xref: /openbmc/linux/arch/arm/include/asm/div64.h (revision c819e2cf)
1 #ifndef __ASM_ARM_DIV64
2 #define __ASM_ARM_DIV64
3 
4 #include <linux/types.h>
5 #include <asm/compiler.h>
6 
7 /*
8  * The semantics of do_div() are:
9  *
10  * uint32_t do_div(uint64_t *n, uint32_t base)
11  * {
12  * 	uint32_t remainder = *n % base;
13  * 	*n = *n / base;
14  * 	return remainder;
15  * }
16  *
17  * In other words, a 64-bit dividend with a 32-bit divisor producing
18  * a 64-bit result and a 32-bit remainder.  To accomplish this optimally
19  * we call a special __do_div64 helper with completely non standard
20  * calling convention for arguments and results (beware).
21  */
22 
23 #ifdef __ARMEB__
24 #define __xh "r0"
25 #define __xl "r1"
26 #else
27 #define __xl "r0"
28 #define __xh "r1"
29 #endif
30 
31 #define __do_div_asm(n, base)					\
32 ({								\
33 	register unsigned int __base      asm("r4") = base;	\
34 	register unsigned long long __n   asm("r0") = n;	\
35 	register unsigned long long __res asm("r2");		\
36 	register unsigned int __rem       asm(__xh);		\
37 	asm(	__asmeq("%0", __xh)				\
38 		__asmeq("%1", "r2")				\
39 		__asmeq("%2", "r0")				\
40 		__asmeq("%3", "r4")				\
41 		"bl	__do_div64"				\
42 		: "=r" (__rem), "=r" (__res)			\
43 		: "r" (__n), "r" (__base)			\
44 		: "ip", "lr", "cc");				\
45 	n = __res;						\
46 	__rem;							\
47 })
48 
49 #if __GNUC__ < 4 || !defined(CONFIG_AEABI)
50 
51 /*
52  * gcc versions earlier than 4.0 are simply too problematic for the
53  * optimized implementation below. First there is gcc PR 15089 that
54  * tend to trig on more complex constructs, spurious .global __udivsi3
55  * are inserted even if none of those symbols are referenced in the
56  * generated code, and those gcc versions are not able to do constant
57  * propagation on long long values anyway.
58  */
59 #define do_div(n, base) __do_div_asm(n, base)
60 
61 #elif __GNUC__ >= 4
62 
63 #include <asm/bug.h>
64 
65 /*
66  * If the divisor happens to be constant, we determine the appropriate
67  * inverse at compile time to turn the division into a few inline
68  * multiplications instead which is much faster. And yet only if compiling
69  * for ARMv4 or higher (we need umull/umlal) and if the gcc version is
70  * sufficiently recent to perform proper long long constant propagation.
71  * (It is unfortunate that gcc doesn't perform all this internally.)
72  */
73 #define do_div(n, base)							\
74 ({									\
75 	unsigned int __r, __b = (base);					\
76 	if (!__builtin_constant_p(__b) || __b == 0 ||			\
77 	    (__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) {	\
78 		/* non-constant divisor (or zero): slow path */		\
79 		__r = __do_div_asm(n, __b);				\
80 	} else if ((__b & (__b - 1)) == 0) {				\
81 		/* Trivial: __b is constant and a power of 2 */		\
82 		/* gcc does the right thing with this code.  */		\
83 		__r = n;						\
84 		__r &= (__b - 1);					\
85 		n /= __b;						\
86 	} else {							\
87 		/* Multiply by inverse of __b: n/b = n*(p/b)/p       */	\
88 		/* We rely on the fact that most of this code gets   */	\
89 		/* optimized away at compile time due to constant    */	\
90 		/* propagation and only a couple inline assembly     */	\
91 		/* instructions should remain. Better avoid any      */	\
92 		/* code construct that might prevent that.           */	\
93 		unsigned long long __res, __x, __t, __m, __n = n;	\
94 		unsigned int __c, __p, __z = 0;				\
95 		/* preserve low part of n for reminder computation */	\
96 		__r = __n;						\
97 		/* determine number of bits to represent __b */		\
98 		__p = 1 << __div64_fls(__b);				\
99 		/* compute __m = ((__p << 64) + __b - 1) / __b */	\
100 		__m = (~0ULL / __b) * __p;				\
101 		__m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b;	\
102 		/* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */	\
103 		__x = ~0ULL / __b * __b - 1;				\
104 		__res = (__m & 0xffffffff) * (__x & 0xffffffff);	\
105 		__res >>= 32;						\
106 		__res += (__m & 0xffffffff) * (__x >> 32);		\
107 		__t = __res;						\
108 		__res += (__x & 0xffffffff) * (__m >> 32);		\
109 		__t = (__res < __t) ? (1ULL << 32) : 0;			\
110 		__res = (__res >> 32) + __t;				\
111 		__res += (__m >> 32) * (__x >> 32);			\
112 		__res /= __p;						\
113 		/* Now sanitize and optimize what we've got. */		\
114 		if (~0ULL % (__b / (__b & -__b)) == 0) {		\
115 			/* those cases can be simplified with: */	\
116 			__n /= (__b & -__b);				\
117 			__m = ~0ULL / (__b / (__b & -__b));		\
118 			__p = 1;					\
119 			__c = 1;					\
120 		} else if (__res != __x / __b) {			\
121 			/* We can't get away without a correction    */	\
122 			/* to compensate for bit truncation errors.  */	\
123 			/* To avoid it we'd need an additional bit   */	\
124 			/* to represent __m which would overflow it. */	\
125 			/* Instead we do m=p/b and n/b=(n*m+m)/p.    */	\
126 			__c = 1;					\
127 			/* Compute __m = (__p << 64) / __b */		\
128 			__m = (~0ULL / __b) * __p;			\
129 			__m += ((~0ULL % __b + 1) * __p) / __b;		\
130 		} else {						\
131 			/* Reduce __m/__p, and try to clear bit 31   */	\
132 			/* of __m when possible otherwise that'll    */	\
133 			/* need extra overflow handling later.       */	\
134 			unsigned int __bits = -(__m & -__m);		\
135 			__bits |= __m >> 32;				\
136 			__bits = (~__bits) << 1;			\
137 			/* If __bits == 0 then setting bit 31 is     */	\
138 			/* unavoidable.  Simply apply the maximum    */	\
139 			/* possible reduction in that case.          */	\
140 			/* Otherwise the MSB of __bits indicates the */	\
141 			/* best reduction we should apply.           */	\
142 			if (!__bits) {					\
143 				__p /= (__m & -__m);			\
144 				__m /= (__m & -__m);			\
145 			} else {					\
146 				__p >>= __div64_fls(__bits);		\
147 				__m >>= __div64_fls(__bits);		\
148 			}						\
149 			/* No correction needed. */			\
150 			__c = 0;					\
151 		}							\
152 		/* Now we have a combination of 2 conditions:        */	\
153 		/* 1) whether or not we need a correction (__c), and */	\
154 		/* 2) whether or not there might be an overflow in   */	\
155 		/*    the cross product (__m & ((1<<63) | (1<<31)))  */	\
156 		/* Select the best insn combination to perform the   */	\
157 		/* actual __m * __n / (__p << 64) operation.         */	\
158 		if (!__c) {						\
159 			asm (	"umull	%Q0, %R0, %Q1, %Q2\n\t"		\
160 				"mov	%Q0, #0"			\
161 				: "=&r" (__res)				\
162 				: "r" (__m), "r" (__n)			\
163 				: "cc" );				\
164 		} else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {	\
165 			__res = __m;					\
166 			asm (	"umlal	%Q0, %R0, %Q1, %Q2\n\t"		\
167 				"mov	%Q0, #0"			\
168 				: "+&r" (__res)				\
169 				: "r" (__m), "r" (__n)			\
170 				: "cc" );				\
171 		} else {						\
172 			asm (	"umull	%Q0, %R0, %Q1, %Q2\n\t"		\
173 				"cmn	%Q0, %Q1\n\t"			\
174 				"adcs	%R0, %R0, %R1\n\t"		\
175 				"adc	%Q0, %3, #0"			\
176 				: "=&r" (__res)				\
177 				: "r" (__m), "r" (__n), "r" (__z)	\
178 				: "cc" );				\
179 		}							\
180 		if (!(__m & ((1ULL << 63) | (1ULL << 31)))) {		\
181 			asm (	"umlal	%R0, %Q0, %R1, %Q2\n\t"		\
182 				"umlal	%R0, %Q0, %Q1, %R2\n\t"		\
183 				"mov	%R0, #0\n\t"			\
184 				"umlal	%Q0, %R0, %R1, %R2"		\
185 				: "+&r" (__res)				\
186 				: "r" (__m), "r" (__n)			\
187 				: "cc" );				\
188 		} else {						\
189 			asm (	"umlal	%R0, %Q0, %R2, %Q3\n\t"		\
190 				"umlal	%R0, %1, %Q2, %R3\n\t"		\
191 				"mov	%R0, #0\n\t"			\
192 				"adds	%Q0, %1, %Q0\n\t"		\
193 				"adc	%R0, %R0, #0\n\t"		\
194 				"umlal	%Q0, %R0, %R2, %R3"		\
195 				: "+&r" (__res), "+&r" (__z)		\
196 				: "r" (__m), "r" (__n)			\
197 				: "cc" );				\
198 		}							\
199 		__res /= __p;						\
200 		/* The reminder can be computed with 32-bit regs     */	\
201 		/* only, and gcc is good at that.                    */	\
202 		{							\
203 			unsigned int __res0 = __res;			\
204 			unsigned int __b0 = __b;			\
205 			__r -= __res0 * __b0;				\
206 		}							\
207 		/* BUG_ON(__r >= __b || __res * __b + __r != n); */	\
208 		n = __res;						\
209 	}								\
210 	__r;								\
211 })
212 
213 /* our own fls implementation to make sure constant propagation is fine */
214 #define __div64_fls(bits)						\
215 ({									\
216 	unsigned int __left = (bits), __nr = 0;				\
217 	if (__left & 0xffff0000) __nr += 16, __left >>= 16;		\
218 	if (__left & 0x0000ff00) __nr +=  8, __left >>=  8;		\
219 	if (__left & 0x000000f0) __nr +=  4, __left >>=  4;		\
220 	if (__left & 0x0000000c) __nr +=  2, __left >>=  2;		\
221 	if (__left & 0x00000002) __nr +=  1;				\
222 	__nr;								\
223 })
224 
225 #endif
226 
227 #endif
228