1 #ifndef __ASMARM_ELF_H 2 #define __ASMARM_ELF_H 3 4 #include <asm/hwcap.h> 5 6 #ifndef __ASSEMBLY__ 7 /* 8 * ELF register definitions.. 9 */ 10 #include <asm/ptrace.h> 11 #include <asm/user.h> 12 13 typedef unsigned long elf_greg_t; 14 typedef unsigned long elf_freg_t[3]; 15 16 #define ELF_NGREG (sizeof (struct pt_regs) / sizeof(elf_greg_t)) 17 typedef elf_greg_t elf_gregset_t[ELF_NGREG]; 18 19 typedef struct user_fp elf_fpregset_t; 20 #endif 21 22 #define EM_ARM 40 23 #define EF_ARM_APCS26 0x08 24 #define EF_ARM_SOFT_FLOAT 0x200 25 #define EF_ARM_EABI_MASK 0xFF000000 26 27 #define R_ARM_NONE 0 28 #define R_ARM_PC24 1 29 #define R_ARM_ABS32 2 30 #define R_ARM_CALL 28 31 #define R_ARM_JUMP24 29 32 33 /* 34 * These are used to set parameters in the core dumps. 35 */ 36 #define ELF_CLASS ELFCLASS32 37 #ifdef __ARMEB__ 38 #define ELF_DATA ELFDATA2MSB 39 #else 40 #define ELF_DATA ELFDATA2LSB 41 #endif 42 #define ELF_ARCH EM_ARM 43 44 #ifndef __ASSEMBLY__ 45 /* 46 * This yields a string that ld.so will use to load implementation 47 * specific libraries for optimization. This is more specific in 48 * intent than poking at uname or /proc/cpuinfo. 49 * 50 * For now we just provide a fairly general string that describes the 51 * processor family. This could be made more specific later if someone 52 * implemented optimisations that require it. 26-bit CPUs give you 53 * "v1l" for ARM2 (no SWP) and "v2l" for anything else (ARM1 isn't 54 * supported). 32-bit CPUs give you "v3[lb]" for anything based on an 55 * ARM6 or ARM7 core and "armv4[lb]" for anything based on a StrongARM-1 56 * core. 57 */ 58 #define ELF_PLATFORM_SIZE 8 59 #define ELF_PLATFORM (elf_platform) 60 61 extern char elf_platform[]; 62 #endif 63 64 /* 65 * This is used to ensure we don't load something for the wrong architecture. 66 */ 67 #define elf_check_arch(x) ((x)->e_machine == EM_ARM && ELF_PROC_OK(x)) 68 69 /* 70 * 32-bit code is always OK. Some cpus can do 26-bit, some can't. 71 */ 72 #define ELF_PROC_OK(x) (ELF_THUMB_OK(x) && ELF_26BIT_OK(x)) 73 74 #define ELF_THUMB_OK(x) \ 75 ((elf_hwcap & HWCAP_THUMB && ((x)->e_entry & 1) == 1) || \ 76 ((x)->e_entry & 3) == 0) 77 78 #define ELF_26BIT_OK(x) \ 79 ((elf_hwcap & HWCAP_26BIT && (x)->e_flags & EF_ARM_APCS26) || \ 80 ((x)->e_flags & EF_ARM_APCS26) == 0) 81 82 #define USE_ELF_CORE_DUMP 83 #define ELF_EXEC_PAGESIZE 4096 84 85 /* This is the location that an ET_DYN program is loaded if exec'ed. Typical 86 use of this is to invoke "./ld.so someprog" to test out a new version of 87 the loader. We need to make sure that it is out of the way of the program 88 that it will "exec", and that there is sufficient room for the brk. */ 89 90 #define ELF_ET_DYN_BASE (2 * TASK_SIZE / 3) 91 92 /* When the program starts, a1 contains a pointer to a function to be 93 registered with atexit, as per the SVR4 ABI. A value of 0 means we 94 have no such handler. */ 95 #define ELF_PLAT_INIT(_r, load_addr) (_r)->ARM_r0 = 0 96 97 /* 98 * Since the FPA coprocessor uses CP1 and CP2, and iWMMXt uses CP0 99 * and CP1, we only enable access to the iWMMXt coprocessor if the 100 * binary is EABI or softfloat (and thus, guaranteed not to use 101 * FPA instructions.) 102 */ 103 #define SET_PERSONALITY(ex, ibcs2) \ 104 do { \ 105 if ((ex).e_flags & EF_ARM_APCS26) { \ 106 set_personality(PER_LINUX); \ 107 } else { \ 108 set_personality(PER_LINUX_32BIT); \ 109 if (elf_hwcap & HWCAP_IWMMXT && (ex).e_flags & (EF_ARM_EABI_MASK | EF_ARM_SOFT_FLOAT)) \ 110 set_thread_flag(TIF_USING_IWMMXT); \ 111 else \ 112 clear_thread_flag(TIF_USING_IWMMXT); \ 113 } \ 114 } while (0) 115 116 #endif 117