xref: /openbmc/linux/arch/arm/include/asm/io.h (revision 9cfc5c90)
1 /*
2  *  arch/arm/include/asm/io.h
3  *
4  *  Copyright (C) 1996-2000 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Modifications:
11  *  16-Sep-1996	RMK	Inlined the inx/outx functions & optimised for both
12  *			constant addresses and variable addresses.
13  *  04-Dec-1997	RMK	Moved a lot of this stuff to the new architecture
14  *			specific IO header files.
15  *  27-Mar-1999	PJB	Second parameter of memcpy_toio is const..
16  *  04-Apr-1999	PJB	Added check_signature.
17  *  12-Dec-1999	RMK	More cleanups
18  *  18-Jun-2000 RMK	Removed virt_to_* and friends definitions
19  *  05-Oct-2004 BJD     Moved memory string functions to use void __iomem
20  */
21 #ifndef __ASM_ARM_IO_H
22 #define __ASM_ARM_IO_H
23 
24 #ifdef __KERNEL__
25 
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/blk_types.h>
29 #include <asm/byteorder.h>
30 #include <asm/memory.h>
31 #include <asm-generic/pci_iomap.h>
32 #include <xen/xen.h>
33 
34 /*
35  * ISA I/O bus memory addresses are 1:1 with the physical address.
36  */
37 #define isa_virt_to_bus virt_to_phys
38 #define isa_page_to_bus page_to_phys
39 #define isa_bus_to_virt phys_to_virt
40 
41 /*
42  * Atomic MMIO-wide IO modify
43  */
44 extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
45 extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
46 
47 /*
48  * Generic IO read/write.  These perform native-endian accesses.  Note
49  * that some architectures will want to re-define __raw_{read,write}w.
50  */
51 void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
52 void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
53 void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
54 
55 void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
56 void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
57 void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
58 
59 #if __LINUX_ARM_ARCH__ < 6
60 /*
61  * Half-word accesses are problematic with RiscPC due to limitations of
62  * the bus. Rather than special-case the machine, just let the compiler
63  * generate the access for CPUs prior to ARMv6.
64  */
65 #define __raw_readw(a)         (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
66 #define __raw_writew(v,a)      ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
67 #else
68 /*
69  * When running under a hypervisor, we want to avoid I/O accesses with
70  * writeback addressing modes as these incur a significant performance
71  * overhead (the address generation must be emulated in software).
72  */
73 #define __raw_writew __raw_writew
74 static inline void __raw_writew(u16 val, volatile void __iomem *addr)
75 {
76 	asm volatile("strh %1, %0"
77 		     : : "Q" (*(volatile u16 __force *)addr), "r" (val));
78 }
79 
80 #define __raw_readw __raw_readw
81 static inline u16 __raw_readw(const volatile void __iomem *addr)
82 {
83 	u16 val;
84 	asm volatile("ldrh %0, %1"
85 		     : "=r" (val)
86 		     : "Q" (*(volatile u16 __force *)addr));
87 	return val;
88 }
89 #endif
90 
91 #define __raw_writeb __raw_writeb
92 static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
93 {
94 	asm volatile("strb %1, %0"
95 		     : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
96 }
97 
98 #define __raw_writel __raw_writel
99 static inline void __raw_writel(u32 val, volatile void __iomem *addr)
100 {
101 	asm volatile("str %1, %0"
102 		     : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
103 }
104 
105 #define __raw_readb __raw_readb
106 static inline u8 __raw_readb(const volatile void __iomem *addr)
107 {
108 	u8 val;
109 	asm volatile("ldrb %0, %1"
110 		     : "=r" (val)
111 		     : "Qo" (*(volatile u8 __force *)addr));
112 	return val;
113 }
114 
115 #define __raw_readl __raw_readl
116 static inline u32 __raw_readl(const volatile void __iomem *addr)
117 {
118 	u32 val;
119 	asm volatile("ldr %0, %1"
120 		     : "=r" (val)
121 		     : "Qo" (*(volatile u32 __force *)addr));
122 	return val;
123 }
124 
125 /*
126  * Architecture ioremap implementation.
127  */
128 #define MT_DEVICE		0
129 #define MT_DEVICE_NONSHARED	1
130 #define MT_DEVICE_CACHED	2
131 #define MT_DEVICE_WC		3
132 /*
133  * types 4 onwards can be found in asm/mach/map.h and are undefined
134  * for ioremap
135  */
136 
137 /*
138  * __arm_ioremap takes CPU physical address.
139  * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
140  * The _caller variety takes a __builtin_return_address(0) value for
141  * /proc/vmalloc to use - and should only be used in non-inline functions.
142  */
143 extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
144 	void *);
145 extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
146 extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
147 extern void __iounmap(volatile void __iomem *addr);
148 
149 extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
150 	unsigned int, void *);
151 extern void (*arch_iounmap)(volatile void __iomem *);
152 
153 /*
154  * Bad read/write accesses...
155  */
156 extern void __readwrite_bug(const char *fn);
157 
158 /*
159  * A typesafe __io() helper
160  */
161 static inline void __iomem *__typesafe_io(unsigned long addr)
162 {
163 	return (void __iomem *)addr;
164 }
165 
166 #define IOMEM(x)	((void __force __iomem *)(x))
167 
168 /* IO barriers */
169 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
170 #include <asm/barrier.h>
171 #define __iormb()		rmb()
172 #define __iowmb()		wmb()
173 #else
174 #define __iormb()		do { } while (0)
175 #define __iowmb()		do { } while (0)
176 #endif
177 
178 /* PCI fixed i/o mapping */
179 #define PCI_IO_VIRT_BASE	0xfee00000
180 #define PCI_IOBASE		((void __iomem *)PCI_IO_VIRT_BASE)
181 
182 #if defined(CONFIG_PCI)
183 void pci_ioremap_set_mem_type(int mem_type);
184 #else
185 static inline void pci_ioremap_set_mem_type(int mem_type) {}
186 #endif
187 
188 extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
189 
190 /*
191  * Now, pick up the machine-defined IO definitions
192  */
193 #ifdef CONFIG_NEED_MACH_IO_H
194 #include <mach/io.h>
195 #elif defined(CONFIG_PCI)
196 #define IO_SPACE_LIMIT	((resource_size_t)0xfffff)
197 #define __io(a)		__typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
198 #else
199 #define __io(a)		__typesafe_io((a) & IO_SPACE_LIMIT)
200 #endif
201 
202 /*
203  * This is the limit of PC card/PCI/ISA IO space, which is by default
204  * 64K if we have PC card, PCI or ISA support.  Otherwise, default to
205  * zero to prevent ISA/PCI drivers claiming IO space (and potentially
206  * oopsing.)
207  *
208  * Only set this larger if you really need inb() et.al. to operate over
209  * a larger address space.  Note that SOC_COMMON ioremaps each sockets
210  * IO space area, and so inb() et.al. must be defined to operate as per
211  * readb() et.al. on such platforms.
212  */
213 #ifndef IO_SPACE_LIMIT
214 #if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
215 #define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
216 #elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
217 #define IO_SPACE_LIMIT ((resource_size_t)0xffff)
218 #else
219 #define IO_SPACE_LIMIT ((resource_size_t)0)
220 #endif
221 #endif
222 
223 /*
224  *  IO port access primitives
225  *  -------------------------
226  *
227  * The ARM doesn't have special IO access instructions; all IO is memory
228  * mapped.  Note that these are defined to perform little endian accesses
229  * only.  Their primary purpose is to access PCI and ISA peripherals.
230  *
231  * Note that for a big endian machine, this implies that the following
232  * big endian mode connectivity is in place, as described by numerous
233  * ARM documents:
234  *
235  *    PCI:  D0-D7   D8-D15 D16-D23 D24-D31
236  *    ARM: D24-D31 D16-D23  D8-D15  D0-D7
237  *
238  * The machine specific io.h include defines __io to translate an "IO"
239  * address to a memory address.
240  *
241  * Note that we prevent GCC re-ordering or caching values in expressions
242  * by introducing sequence points into the in*() definitions.  Note that
243  * __raw_* do not guarantee this behaviour.
244  *
245  * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
246  */
247 #ifdef __io
248 #define outb(v,p)	({ __iowmb(); __raw_writeb(v,__io(p)); })
249 #define outw(v,p)	({ __iowmb(); __raw_writew((__force __u16) \
250 					cpu_to_le16(v),__io(p)); })
251 #define outl(v,p)	({ __iowmb(); __raw_writel((__force __u32) \
252 					cpu_to_le32(v),__io(p)); })
253 
254 #define inb(p)	({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
255 #define inw(p)	({ __u16 __v = le16_to_cpu((__force __le16) \
256 			__raw_readw(__io(p))); __iormb(); __v; })
257 #define inl(p)	({ __u32 __v = le32_to_cpu((__force __le32) \
258 			__raw_readl(__io(p))); __iormb(); __v; })
259 
260 #define outsb(p,d,l)		__raw_writesb(__io(p),d,l)
261 #define outsw(p,d,l)		__raw_writesw(__io(p),d,l)
262 #define outsl(p,d,l)		__raw_writesl(__io(p),d,l)
263 
264 #define insb(p,d,l)		__raw_readsb(__io(p),d,l)
265 #define insw(p,d,l)		__raw_readsw(__io(p),d,l)
266 #define insl(p,d,l)		__raw_readsl(__io(p),d,l)
267 #endif
268 
269 /*
270  * String version of IO memory access ops:
271  */
272 extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
273 extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
274 extern void _memset_io(volatile void __iomem *, int, size_t);
275 
276 #define mmiowb()
277 
278 /*
279  *  Memory access primitives
280  *  ------------------------
281  *
282  * These perform PCI memory accesses via an ioremap region.  They don't
283  * take an address as such, but a cookie.
284  *
285  * Again, this are defined to perform little endian accesses.  See the
286  * IO port primitives for more information.
287  */
288 #ifndef readl
289 #define readb_relaxed(c) ({ u8  __r = __raw_readb(c); __r; })
290 #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
291 					__raw_readw(c)); __r; })
292 #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
293 					__raw_readl(c)); __r; })
294 
295 #define writeb_relaxed(v,c)	__raw_writeb(v,c)
296 #define writew_relaxed(v,c)	__raw_writew((__force u16) cpu_to_le16(v),c)
297 #define writel_relaxed(v,c)	__raw_writel((__force u32) cpu_to_le32(v),c)
298 
299 #define readb(c)		({ u8  __v = readb_relaxed(c); __iormb(); __v; })
300 #define readw(c)		({ u16 __v = readw_relaxed(c); __iormb(); __v; })
301 #define readl(c)		({ u32 __v = readl_relaxed(c); __iormb(); __v; })
302 
303 #define writeb(v,c)		({ __iowmb(); writeb_relaxed(v,c); })
304 #define writew(v,c)		({ __iowmb(); writew_relaxed(v,c); })
305 #define writel(v,c)		({ __iowmb(); writel_relaxed(v,c); })
306 
307 #define readsb(p,d,l)		__raw_readsb(p,d,l)
308 #define readsw(p,d,l)		__raw_readsw(p,d,l)
309 #define readsl(p,d,l)		__raw_readsl(p,d,l)
310 
311 #define writesb(p,d,l)		__raw_writesb(p,d,l)
312 #define writesw(p,d,l)		__raw_writesw(p,d,l)
313 #define writesl(p,d,l)		__raw_writesl(p,d,l)
314 
315 #ifndef __ARMBE__
316 static inline void memset_io(volatile void __iomem *dst, unsigned c,
317 	size_t count)
318 {
319 	extern void mmioset(void *, unsigned int, size_t);
320 	mmioset((void __force *)dst, c, count);
321 }
322 #define memset_io(dst,c,count) memset_io(dst,c,count)
323 
324 static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
325 	size_t count)
326 {
327 	extern void mmiocpy(void *, const void *, size_t);
328 	mmiocpy(to, (const void __force *)from, count);
329 }
330 #define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
331 
332 static inline void memcpy_toio(volatile void __iomem *to, const void *from,
333 	size_t count)
334 {
335 	extern void mmiocpy(void *, const void *, size_t);
336 	mmiocpy((void __force *)to, from, count);
337 }
338 #define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
339 
340 #else
341 #define memset_io(c,v,l)	_memset_io(c,(v),(l))
342 #define memcpy_fromio(a,c,l)	_memcpy_fromio((a),c,(l))
343 #define memcpy_toio(c,a,l)	_memcpy_toio(c,(a),(l))
344 #endif
345 
346 #endif	/* readl */
347 
348 /*
349  * ioremap() and friends.
350  *
351  * ioremap() takes a resource address, and size.  Due to the ARM memory
352  * types, it is important to use the correct ioremap() function as each
353  * mapping has specific properties.
354  *
355  * Function		Memory type	Cacheability	Cache hint
356  * ioremap()		Device		n/a		n/a
357  * ioremap_nocache()	Device		n/a		n/a
358  * ioremap_cache()	Normal		Writeback	Read allocate
359  * ioremap_wc()		Normal		Non-cacheable	n/a
360  * ioremap_wt()		Normal		Non-cacheable	n/a
361  *
362  * All device mappings have the following properties:
363  * - no access speculation
364  * - no repetition (eg, on return from an exception)
365  * - number, order and size of accesses are maintained
366  * - unaligned accesses are "unpredictable"
367  * - writes may be delayed before they hit the endpoint device
368  *
369  * ioremap_nocache() is the same as ioremap() as there are too many device
370  * drivers using this for device registers, and documentation which tells
371  * people to use it for such for this to be any different.  This is not a
372  * safe fallback for memory-like mappings, or memory regions where the
373  * compiler may generate unaligned accesses - eg, via inlining its own
374  * memcpy.
375  *
376  * All normal memory mappings have the following properties:
377  * - reads can be repeated with no side effects
378  * - repeated reads return the last value written
379  * - reads can fetch additional locations without side effects
380  * - writes can be repeated (in certain cases) with no side effects
381  * - writes can be merged before accessing the target
382  * - unaligned accesses can be supported
383  * - ordering is not guaranteed without explicit dependencies or barrier
384  *   instructions
385  * - writes may be delayed before they hit the endpoint memory
386  *
387  * The cache hint is only a performance hint: CPUs may alias these hints.
388  * Eg, a CPU not implementing read allocate but implementing write allocate
389  * will provide a write allocate mapping instead.
390  */
391 void __iomem *ioremap(resource_size_t res_cookie, size_t size);
392 #define ioremap ioremap
393 #define ioremap_nocache ioremap
394 
395 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
396 #define ioremap_cache ioremap_cache
397 
398 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
399 #define ioremap_wc ioremap_wc
400 #define ioremap_wt ioremap_wc
401 
402 void iounmap(volatile void __iomem *iomem_cookie);
403 #define iounmap iounmap
404 
405 /*
406  * io{read,write}{16,32}be() macros
407  */
408 #define ioread16be(p)		({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
409 #define ioread32be(p)		({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
410 
411 #define iowrite16be(v,p)	({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
412 #define iowrite32be(v,p)	({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
413 
414 #ifndef ioport_map
415 #define ioport_map ioport_map
416 extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
417 #endif
418 #ifndef ioport_unmap
419 #define ioport_unmap ioport_unmap
420 extern void ioport_unmap(void __iomem *addr);
421 #endif
422 
423 struct pci_dev;
424 
425 #define pci_iounmap pci_iounmap
426 extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
427 
428 /*
429  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
430  * access
431  */
432 #define xlate_dev_mem_ptr(p)	__va(p)
433 
434 /*
435  * Convert a virtual cached pointer to an uncached pointer
436  */
437 #define xlate_dev_kmem_ptr(p)	p
438 
439 #include <asm-generic/io.h>
440 
441 /*
442  * can the hardware map this into one segment or not, given no other
443  * constraints.
444  */
445 #define BIOVEC_MERGEABLE(vec1, vec2)	\
446 	((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
447 
448 struct bio_vec;
449 extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
450 				      const struct bio_vec *vec2);
451 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2)				\
452 	(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) &&				\
453 	 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
454 
455 #ifdef CONFIG_MMU
456 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
457 extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
458 extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
459 extern int devmem_is_allowed(unsigned long pfn);
460 #endif
461 
462 /*
463  * Register ISA memory and port locations for glibc iopl/inb/outb
464  * emulation.
465  */
466 extern void register_isa_ports(unsigned int mmio, unsigned int io,
467 			       unsigned int io_shift);
468 
469 #endif	/* __KERNEL__ */
470 #endif	/* __ASM_ARM_IO_H */
471