xref: /openbmc/linux/arch/arm/include/asm/pgtable.h (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 /*
2  *  arch/arm/include/asm/pgtable.h
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12 
13 #include <linux/const.h>
14 #include <asm/proc-fns.h>
15 
16 #ifndef CONFIG_MMU
17 
18 #include <asm-generic/4level-fixup.h>
19 #include <asm/pgtable-nommu.h>
20 
21 #else
22 
23 #define __ARCH_USE_5LEVEL_HACK
24 #include <asm-generic/pgtable-nopud.h>
25 #include <asm/memory.h>
26 #include <asm/pgtable-hwdef.h>
27 
28 
29 #include <asm/tlbflush.h>
30 
31 #ifdef CONFIG_ARM_LPAE
32 #include <asm/pgtable-3level.h>
33 #else
34 #include <asm/pgtable-2level.h>
35 #endif
36 
37 /*
38  * Just any arbitrary offset to the start of the vmalloc VM area: the
39  * current 8MB value just means that there will be a 8MB "hole" after the
40  * physical memory until the kernel virtual memory starts.  That means that
41  * any out-of-bounds memory accesses will hopefully be caught.
42  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43  * area for the same reason. ;)
44  */
45 #define VMALLOC_OFFSET		(8*1024*1024)
46 #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
47 #define VMALLOC_END		0xff800000UL
48 
49 #define LIBRARY_TEXT_START	0x0c000000
50 
51 #ifndef __ASSEMBLY__
52 extern void __pte_error(const char *file, int line, pte_t);
53 extern void __pmd_error(const char *file, int line, pmd_t);
54 extern void __pgd_error(const char *file, int line, pgd_t);
55 
56 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
57 #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
58 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
59 
60 /*
61  * This is the lowest virtual address we can permit any user space
62  * mapping to be mapped at.  This is particularly important for
63  * non-high vector CPUs.
64  */
65 #define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
66 
67 /*
68  * Use TASK_SIZE as the ceiling argument for free_pgtables() and
69  * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
70  * page shared between user and kernel).
71  */
72 #ifdef CONFIG_ARM_LPAE
73 #define USER_PGTABLES_CEILING	TASK_SIZE
74 #endif
75 
76 /*
77  * The pgprot_* and protection_map entries will be fixed up in runtime
78  * to include the cachable and bufferable bits based on memory policy,
79  * as well as any architecture dependent bits like global/ASID and SMP
80  * shared mapping bits.
81  */
82 #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
83 
84 extern pgprot_t		pgprot_user;
85 extern pgprot_t		pgprot_kernel;
86 extern pgprot_t		pgprot_hyp_device;
87 extern pgprot_t		pgprot_s2;
88 extern pgprot_t		pgprot_s2_device;
89 
90 #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
91 
92 #define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
93 #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
94 #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
95 #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
96 #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
97 #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
98 #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
99 #define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
100 #define PAGE_KERNEL_EXEC	pgprot_kernel
101 #define PAGE_HYP		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_XN)
102 #define PAGE_HYP_EXEC		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
103 #define PAGE_HYP_RO		_MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
104 #define PAGE_HYP_DEVICE		_MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
105 #define PAGE_S2			_MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY | L_PTE_XN)
106 #define PAGE_S2_DEVICE		_MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY | L_PTE_XN)
107 
108 #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
109 #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
110 #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
111 #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
112 #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
113 #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
114 #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
115 
116 #define __pgprot_modify(prot,mask,bits)		\
117 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
118 
119 #define pgprot_noncached(prot) \
120 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
121 
122 #define pgprot_writecombine(prot) \
123 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
124 
125 #define pgprot_stronglyordered(prot) \
126 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
127 
128 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
129 #define pgprot_dmacoherent(prot) \
130 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
131 #define __HAVE_PHYS_MEM_ACCESS_PROT
132 struct file;
133 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
134 				     unsigned long size, pgprot_t vma_prot);
135 #else
136 #define pgprot_dmacoherent(prot) \
137 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
138 #endif
139 
140 #endif /* __ASSEMBLY__ */
141 
142 /*
143  * The table below defines the page protection levels that we insert into our
144  * Linux page table version.  These get translated into the best that the
145  * architecture can perform.  Note that on most ARM hardware:
146  *  1) We cannot do execute protection
147  *  2) If we could do execute protection, then read is implied
148  *  3) write implies read permissions
149  */
150 #define __P000  __PAGE_NONE
151 #define __P001  __PAGE_READONLY
152 #define __P010  __PAGE_COPY
153 #define __P011  __PAGE_COPY
154 #define __P100  __PAGE_READONLY_EXEC
155 #define __P101  __PAGE_READONLY_EXEC
156 #define __P110  __PAGE_COPY_EXEC
157 #define __P111  __PAGE_COPY_EXEC
158 
159 #define __S000  __PAGE_NONE
160 #define __S001  __PAGE_READONLY
161 #define __S010  __PAGE_SHARED
162 #define __S011  __PAGE_SHARED
163 #define __S100  __PAGE_READONLY_EXEC
164 #define __S101  __PAGE_READONLY_EXEC
165 #define __S110  __PAGE_SHARED_EXEC
166 #define __S111  __PAGE_SHARED_EXEC
167 
168 #ifndef __ASSEMBLY__
169 /*
170  * ZERO_PAGE is a global shared page that is always zero: used
171  * for zero-mapped memory areas etc..
172  */
173 extern struct page *empty_zero_page;
174 #define ZERO_PAGE(vaddr)	(empty_zero_page)
175 
176 
177 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
178 
179 /* to find an entry in a page-table-directory */
180 #define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
181 
182 #define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
183 
184 /* to find an entry in a kernel page-table-directory */
185 #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
186 
187 #define pmd_none(pmd)		(!pmd_val(pmd))
188 
189 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
190 {
191 	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
192 }
193 
194 #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
195 
196 #ifndef CONFIG_HIGHPTE
197 #define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
198 #define __pte_unmap(pte)	do { } while (0)
199 #else
200 #define __pte_map(pmd)		(pte_t *)kmap_atomic(pmd_page(*(pmd)))
201 #define __pte_unmap(pte)	kunmap_atomic(pte)
202 #endif
203 
204 #define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
205 
206 #define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
207 
208 #define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
209 #define pte_unmap(pte)			__pte_unmap(pte)
210 
211 #define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
212 #define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
213 
214 #define pte_page(pte)		pfn_to_page(pte_pfn(pte))
215 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
216 
217 #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
218 
219 #define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
220 						: !!(pte_val(pte) & (val)))
221 #define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
222 
223 #define pte_none(pte)		(!pte_val(pte))
224 #define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
225 #define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
226 #define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
227 #define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
228 #define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
229 #define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
230 #define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
231 
232 #define pte_valid_user(pte)	\
233 	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
234 
235 static inline bool pte_access_permitted(pte_t pte, bool write)
236 {
237 	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
238 	pteval_t needed = mask;
239 
240 	if (write)
241 		mask |= L_PTE_RDONLY;
242 
243 	return (pte_val(pte) & mask) == needed;
244 }
245 #define pte_access_permitted pte_access_permitted
246 
247 #if __LINUX_ARM_ARCH__ < 6
248 static inline void __sync_icache_dcache(pte_t pteval)
249 {
250 }
251 #else
252 extern void __sync_icache_dcache(pte_t pteval);
253 #endif
254 
255 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
256 			      pte_t *ptep, pte_t pteval)
257 {
258 	unsigned long ext = 0;
259 
260 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
261 		if (!pte_special(pteval))
262 			__sync_icache_dcache(pteval);
263 		ext |= PTE_EXT_NG;
264 	}
265 
266 	set_pte_ext(ptep, pteval, ext);
267 }
268 
269 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
270 {
271 	pte_val(pte) &= ~pgprot_val(prot);
272 	return pte;
273 }
274 
275 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
276 {
277 	pte_val(pte) |= pgprot_val(prot);
278 	return pte;
279 }
280 
281 static inline pte_t pte_wrprotect(pte_t pte)
282 {
283 	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
284 }
285 
286 static inline pte_t pte_mkwrite(pte_t pte)
287 {
288 	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
289 }
290 
291 static inline pte_t pte_mkclean(pte_t pte)
292 {
293 	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
294 }
295 
296 static inline pte_t pte_mkdirty(pte_t pte)
297 {
298 	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
299 }
300 
301 static inline pte_t pte_mkold(pte_t pte)
302 {
303 	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
304 }
305 
306 static inline pte_t pte_mkyoung(pte_t pte)
307 {
308 	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
309 }
310 
311 static inline pte_t pte_mkexec(pte_t pte)
312 {
313 	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
314 }
315 
316 static inline pte_t pte_mknexec(pte_t pte)
317 {
318 	return set_pte_bit(pte, __pgprot(L_PTE_XN));
319 }
320 
321 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
322 {
323 	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
324 		L_PTE_NONE | L_PTE_VALID;
325 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
326 	return pte;
327 }
328 
329 /*
330  * Encode and decode a swap entry.  Swap entries are stored in the Linux
331  * page tables as follows:
332  *
333  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
334  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
335  *   <--------------- offset ------------------------> < type -> 0 0
336  *
337  * This gives us up to 31 swap files and 128GB per swap file.  Note that
338  * the offset field is always non-zero.
339  */
340 #define __SWP_TYPE_SHIFT	2
341 #define __SWP_TYPE_BITS		5
342 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
343 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
344 
345 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
346 #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
347 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
348 
349 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
350 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
351 
352 /*
353  * It is an error for the kernel to have more swap files than we can
354  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
355  * is increased beyond what we presently support.
356  */
357 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
358 
359 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
360 /* FIXME: this is not correct */
361 #define kern_addr_valid(addr)	(1)
362 
363 #include <asm-generic/pgtable.h>
364 
365 /*
366  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
367  */
368 #define HAVE_ARCH_UNMAPPED_AREA
369 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
370 
371 #define pgtable_cache_init() do { } while (0)
372 
373 #endif /* !__ASSEMBLY__ */
374 
375 #endif /* CONFIG_MMU */
376 
377 #endif /* _ASMARM_PGTABLE_H */
378