xref: /openbmc/linux/arch/arm/include/asm/pgtable.h (revision 0af5cb349a2c97fbabb3cede96efcde9d54b7940)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  arch/arm/include/asm/pgtable.h
4  *
5  *  Copyright (C) 1995-2002 Russell King
6  */
7 #ifndef _ASMARM_PGTABLE_H
8 #define _ASMARM_PGTABLE_H
9 
10 #include <linux/const.h>
11 #include <asm/proc-fns.h>
12 
13 #ifndef CONFIG_MMU
14 
15 #include <asm-generic/pgtable-nopud.h>
16 #include <asm/pgtable-nommu.h>
17 
18 #else
19 
20 #include <asm-generic/pgtable-nopud.h>
21 #include <asm/memory.h>
22 #include <asm/pgtable-hwdef.h>
23 
24 
25 #include <asm/tlbflush.h>
26 
27 #ifdef CONFIG_ARM_LPAE
28 #include <asm/pgtable-3level.h>
29 #else
30 #include <asm/pgtable-2level.h>
31 #endif
32 
33 /*
34  * Just any arbitrary offset to the start of the vmalloc VM area: the
35  * current 8MB value just means that there will be a 8MB "hole" after the
36  * physical memory until the kernel virtual memory starts.  That means that
37  * any out-of-bounds memory accesses will hopefully be caught.
38  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
39  * area for the same reason. ;)
40  */
41 #define VMALLOC_OFFSET		(8*1024*1024)
42 #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
43 #define VMALLOC_END		0xff800000UL
44 
45 #define LIBRARY_TEXT_START	0x0c000000
46 
47 #ifndef __ASSEMBLY__
48 extern void __pte_error(const char *file, int line, pte_t);
49 extern void __pmd_error(const char *file, int line, pmd_t);
50 extern void __pgd_error(const char *file, int line, pgd_t);
51 
52 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
53 #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
54 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
55 
56 /*
57  * This is the lowest virtual address we can permit any user space
58  * mapping to be mapped at.  This is particularly important for
59  * non-high vector CPUs.
60  */
61 #define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
62 
63 /*
64  * Use TASK_SIZE as the ceiling argument for free_pgtables() and
65  * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
66  * page shared between user and kernel).
67  */
68 #ifdef CONFIG_ARM_LPAE
69 #define USER_PGTABLES_CEILING	TASK_SIZE
70 #endif
71 
72 /*
73  * The pgprot_* and protection_map entries will be fixed up in runtime
74  * to include the cachable and bufferable bits based on memory policy,
75  * as well as any architecture dependent bits like global/ASID and SMP
76  * shared mapping bits.
77  */
78 #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
79 
80 extern pgprot_t		pgprot_user;
81 extern pgprot_t		pgprot_kernel;
82 
83 #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
84 
85 #define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
86 #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
87 #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
88 #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
89 #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
90 #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
91 #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
92 #define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
93 #define PAGE_KERNEL_EXEC	pgprot_kernel
94 
95 #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
96 #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
97 #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
98 #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
99 #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
100 #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
101 #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
102 
103 #define __pgprot_modify(prot,mask,bits)		\
104 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
105 
106 #define pgprot_noncached(prot) \
107 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
108 
109 #define pgprot_writecombine(prot) \
110 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
111 
112 #define pgprot_stronglyordered(prot) \
113 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
114 
115 #define pgprot_device(prot) \
116 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
117 
118 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
119 #define pgprot_dmacoherent(prot) \
120 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
121 #define __HAVE_PHYS_MEM_ACCESS_PROT
122 struct file;
123 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
124 				     unsigned long size, pgprot_t vma_prot);
125 #else
126 #define pgprot_dmacoherent(prot) \
127 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
128 #endif
129 
130 #endif /* __ASSEMBLY__ */
131 
132 /*
133  * The table below defines the page protection levels that we insert into our
134  * Linux page table version.  These get translated into the best that the
135  * architecture can perform.  Note that on most ARM hardware:
136  *  1) We cannot do execute protection
137  *  2) If we could do execute protection, then read is implied
138  *  3) write implies read permissions
139  */
140 
141 #ifndef __ASSEMBLY__
142 /*
143  * ZERO_PAGE is a global shared page that is always zero: used
144  * for zero-mapped memory areas etc..
145  */
146 extern struct page *empty_zero_page;
147 #define ZERO_PAGE(vaddr)	(empty_zero_page)
148 
149 
150 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
151 
152 #define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
153 #define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
154 
155 #define pmd_none(pmd)		(!pmd_val(pmd))
156 
157 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
158 {
159 	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
160 }
161 
162 #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
163 
164 #define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
165 #define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
166 
167 #define pte_page(pte)		pfn_to_page(pte_pfn(pte))
168 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
169 
170 #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
171 
172 #define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
173 						: !!(pte_val(pte) & (val)))
174 #define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
175 
176 #define pte_none(pte)		(!pte_val(pte))
177 #define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
178 #define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
179 #define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
180 #define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
181 #define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
182 #define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
183 #define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
184 
185 #define pte_valid_user(pte)	\
186 	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
187 
188 static inline bool pte_access_permitted(pte_t pte, bool write)
189 {
190 	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
191 	pteval_t needed = mask;
192 
193 	if (write)
194 		mask |= L_PTE_RDONLY;
195 
196 	return (pte_val(pte) & mask) == needed;
197 }
198 #define pte_access_permitted pte_access_permitted
199 
200 #if __LINUX_ARM_ARCH__ < 6
201 static inline void __sync_icache_dcache(pte_t pteval)
202 {
203 }
204 #else
205 extern void __sync_icache_dcache(pte_t pteval);
206 #endif
207 
208 void set_pte_at(struct mm_struct *mm, unsigned long addr,
209 		      pte_t *ptep, pte_t pteval);
210 
211 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
212 {
213 	pte_val(pte) &= ~pgprot_val(prot);
214 	return pte;
215 }
216 
217 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
218 {
219 	pte_val(pte) |= pgprot_val(prot);
220 	return pte;
221 }
222 
223 static inline pte_t pte_wrprotect(pte_t pte)
224 {
225 	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
226 }
227 
228 static inline pte_t pte_mkwrite(pte_t pte)
229 {
230 	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
231 }
232 
233 static inline pte_t pte_mkclean(pte_t pte)
234 {
235 	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
236 }
237 
238 static inline pte_t pte_mkdirty(pte_t pte)
239 {
240 	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
241 }
242 
243 static inline pte_t pte_mkold(pte_t pte)
244 {
245 	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
246 }
247 
248 static inline pte_t pte_mkyoung(pte_t pte)
249 {
250 	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
251 }
252 
253 static inline pte_t pte_mkexec(pte_t pte)
254 {
255 	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
256 }
257 
258 static inline pte_t pte_mknexec(pte_t pte)
259 {
260 	return set_pte_bit(pte, __pgprot(L_PTE_XN));
261 }
262 
263 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
264 {
265 	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
266 		L_PTE_NONE | L_PTE_VALID;
267 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
268 	return pte;
269 }
270 
271 /*
272  * Encode and decode a swap entry.  Swap entries are stored in the Linux
273  * page tables as follows:
274  *
275  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
276  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
277  *   <--------------- offset ------------------------> < type -> 0 0
278  *
279  * This gives us up to 31 swap files and 128GB per swap file.  Note that
280  * the offset field is always non-zero.
281  */
282 #define __SWP_TYPE_SHIFT	2
283 #define __SWP_TYPE_BITS		5
284 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
285 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
286 
287 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
288 #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
289 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
290 
291 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
292 #define __swp_entry_to_pte(swp)	__pte((swp).val | PTE_TYPE_FAULT)
293 
294 /*
295  * It is an error for the kernel to have more swap files than we can
296  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
297  * is increased beyond what we presently support.
298  */
299 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
300 
301 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
302 /* FIXME: this is not correct */
303 #define kern_addr_valid(addr)	(1)
304 
305 /*
306  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
307  */
308 #define HAVE_ARCH_UNMAPPED_AREA
309 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
310 
311 #endif /* !__ASSEMBLY__ */
312 
313 #endif /* CONFIG_MMU */
314 
315 #endif /* _ASMARM_PGTABLE_H */
316