xref: /openbmc/linux/arch/arm/include/asm/spinlock.h (revision 4800cd83)
1 #ifndef __ASM_SPINLOCK_H
2 #define __ASM_SPINLOCK_H
3 
4 #if __LINUX_ARM_ARCH__ < 6
5 #error SMP not supported on pre-ARMv6 CPUs
6 #endif
7 
8 static inline void dsb_sev(void)
9 {
10 #if __LINUX_ARM_ARCH__ >= 7
11 	__asm__ __volatile__ (
12 		"dsb\n"
13 		"sev"
14 	);
15 #elif defined(CONFIG_CPU_32v6K)
16 	__asm__ __volatile__ (
17 		"mcr p15, 0, %0, c7, c10, 4\n"
18 		"sev"
19 		: : "r" (0)
20 	);
21 #endif
22 }
23 
24 /*
25  * ARMv6 Spin-locking.
26  *
27  * We exclusively read the old value.  If it is zero, we may have
28  * won the lock, so we try exclusively storing it.  A memory barrier
29  * is required after we get a lock, and before we release it, because
30  * V6 CPUs are assumed to have weakly ordered memory.
31  *
32  * Unlocked value: 0
33  * Locked value: 1
34  */
35 
36 #define arch_spin_is_locked(x)		((x)->lock != 0)
37 #define arch_spin_unlock_wait(lock) \
38 	do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
39 
40 #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
41 
42 static inline void arch_spin_lock(arch_spinlock_t *lock)
43 {
44 	unsigned long tmp;
45 
46 	__asm__ __volatile__(
47 "1:	ldrex	%0, [%1]\n"
48 "	teq	%0, #0\n"
49 #ifdef CONFIG_CPU_32v6K
50 "	wfene\n"
51 #endif
52 "	strexeq	%0, %2, [%1]\n"
53 "	teqeq	%0, #0\n"
54 "	bne	1b"
55 	: "=&r" (tmp)
56 	: "r" (&lock->lock), "r" (1)
57 	: "cc");
58 
59 	smp_mb();
60 }
61 
62 static inline int arch_spin_trylock(arch_spinlock_t *lock)
63 {
64 	unsigned long tmp;
65 
66 	__asm__ __volatile__(
67 "	ldrex	%0, [%1]\n"
68 "	teq	%0, #0\n"
69 "	strexeq	%0, %2, [%1]"
70 	: "=&r" (tmp)
71 	: "r" (&lock->lock), "r" (1)
72 	: "cc");
73 
74 	if (tmp == 0) {
75 		smp_mb();
76 		return 1;
77 	} else {
78 		return 0;
79 	}
80 }
81 
82 static inline void arch_spin_unlock(arch_spinlock_t *lock)
83 {
84 	smp_mb();
85 
86 	__asm__ __volatile__(
87 "	str	%1, [%0]\n"
88 	:
89 	: "r" (&lock->lock), "r" (0)
90 	: "cc");
91 
92 	dsb_sev();
93 }
94 
95 /*
96  * RWLOCKS
97  *
98  *
99  * Write locks are easy - we just set bit 31.  When unlocking, we can
100  * just write zero since the lock is exclusively held.
101  */
102 
103 static inline void arch_write_lock(arch_rwlock_t *rw)
104 {
105 	unsigned long tmp;
106 
107 	__asm__ __volatile__(
108 "1:	ldrex	%0, [%1]\n"
109 "	teq	%0, #0\n"
110 #ifdef CONFIG_CPU_32v6K
111 "	wfene\n"
112 #endif
113 "	strexeq	%0, %2, [%1]\n"
114 "	teq	%0, #0\n"
115 "	bne	1b"
116 	: "=&r" (tmp)
117 	: "r" (&rw->lock), "r" (0x80000000)
118 	: "cc");
119 
120 	smp_mb();
121 }
122 
123 static inline int arch_write_trylock(arch_rwlock_t *rw)
124 {
125 	unsigned long tmp;
126 
127 	__asm__ __volatile__(
128 "1:	ldrex	%0, [%1]\n"
129 "	teq	%0, #0\n"
130 "	strexeq	%0, %2, [%1]"
131 	: "=&r" (tmp)
132 	: "r" (&rw->lock), "r" (0x80000000)
133 	: "cc");
134 
135 	if (tmp == 0) {
136 		smp_mb();
137 		return 1;
138 	} else {
139 		return 0;
140 	}
141 }
142 
143 static inline void arch_write_unlock(arch_rwlock_t *rw)
144 {
145 	smp_mb();
146 
147 	__asm__ __volatile__(
148 	"str	%1, [%0]\n"
149 	:
150 	: "r" (&rw->lock), "r" (0)
151 	: "cc");
152 
153 	dsb_sev();
154 }
155 
156 /* write_can_lock - would write_trylock() succeed? */
157 #define arch_write_can_lock(x)		((x)->lock == 0)
158 
159 /*
160  * Read locks are a bit more hairy:
161  *  - Exclusively load the lock value.
162  *  - Increment it.
163  *  - Store new lock value if positive, and we still own this location.
164  *    If the value is negative, we've already failed.
165  *  - If we failed to store the value, we want a negative result.
166  *  - If we failed, try again.
167  * Unlocking is similarly hairy.  We may have multiple read locks
168  * currently active.  However, we know we won't have any write
169  * locks.
170  */
171 static inline void arch_read_lock(arch_rwlock_t *rw)
172 {
173 	unsigned long tmp, tmp2;
174 
175 	__asm__ __volatile__(
176 "1:	ldrex	%0, [%2]\n"
177 "	adds	%0, %0, #1\n"
178 "	strexpl	%1, %0, [%2]\n"
179 #ifdef CONFIG_CPU_32v6K
180 "	wfemi\n"
181 #endif
182 "	rsbpls	%0, %1, #0\n"
183 "	bmi	1b"
184 	: "=&r" (tmp), "=&r" (tmp2)
185 	: "r" (&rw->lock)
186 	: "cc");
187 
188 	smp_mb();
189 }
190 
191 static inline void arch_read_unlock(arch_rwlock_t *rw)
192 {
193 	unsigned long tmp, tmp2;
194 
195 	smp_mb();
196 
197 	__asm__ __volatile__(
198 "1:	ldrex	%0, [%2]\n"
199 "	sub	%0, %0, #1\n"
200 "	strex	%1, %0, [%2]\n"
201 "	teq	%1, #0\n"
202 "	bne	1b"
203 	: "=&r" (tmp), "=&r" (tmp2)
204 	: "r" (&rw->lock)
205 	: "cc");
206 
207 	if (tmp == 0)
208 		dsb_sev();
209 }
210 
211 static inline int arch_read_trylock(arch_rwlock_t *rw)
212 {
213 	unsigned long tmp, tmp2 = 1;
214 
215 	__asm__ __volatile__(
216 "1:	ldrex	%0, [%2]\n"
217 "	adds	%0, %0, #1\n"
218 "	strexpl	%1, %0, [%2]\n"
219 	: "=&r" (tmp), "+r" (tmp2)
220 	: "r" (&rw->lock)
221 	: "cc");
222 
223 	smp_mb();
224 	return tmp2 == 0;
225 }
226 
227 /* read_can_lock - would read_trylock() succeed? */
228 #define arch_read_can_lock(x)		((x)->lock < 0x80000000)
229 
230 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
231 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
232 
233 #define arch_spin_relax(lock)	cpu_relax()
234 #define arch_read_relax(lock)	cpu_relax()
235 #define arch_write_relax(lock)	cpu_relax()
236 
237 #endif /* __ASM_SPINLOCK_H */
238