xref: /openbmc/linux/arch/arm/include/asm/pgtable-2level.h (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  arch/arm/include/asm/pgtable-2level.h
4  *
5  *  Copyright (C) 1995-2002 Russell King
6  */
7 #ifndef _ASM_PGTABLE_2LEVEL_H
8 #define _ASM_PGTABLE_2LEVEL_H
9 
10 #define __PAGETABLE_PMD_FOLDED 1
11 
12 /*
13  * Hardware-wise, we have a two level page table structure, where the first
14  * level has 4096 entries, and the second level has 256 entries.  Each entry
15  * is one 32-bit word.  Most of the bits in the second level entry are used
16  * by hardware, and there aren't any "accessed" and "dirty" bits.
17  *
18  * Linux on the other hand has a three level page table structure, which can
19  * be wrapped to fit a two level page table structure easily - using the PGD
20  * and PTE only.  However, Linux also expects one "PTE" table per page, and
21  * at least a "dirty" bit.
22  *
23  * Therefore, we tweak the implementation slightly - we tell Linux that we
24  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
25  * hardware pointers to the second level.)  The second level contains two
26  * hardware PTE tables arranged contiguously, preceded by Linux versions
27  * which contain the state information Linux needs.  We, therefore, end up
28  * with 512 entries in the "PTE" level.
29  *
30  * This leads to the page tables having the following layout:
31  *
32  *    pgd             pte
33  * |        |
34  * +--------+
35  * |        |       +------------+ +0
36  * +- - - - +       | Linux pt 0 |
37  * |        |       +------------+ +1024
38  * +--------+ +0    | Linux pt 1 |
39  * |        |-----> +------------+ +2048
40  * +- - - - + +4    |  h/w pt 0  |
41  * |        |-----> +------------+ +3072
42  * +--------+ +8    |  h/w pt 1  |
43  * |        |       +------------+ +4096
44  *
45  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
46  * PTE_xxx for definitions of bits appearing in the "h/w pt".
47  *
48  * PMD_xxx definitions refer to bits in the first level page table.
49  *
50  * The "dirty" bit is emulated by only granting hardware write permission
51  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
52  * means that a write to a clean page will cause a permission fault, and
53  * the Linux MM layer will mark the page dirty via handle_pte_fault().
54  * For the hardware to notice the permission change, the TLB entry must
55  * be flushed, and ptep_set_access_flags() does that for us.
56  *
57  * The "accessed" or "young" bit is emulated by a similar method; we only
58  * allow accesses to the page if the "young" bit is set.  Accesses to the
59  * page will cause a fault, and handle_pte_fault() will set the young bit
60  * for us as long as the page is marked present in the corresponding Linux
61  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
62  * up to date.
63  *
64  * However, when the "young" bit is cleared, we deny access to the page
65  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
66  * for us in this case, which means the TLB will retain the transation
67  * until either the TLB entry is evicted under pressure, or a context
68  * switch which changes the user space mapping occurs.
69  */
70 #define PTRS_PER_PTE		512
71 #define PTRS_PER_PMD		1
72 #define PTRS_PER_PGD		2048
73 
74 #define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
75 #define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
76 #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
77 
78 #define MAX_POSSIBLE_PHYSMEM_BITS	32
79 
80 /*
81  * PMD_SHIFT determines the size of the area a second-level page table can map
82  * PGDIR_SHIFT determines what a third-level page table entry can map
83  */
84 #define PMD_SHIFT		21
85 #define PGDIR_SHIFT		21
86 
87 #define PMD_SIZE		(1UL << PMD_SHIFT)
88 #define PMD_MASK		(~(PMD_SIZE-1))
89 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
90 #define PGDIR_MASK		(~(PGDIR_SIZE-1))
91 
92 /*
93  * section address mask and size definitions.
94  */
95 #define SECTION_SHIFT		20
96 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
97 #define SECTION_MASK		(~(SECTION_SIZE-1))
98 
99 /*
100  * ARMv6 supersection address mask and size definitions.
101  */
102 #define SUPERSECTION_SHIFT	24
103 #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
104 #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
105 
106 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
107 
108 /*
109  * "Linux" PTE definitions.
110  *
111  * We keep two sets of PTEs - the hardware and the linux version.
112  * This allows greater flexibility in the way we map the Linux bits
113  * onto the hardware tables, and allows us to have YOUNG and DIRTY
114  * bits.
115  *
116  * The PTE table pointer refers to the hardware entries; the "Linux"
117  * entries are stored 1024 bytes below.
118  */
119 #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
120 #define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
121 #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
122 #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
123 #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
124 #define L_PTE_USER		(_AT(pteval_t, 1) << 8)
125 #define L_PTE_XN		(_AT(pteval_t, 1) << 9)
126 #define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
127 #define L_PTE_NONE		(_AT(pteval_t, 1) << 11)
128 
129 /*
130  * These are the memory types, defined to be compatible with
131  * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
132  * ARMv6+ without TEX remapping, they are a table index.
133  * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
134  *
135  * MT type		Pre-ARMv6	ARMv6+ type / cacheable status
136  * UNCACHED		Uncached	Strongly ordered
137  * BUFFERABLE		Bufferable	Normal memory / non-cacheable
138  * WRITETHROUGH		Writethrough	Normal memory / write through
139  * WRITEBACK		Writeback	Normal memory / write back, read alloc
140  * MINICACHE		Minicache	N/A
141  * WRITEALLOC		Writeback	Normal memory / write back, write alloc
142  * DEV_SHARED		Uncached	Device memory (shared)
143  * DEV_NONSHARED	Uncached	Device memory (non-shared)
144  * DEV_WC		Bufferable	Normal memory / non-cacheable
145  * DEV_CACHED		Writeback	Normal memory / write back, read alloc
146  * VECTORS		Variable	Normal memory / variable
147  *
148  * All normal memory mappings have the following properties:
149  * - reads can be repeated with no side effects
150  * - repeated reads return the last value written
151  * - reads can fetch additional locations without side effects
152  * - writes can be repeated (in certain cases) with no side effects
153  * - writes can be merged before accessing the target
154  * - unaligned accesses can be supported
155  *
156  * All device mappings have the following properties:
157  * - no access speculation
158  * - no repetition (eg, on return from an exception)
159  * - number, order and size of accesses are maintained
160  * - unaligned accesses are "unpredictable"
161  */
162 #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
163 #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
164 #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
165 #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
166 #define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
167 #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
168 #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
169 #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
170 #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
171 #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
172 #define L_PTE_MT_VECTORS	(_AT(pteval_t, 0x0f) << 2)	/* 1111 */
173 #define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
174 
175 #ifndef __ASSEMBLY__
176 
177 /*
178  * The "pud_xxx()" functions here are trivial when the pmd is folded into
179  * the pud: the pud entry is never bad, always exists, and can't be set or
180  * cleared.
181  */
182 static inline int pud_none(pud_t pud)
183 {
184 	return 0;
185 }
186 
187 static inline int pud_bad(pud_t pud)
188 {
189 	return 0;
190 }
191 
192 static inline int pud_present(pud_t pud)
193 {
194 	return 1;
195 }
196 
197 static inline void pud_clear(pud_t *pudp)
198 {
199 }
200 
201 static inline void set_pud(pud_t *pudp, pud_t pud)
202 {
203 }
204 
205 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
206 {
207 	return (pmd_t *)pud;
208 }
209 #define pmd_offset pmd_offset
210 
211 #define pmd_large(pmd)		(pmd_val(pmd) & 2)
212 #define pmd_leaf(pmd)		(pmd_val(pmd) & 2)
213 #define pmd_bad(pmd)		(pmd_val(pmd) & 2)
214 #define pmd_present(pmd)	(pmd_val(pmd))
215 
216 #define copy_pmd(pmdpd,pmdps)		\
217 	do {				\
218 		pmdpd[0] = pmdps[0];	\
219 		pmdpd[1] = pmdps[1];	\
220 		flush_pmd_entry(pmdpd);	\
221 	} while (0)
222 
223 #define pmd_clear(pmdp)			\
224 	do {				\
225 		pmdp[0] = __pmd(0);	\
226 		pmdp[1] = __pmd(0);	\
227 		clean_pmd_entry(pmdp);	\
228 	} while (0)
229 
230 /* we don't need complex calculations here as the pmd is folded into the pgd */
231 #define pmd_addr_end(addr,end) (end)
232 
233 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
234 
235 /*
236  * We don't have huge page support for short descriptors, for the moment
237  * define empty stubs for use by pin_page_for_write.
238  */
239 #define pmd_hugewillfault(pmd)	(0)
240 #define pmd_thp_or_huge(pmd)	(0)
241 
242 #endif /* __ASSEMBLY__ */
243 
244 #endif /* _ASM_PGTABLE_2LEVEL_H */
245