xref: /openbmc/linux/arch/arm/include/asm/spinlock.h (revision 1dd24dae)
1 #ifndef __ASM_SPINLOCK_H
2 #define __ASM_SPINLOCK_H
3 
4 #if __LINUX_ARM_ARCH__ < 6
5 #error SMP not supported on pre-ARMv6 CPUs
6 #endif
7 
8 #include <asm/processor.h>
9 
10 /*
11  * sev and wfe are ARMv6K extensions.  Uniprocessor ARMv6 may not have the K
12  * extensions, so when running on UP, we have to patch these instructions away.
13  */
14 #define ALT_SMP(smp, up)					\
15 	"9998:	" smp "\n"					\
16 	"	.pushsection \".alt.smp.init\", \"a\"\n"	\
17 	"	.long	9998b\n"				\
18 	"	" up "\n"					\
19 	"	.popsection\n"
20 
21 #ifdef CONFIG_THUMB2_KERNEL
22 #define SEV		ALT_SMP("sev.w", "nop.w")
23 /*
24  * For Thumb-2, special care is needed to ensure that the conditional WFE
25  * instruction really does assemble to exactly 4 bytes (as required by
26  * the SMP_ON_UP fixup code).   By itself "wfene" might cause the
27  * assembler to insert a extra (16-bit) IT instruction, depending on the
28  * presence or absence of neighbouring conditional instructions.
29  *
30  * To avoid this unpredictableness, an approprite IT is inserted explicitly:
31  * the assembler won't change IT instructions which are explicitly present
32  * in the input.
33  */
34 #define WFE(cond)	ALT_SMP(		\
35 	"it " cond "\n\t"			\
36 	"wfe" cond ".n",			\
37 						\
38 	"nop.w"					\
39 )
40 #else
41 #define SEV		ALT_SMP("sev", "nop")
42 #define WFE(cond)	ALT_SMP("wfe" cond, "nop")
43 #endif
44 
45 static inline void dsb_sev(void)
46 {
47 #if __LINUX_ARM_ARCH__ >= 7
48 	__asm__ __volatile__ (
49 		"dsb\n"
50 		SEV
51 	);
52 #else
53 	__asm__ __volatile__ (
54 		"mcr p15, 0, %0, c7, c10, 4\n"
55 		SEV
56 		: : "r" (0)
57 	);
58 #endif
59 }
60 
61 /*
62  * ARMv6 ticket-based spin-locking.
63  *
64  * A memory barrier is required after we get a lock, and before we
65  * release it, because V6 CPUs are assumed to have weakly ordered
66  * memory.
67  */
68 
69 #define arch_spin_unlock_wait(lock) \
70 	do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
71 
72 #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
73 
74 static inline void arch_spin_lock(arch_spinlock_t *lock)
75 {
76 	unsigned long tmp;
77 	u32 newval;
78 	arch_spinlock_t lockval;
79 
80 	__asm__ __volatile__(
81 "1:	ldrex	%0, [%3]\n"
82 "	add	%1, %0, %4\n"
83 "	strex	%2, %1, [%3]\n"
84 "	teq	%2, #0\n"
85 "	bne	1b"
86 	: "=&r" (lockval), "=&r" (newval), "=&r" (tmp)
87 	: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
88 	: "cc");
89 
90 	while (lockval.tickets.next != lockval.tickets.owner) {
91 		wfe();
92 		lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);
93 	}
94 
95 	smp_mb();
96 }
97 
98 static inline int arch_spin_trylock(arch_spinlock_t *lock)
99 {
100 	unsigned long tmp;
101 	u32 slock;
102 
103 	__asm__ __volatile__(
104 "	ldrex	%0, [%2]\n"
105 "	subs	%1, %0, %0, ror #16\n"
106 "	addeq	%0, %0, %3\n"
107 "	strexeq	%1, %0, [%2]"
108 	: "=&r" (slock), "=&r" (tmp)
109 	: "r" (&lock->slock), "I" (1 << TICKET_SHIFT)
110 	: "cc");
111 
112 	if (tmp == 0) {
113 		smp_mb();
114 		return 1;
115 	} else {
116 		return 0;
117 	}
118 }
119 
120 static inline void arch_spin_unlock(arch_spinlock_t *lock)
121 {
122 	smp_mb();
123 	lock->tickets.owner++;
124 	dsb_sev();
125 }
126 
127 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
128 {
129 	struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
130 	return tickets.owner != tickets.next;
131 }
132 
133 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
134 {
135 	struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets);
136 	return (tickets.next - tickets.owner) > 1;
137 }
138 #define arch_spin_is_contended	arch_spin_is_contended
139 
140 /*
141  * RWLOCKS
142  *
143  *
144  * Write locks are easy - we just set bit 31.  When unlocking, we can
145  * just write zero since the lock is exclusively held.
146  */
147 
148 static inline void arch_write_lock(arch_rwlock_t *rw)
149 {
150 	unsigned long tmp;
151 
152 	__asm__ __volatile__(
153 "1:	ldrex	%0, [%1]\n"
154 "	teq	%0, #0\n"
155 	WFE("ne")
156 "	strexeq	%0, %2, [%1]\n"
157 "	teq	%0, #0\n"
158 "	bne	1b"
159 	: "=&r" (tmp)
160 	: "r" (&rw->lock), "r" (0x80000000)
161 	: "cc");
162 
163 	smp_mb();
164 }
165 
166 static inline int arch_write_trylock(arch_rwlock_t *rw)
167 {
168 	unsigned long tmp;
169 
170 	__asm__ __volatile__(
171 "	ldrex	%0, [%1]\n"
172 "	teq	%0, #0\n"
173 "	strexeq	%0, %2, [%1]"
174 	: "=&r" (tmp)
175 	: "r" (&rw->lock), "r" (0x80000000)
176 	: "cc");
177 
178 	if (tmp == 0) {
179 		smp_mb();
180 		return 1;
181 	} else {
182 		return 0;
183 	}
184 }
185 
186 static inline void arch_write_unlock(arch_rwlock_t *rw)
187 {
188 	smp_mb();
189 
190 	__asm__ __volatile__(
191 	"str	%1, [%0]\n"
192 	:
193 	: "r" (&rw->lock), "r" (0)
194 	: "cc");
195 
196 	dsb_sev();
197 }
198 
199 /* write_can_lock - would write_trylock() succeed? */
200 #define arch_write_can_lock(x)		((x)->lock == 0)
201 
202 /*
203  * Read locks are a bit more hairy:
204  *  - Exclusively load the lock value.
205  *  - Increment it.
206  *  - Store new lock value if positive, and we still own this location.
207  *    If the value is negative, we've already failed.
208  *  - If we failed to store the value, we want a negative result.
209  *  - If we failed, try again.
210  * Unlocking is similarly hairy.  We may have multiple read locks
211  * currently active.  However, we know we won't have any write
212  * locks.
213  */
214 static inline void arch_read_lock(arch_rwlock_t *rw)
215 {
216 	unsigned long tmp, tmp2;
217 
218 	__asm__ __volatile__(
219 "1:	ldrex	%0, [%2]\n"
220 "	adds	%0, %0, #1\n"
221 "	strexpl	%1, %0, [%2]\n"
222 	WFE("mi")
223 "	rsbpls	%0, %1, #0\n"
224 "	bmi	1b"
225 	: "=&r" (tmp), "=&r" (tmp2)
226 	: "r" (&rw->lock)
227 	: "cc");
228 
229 	smp_mb();
230 }
231 
232 static inline void arch_read_unlock(arch_rwlock_t *rw)
233 {
234 	unsigned long tmp, tmp2;
235 
236 	smp_mb();
237 
238 	__asm__ __volatile__(
239 "1:	ldrex	%0, [%2]\n"
240 "	sub	%0, %0, #1\n"
241 "	strex	%1, %0, [%2]\n"
242 "	teq	%1, #0\n"
243 "	bne	1b"
244 	: "=&r" (tmp), "=&r" (tmp2)
245 	: "r" (&rw->lock)
246 	: "cc");
247 
248 	if (tmp == 0)
249 		dsb_sev();
250 }
251 
252 static inline int arch_read_trylock(arch_rwlock_t *rw)
253 {
254 	unsigned long tmp, tmp2 = 1;
255 
256 	__asm__ __volatile__(
257 "	ldrex	%0, [%2]\n"
258 "	adds	%0, %0, #1\n"
259 "	strexpl	%1, %0, [%2]\n"
260 	: "=&r" (tmp), "+r" (tmp2)
261 	: "r" (&rw->lock)
262 	: "cc");
263 
264 	smp_mb();
265 	return tmp2 == 0;
266 }
267 
268 /* read_can_lock - would read_trylock() succeed? */
269 #define arch_read_can_lock(x)		((x)->lock < 0x80000000)
270 
271 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
272 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
273 
274 #define arch_spin_relax(lock)	cpu_relax()
275 #define arch_read_relax(lock)	cpu_relax()
276 #define arch_write_relax(lock)	cpu_relax()
277 
278 #endif /* __ASM_SPINLOCK_H */
279