	if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8)
601 		alignment_mask = 0x7;
602 	offset = hw->address & alignment_mask;
603 	switch (offset) {
604 	case 0:
605 		/* Aligned */
606 		break;
607 	case 1:
608 	case 2:
609 		/* Allow halfword watchpoints and breakpoints. */
610 		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2)
611 			break;
612 		/* Else, fall through */
613 	case 3:
614 		/* Allow single byte watchpoint. */
615 		if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1)
616 			break;
617 		/* Else, fall through */
618 	default:
619 		ret = -EINVAL;
620 		goto out;
621 	}
622 
623 	hw->address &= ~alignment_mask;
624 	hw->ctrl.len <<= offset;
625 
626 	if (is_default_overflow_handler(bp)) {
627 		/*
628 		 * Mismatch breakpoints are required for single-stepping
629 		 * breakpoints.
630 		 */
631 		if (!core_has_mismatch_brps())
632 			return -EINVAL;
633 
634 		/* We don't allow mismatch breakpoints in kernel space. */
635 		if (arch_check_bp_in_kernelspace(hw))
636 			return -EPERM;
637 
638 		/*
639 		 * Per-cpu breakpoints are not supported by our stepping
640 		 * mechanism.
641 		 */
642 		if (!bp->hw.target)
643 			return -EINVAL;
644 
645 		/*
646 		 * We only support specific access types if the fsr
647 		 * reports them.
648 		 */
649 		if (!debug_exception_updates_fsr() &&
650 		    (hw->ctrl.type == ARM_BREAKPOINT_LOAD ||
651 		     hw->ctrl.type == ARM_BREAKPOINT_STORE))
652 			return -EINVAL;
653 	}
654 
655 out:
656 	return ret;
657 }
658 
659 /*
660  * Enable/disable single-stepping over the breakpoint bp at address addr.
661  */
662 static void enable_single_step(struct perf_event *bp, u32 addr)
663 {
664 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
665 
666 	arch_uninstall_hw_breakpoint(bp);
667 	info->step_ctrl.mismatch  = 1;
668 	info->step_ctrl.len	  = ARM_BREAKPOINT_LEN_4;
669 	info->step_ctrl.type	  = ARM_BREAKPOINT_EXECUTE;
670 	info->step_ctrl.privilege = info->ctrl.privilege;
671 	info->step_ctrl.enabled	  = 1;
672 	info->trigger		  = addr;
673 	arch_install_hw_breakpoint(bp);
674 }
675 
676 static void disable_single_step(struct perf_event *bp)
677 {
678 	arch_uninstall_hw_breakpoint(bp);
679 	counter_arch_bp(bp)->step_ctrl.enabled = 0;
680 	arch_install_hw_breakpoint(bp);
681 }
682 
683 static void watchpoint_handler(unsigned long addr, unsigned int fsr,
684 			       struct pt_regs *regs)
685 {
686 	int i, access;
687 	u32 val, ctrl_reg, alignment_mask;
688 	struct perf_event *wp, **slots;
689 	struct arch_hw_breakpoint *info;
690 	struct arch_hw_breakpoint_ctrl ctrl;
691 
692 	slots = this_cpu_ptr(wp_on_reg);
693 
694 	for (i = 0; i < core_num_wrps; ++i) {
695 		rcu_read_lock();
696 
697 		wp = slots[i];
698 
699 		if (wp == NULL)
700 			goto unlock;
701 
702 		info = counter_arch_bp(wp);
703 		/*
704 		 * The DFAR is an unknown value on debug architectures prior
705 		 * to 7.1. Since we only allow a single watchpoint on these
706 		 * older CPUs, we can set the trigger to the lowest possible
707 		 * faulting address.
708 		 */
709 		if (debug_arch < ARM_DEBUG_ARCH_V7_1) {
710 			BUG_ON(i > 0);
711 			info->trigger = wp->attr.bp_addr;
712 		} else {
713 			if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
714 				alignment_mask = 0x7;
715 			else
716 				alignment_mask = 0x3;
717 
718 			/* Check if the watchpoint value matches. */
719 			val = read_wb_reg(ARM_BASE_WVR + i);
720 			if (val != (addr & ~alignment_mask))
721 				goto unlock;
722 
723 			/* Possible match, check the byte address select. */
724 			ctrl_reg = read_wb_reg(ARM_BASE_WCR + i);
725 			decode_ctrl_reg(ctrl_reg, &ctrl);
726 			if (!((1 << (addr & alignment_mask)) & ctrl.len))
727 				goto unlock;
728 
729 			/* Check that the access type matches. */
730 			if (debug_exception_updates_fsr()) {
731 				access = (fsr & ARM_FSR_ACCESS_MASK) ?
732 					  HW_BREAKPOINT_W : HW_BREAKPOINT_R;
733 				if (!(access & hw_breakpoint_type(wp)))
734 					goto unlock;
735 			}
736 
737 			/* We have a winner. */
738 			info->trigger = addr;
739 		}
740 
741 		pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
742 		perf_bp_event(wp, regs);
743 
744 		/*
745 		 * If no overflow handler is present, insert a temporary
746 		 * mismatch breakpoint so we can single-step over the
747 		 * watchpoint trigger.
748 		 */
749 		if (is_default_overflow_handler(wp))
750 			enable_single_step(wp, instruction_pointer(regs));
751 
752 unlock:
753 		rcu_read_unlock();
754 	}
755 }
756 
757 static void watchpoint_single_step_handler(unsigned long pc)
758 {
759 	int i;
760 	struct perf_event *wp, **slots;
761 	struct arch_hw_breakpoint *info;
762 
763 	slots = this_cpu_ptr(wp_on_reg);
764 
765 	for (i = 0; i < core_num_wrps; ++i) {
766 		rcu_read_lock();
767 
768 		wp = slots[i];
769 
770 		if (wp == NULL)
771 			goto unlock;
772 
773 		info = counter_arch_bp(wp);
774 		if (!info->step_ctrl.enabled)
775 			goto unlock;
776 
777 		/*
778 		 * Restore the original watchpoint if we've completed the
779 		 * single-step.
780 		 */
781 		if (info->trigger != pc)
782 			disable_single_step(wp);
783 
784 unlock:
785 		rcu_read_unlock();
786 	}
787 }
788 
789 static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
790 {
791 	int i;
792 	u32 ctrl_reg, val, addr;
793 	struct perf_event *bp, **slots;
794 	struct arch_hw_breakpoint *info;
795 	struct arch_hw_breakpoint_ctrl ctrl;
796 
797 	slots = this_cpu_ptr(bp_on_reg);
798 
799 	/* The exception entry code places the amended lr in the PC. */
800 	addr = regs->ARM_pc;
801 
802 	/* Check the currently installed breakpoints first. */
803 	for (i = 0; i < core_num_brps; ++i) {
804 		rcu_read_lock();
805 
806 		bp = slots[i];
807 
808 		if (bp == NULL)
809 			goto unlock;
810 
811 		info = counter_arch_bp(bp);
812 
813 		/* Check if the breakpoint value matches. */
814 		val = read_wb_reg(ARM_BASE_BVR + i);
815 		if (val != (addr & ~0x3))
816 			goto mismatch;
817 
818 		/* Possible match, check the byte address select to confirm. */
819 		ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
820 		decode_ctrl_reg(ctrl_reg, &ctrl);
821 		if ((1 << (addr & 0x3)) & ctrl.len) {
822 			info->trigger = addr;
823 			pr_debug("breakpoint fired: address = 0x%x\n", addr);
824 			perf_bp_event(bp, regs);
825 			if (!bp->overflow_handler)
826 				enable_single_step(bp, addr);
827 			goto unlock;
828 		}
829 
830 mismatch:
831 		/* If we're stepping a breakpoint, it can now be restored. */
832 		if (info->step_ctrl.enabled)
833 			disable_single_step(bp);
834 unlock:
835 		rcu_read_unlock();
836 	}
837 
838 	/* Handle any pending watchpoint single-step breakpoints. */
839 	watchpoint_single_step_handler(addr);
840 }
841 
842 /*
843  * Called from either the Data Abort Handler [watchpoint] or the
844  * Prefetch Abort Handler [breakpoint] with interrupts disabled.
845  */
846 static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
847 				 struct pt_regs *regs)
848 {
849 	int ret = 0;
850 	u32 dscr;
851 
852 	preempt_disable();
853 
854 	if (interrupts_enabled(regs))
855 		local_irq_enable();
856 
857 	/* We only handle watchpoints and hardware breakpoints. */
858 	ARM_DBG_READ(c0, c1, 0, dscr);
859 
860 	/* Perform perf callbacks. */
861 	switch (ARM_DSCR_MOE(dscr)) {
862 	case ARM_ENTRY_BREAKPOINT:
863 		breakpoint_handler(addr, regs);
864 		break;
865 	case ARM_ENTRY_ASYNC_WATCHPOINT:
866 		WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n");
867 		/* Fall through */
868 	case ARM_ENTRY_SYNC_WATCHPOINT:
869 		watchpoint_handler(addr, fsr, regs);
870 		break;
871 	default:
872 		ret = 1; /* Unhandled fault. */
873 	}
874 
875 	preempt_enable();
876 
877 	return ret;
878 }
879 
880 /*
881  * One-time initialisation.
882  */
883 static cpumask_t debug_err_mask;
884 
885 static int debug_reg_trap(struct pt_regs *regs, unsigned int instr)
886 {
887 	int cpu = smp_processor_id();
888 
889 	pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n",
890 		instr, cpu);
891 
892 	/* Set the error flag for this CPU and skip the faulting instruction. */
893 	cpumask_set_cpu(cpu, &debug_err_mask);
894 	instruction_pointer(regs) += 4;
895 	return 0;
896 }
897 
898 static struct undef_hook debug_reg_hook = {
899 	.instr_mask	= 0x0fe80f10,
900 	.instr_val	= 0x0e000e10,
901 	.fn		= debug_reg_trap,
902 };
903 
904 /* Does this core support OS Save and Restore? */
905 static bool core_has_os_save_restore(void)
906 {
907 	u32 oslsr;
908 
909 	switch (get_debug_arch()) {
910 	case ARM_DEBUG_ARCH_V7_1:
911 		return true;
912 	case ARM_DEBUG_ARCH_V7_ECP14:
913 		ARM_DBG_READ(c1, c1, 4, oslsr);
914 		if (oslsr & ARM_OSLSR_OSLM0)
915 			return true;
916 		/* Else, fall through */
917 	default:
918 		return false;
919 	}
920 }
921 
922 static void reset_ctrl_regs(unsigned int cpu)
923 {
924 	int i, raw_num_brps, err = 0;
925 	u32 val;
926 
927 	/*
928 	 * v7 debug contains save and restore registers so that debug state
929 	 * can be maintained across low-power modes without leaving the debug
930 	 * logic powered up. It is IMPLEMENTATION DEFINED whether we can access
931 	 * the debug registers out of reset, so we must unlock the OS Lock
932 	 * Access Register to avoid taking undefined instruction exceptions
933 	 * later on.
934 	 */
935 	switch (debug_arch) {
936 	case ARM_DEBUG_ARCH_V6:
937 	case ARM_DEBUG_ARCH_V6_1:
938 		/* ARMv6 cores clear the registers out of reset. */
939 		goto out_mdbgen;
940 	case ARM_DEBUG_ARCH_V7_ECP14:
941 		/*
942 		 * Ensure sticky power-down is clear (i.e. debug logic is
943 		 * powered up).
944 		 */
945 		ARM_DBG_READ(c1, c5, 4, val);
946 		if ((val & 0x1) == 0)
947 			err = -EPERM;
948 
949 		if (!has_ossr)
950 			goto clear_vcr;
951 		break;
952 	case ARM_DEBUG_ARCH_V7_1:
953 		/*
954 		 * Ensure the OS double lock is clear.
955 		 */
956 		ARM_DBG_READ(c1, c3, 4, val);
957 		if ((val & 0x1) == 1)
958 			err = -EPERM;
959 		break;
960 	}
961 
962 	if (err) {
963 		pr_warn_once("CPU %d debug is powered down!\n", cpu);
964 		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
965 		return;
966 	}
967 
968 	/*
969 	 * Unconditionally clear the OS lock by writing a value
970 	 * other than CS_LAR_KEY to the access register.
971 	 */
972 	ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK);
973 	isb();
974 
975 	/*
976 	 * Clear any configured vector-catch events before
977 	 * enabling monitor mode.
978 	 */
979 clear_vcr:
980 	ARM_DBG_WRITE(c0, c7, 0, 0);
981 	isb();
982 
983 	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
984 		pr_warn_once("CPU %d failed to disable vector catch\n", cpu);
985 		return;
986 	}
987 
988 	/*
989 	 * The control/value register pairs are UNKNOWN out of reset so
990 	 * clear them to avoid spurious debug events.
991 	 */
992 	raw_num_brps = get_num_brp_resources();
993 	for (i = 0; i < raw_num_brps; ++i) {
994 		write_wb_reg(ARM_BASE_BCR + i, 0UL);
995 		write_wb_reg(ARM_BASE_BVR + i, 0UL);
996 	}
997 
998 	for (i = 0; i < core_num_wrps; ++i) {
999 		write_wb_reg(ARM_BASE_WCR + i, 0UL);
1000 		write_wb_reg(ARM_BASE_WVR + i, 0UL);
1001 	}
1002 
1003 	if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
1004 		pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu);
1005 		return;
1006 	}
1007 
1008 	/*
1009 	 * Have a crack at enabling monitor mode. We don't actually need
1010 	 * it yet, but reporting an error early is useful if it fails.
1011 	 */
1012 out_mdbgen:
1013 	if (enable_monitor_mode())
1014 		cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
1015 }
1016 
1017 static int dbg_reset_online(unsigned int cpu)
1018 {
1019 	local_irq_disable();
1020 	reset_ctrl_regs(cpu);
1021 	local_irq_enable();
1022 	return 0;
1023 }
1024 
1025 #ifdef CONFIG_CPU_PM
1026 static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action,
1027 			     void *v)
1028 {
1029 	if (action == CPU_PM_EXIT)
1030 		reset_ctrl_regs(smp_processor_id());
1031 
1032 	return NOTIFY_OK;
1033 }
1034 
1035 static struct notifier_block dbg_cpu_pm_nb = {
1036 	.notifier_call = dbg_cpu_pm_notify,
1037 };
1038 
1039 static void __init pm_init(void)
1040 {
1041 	cpu_pm_register_notifier(&dbg_cpu_pm_nb);
1042 }
1043 #else
1044 static inline void pm_init(void)
1045 {
1046 }
1047 #endif
1048 
1049 static int __init arch_hw_breakpoint_init(void)
1050 {
1051 	int ret;
1052 
1053 	debug_arch = get_debug_arch();
1054 
1055 	if (!debug_arch_supported()) {
1056 		pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
1057 		return 0;
1058 	}
1059 
1060 	/*
1061 	 * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD
1062 	 * whenever a WFI is issued, even if the core is not powered down, in
1063 	 * violation of the architecture.  When DBGPRSR.SPD is set, accesses to
1064 	 * breakpoint and watchpoint registers are treated as undefined, so
1065 	 * this results in boot time and runtime failures when these are
1066 	 * accessed and we unexpectedly take a trap.
1067 	 *
1068 	 * It's not clear if/how this can be worked around, so we blacklist
1069 	 * Scorpion CPUs to avoid these issues.
1070 	*/
1071 	if (read_cpuid_part() == ARM_CPU_PART_SCORPION) {
1072 		pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n");
1073 		return 0;
1074 	}
1075 
1076 	has_ossr = core_has_os_save_restore();
1077 
1078 	/* Determine how many BRPs/WRPs are available. */
1079 	core_num_brps = get_num_brps();
1080 	core_num_wrps = get_num_wrps();
1081 
1082 	/*
1083 	 * We need to tread carefully here because DBGSWENABLE may be
1084 	 * driven low on this core and there isn't an architected way to
1085 	 * determine that.
1086 	 */
1087 	cpus_read_lock();
1088 	register_undef_hook(&debug_reg_hook);
1089 
1090 	/*
1091 	 * Register CPU notifier which resets the breakpoint resources. We
1092 	 * assume that a halting debugger will leave the world in a nice state
1093 	 * for us.
1094 	 */
1095 	ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
1096 					   "arm/hw_breakpoint:online",
1097 					   dbg_reset_online, NULL);
1098 	unregister_undef_hook(&debug_reg_hook);
1099 	if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) {
1100 		core_num_brps = 0;
1101 		core_num_wrps = 0;
1102 		if (ret > 0)
1103 			cpuhp_remove_state_nocalls_cpuslocked(ret);
1104 		cpus_read_unlock();
1105 		return 0;
1106 	}
1107 
1108 	pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n",
1109 		core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
1110 		"", core_num_wrps);
1111 
1112 	/* Work out the maximum supported watchpoint length. */
1113 	max_watchpoint_len = get_max_wp_len();
1114 	pr_info("maximum watchpoint size is %u bytes.\n",
1115 			max_watchpoint_len);
1116 
1117 	/* Register debug fault handler. */
1118 	hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1119 			TRAP_HWBKPT, "watchpoint debug exception");
1120 	hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
1121 			TRAP_HWBKPT, "breakpoint debug exception");
1122 	cpus_read_unlock();
1123 
1124 	/* Register PM notifiers. */
1125 	pm_init();
1126 	return 0;
1127 }
1128 arch_initcall(arch_hw_breakpoint_init);
1129 
1130 void hw_breakpoint_pmu_read(struct perf_event *bp)
1131 {
1132 }
1133 
1134 /*
1135  * Dummy function to register with die_notifier.
1136  */
1137 int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1138 					unsigned long val, void *data)
1139 {
1140 	return NOTIFY_DONE;
1141 }
1142