1 /* 2 * arch/arm/include/asm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #ifndef _ASMARM_CACHEFLUSH_H 11 #define _ASMARM_CACHEFLUSH_H 12 13 #include <linux/mm.h> 14 15 #include <asm/glue-cache.h> 16 #include <asm/shmparam.h> 17 #include <asm/cachetype.h> 18 #include <asm/outercache.h> 19 20 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 21 22 /* 23 * This flag is used to indicate that the page pointed to by a pte is clean 24 * and does not require cleaning before returning it to the user. 25 */ 26 #define PG_dcache_clean PG_arch_1 27 28 /* 29 * MM Cache Management 30 * =================== 31 * 32 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 33 * implement these methods. 34 * 35 * Start addresses are inclusive and end addresses are exclusive; 36 * start addresses should be rounded down, end addresses up. 37 * 38 * See Documentation/cachetlb.txt for more information. 39 * Please note that the implementation of these, and the required 40 * effects are cache-type (VIVT/VIPT/PIPT) specific. 41 * 42 * flush_icache_all() 43 * 44 * Unconditionally clean and invalidate the entire icache. 45 * Currently only needed for cache-v6.S and cache-v7.S, see 46 * __flush_icache_all for the generic implementation. 47 * 48 * flush_kern_all() 49 * 50 * Unconditionally clean and invalidate the entire cache. 51 * 52 * flush_kern_louis() 53 * 54 * Flush data cache levels up to the level of unification 55 * inner shareable and invalidate the I-cache. 56 * Only needed from v7 onwards, falls back to flush_cache_all() 57 * for all other processor versions. 58 * 59 * flush_user_all() 60 * 61 * Clean and invalidate all user space cache entries 62 * before a change of page tables. 63 * 64 * flush_user_range(start, end, flags) 65 * 66 * Clean and invalidate a range of cache entries in the 67 * specified address space before a change of page tables. 68 * - start - user start address (inclusive, page aligned) 69 * - end - user end address (exclusive, page aligned) 70 * - flags - vma->vm_flags field 71 * 72 * coherent_kern_range(start, end) 73 * 74 * Ensure coherency between the Icache and the Dcache in the 75 * region described by start, end. If you have non-snooping 76 * Harvard caches, you need to implement this function. 77 * - start - virtual start address 78 * - end - virtual end address 79 * 80 * coherent_user_range(start, end) 81 * 82 * Ensure coherency between the Icache and the Dcache in the 83 * region described by start, end. If you have non-snooping 84 * Harvard caches, you need to implement this function. 85 * - start - virtual start address 86 * - end - virtual end address 87 * 88 * flush_kern_dcache_area(kaddr, size) 89 * 90 * Ensure that the data held in page is written back. 91 * - kaddr - page address 92 * - size - region size 93 * 94 * DMA Cache Coherency 95 * =================== 96 * 97 * dma_flush_range(start, end) 98 * 99 * Clean and invalidate the specified virtual address range. 100 * - start - virtual start address 101 * - end - virtual end address 102 */ 103 104 struct cpu_cache_fns { 105 void (*flush_icache_all)(void); 106 void (*flush_kern_all)(void); 107 void (*flush_kern_louis)(void); 108 void (*flush_user_all)(void); 109 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 110 111 void (*coherent_kern_range)(unsigned long, unsigned long); 112 int (*coherent_user_range)(unsigned long, unsigned long); 113 void (*flush_kern_dcache_area)(void *, size_t); 114 115 void (*dma_map_area)(const void *, size_t, int); 116 void (*dma_unmap_area)(const void *, size_t, int); 117 118 void (*dma_flush_range)(const void *, const void *); 119 }; 120 121 /* 122 * Select the calling method 123 */ 124 #ifdef MULTI_CACHE 125 126 extern struct cpu_cache_fns cpu_cache; 127 128 #define __cpuc_flush_icache_all cpu_cache.flush_icache_all 129 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all 130 #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis 131 #define __cpuc_flush_user_all cpu_cache.flush_user_all 132 #define __cpuc_flush_user_range cpu_cache.flush_user_range 133 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 134 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range 135 #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area 136 137 /* 138 * These are private to the dma-mapping API. Do not use directly. 139 * Their sole purpose is to ensure that data held in the cache 140 * is visible to DMA, or data written by DMA to system memory is 141 * visible to the CPU. 142 */ 143 #define dmac_map_area cpu_cache.dma_map_area 144 #define dmac_unmap_area cpu_cache.dma_unmap_area 145 #define dmac_flush_range cpu_cache.dma_flush_range 146 147 #else 148 149 extern void __cpuc_flush_icache_all(void); 150 extern void __cpuc_flush_kern_all(void); 151 extern void __cpuc_flush_kern_louis(void); 152 extern void __cpuc_flush_user_all(void); 153 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 154 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 155 extern int __cpuc_coherent_user_range(unsigned long, unsigned long); 156 extern void __cpuc_flush_dcache_area(void *, size_t); 157 158 /* 159 * These are private to the dma-mapping API. Do not use directly. 160 * Their sole purpose is to ensure that data held in the cache 161 * is visible to DMA, or data written by DMA to system memory is 162 * visible to the CPU. 163 */ 164 extern void dmac_map_area(const void *, size_t, int); 165 extern void dmac_unmap_area(const void *, size_t, int); 166 extern void dmac_flush_range(const void *, const void *); 167 168 #endif 169 170 /* 171 * Copy user data from/to a page which is mapped into a different 172 * processes address space. Really, we want to allow our "user 173 * space" model to handle this. 174 */ 175 extern void copy_to_user_page(struct vm_area_struct *, struct page *, 176 unsigned long, void *, const void *, unsigned long); 177 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 178 do { \ 179 memcpy(dst, src, len); \ 180 } while (0) 181 182 /* 183 * Convert calls to our calling convention. 184 */ 185 186 /* Invalidate I-cache */ 187 #define __flush_icache_all_generic() \ 188 asm("mcr p15, 0, %0, c7, c5, 0" \ 189 : : "r" (0)); 190 191 /* Invalidate I-cache inner shareable */ 192 #define __flush_icache_all_v7_smp() \ 193 asm("mcr p15, 0, %0, c7, c1, 0" \ 194 : : "r" (0)); 195 196 /* 197 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7 198 * will fall through to use __flush_icache_all_generic. 199 */ 200 #if (defined(CONFIG_CPU_V7) && \ 201 (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \ 202 defined(CONFIG_SMP_ON_UP) 203 #define __flush_icache_preferred __cpuc_flush_icache_all 204 #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP) 205 #define __flush_icache_preferred __flush_icache_all_v7_smp 206 #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920) 207 #define __flush_icache_preferred __cpuc_flush_icache_all 208 #else 209 #define __flush_icache_preferred __flush_icache_all_generic 210 #endif 211 212 static inline void __flush_icache_all(void) 213 { 214 __flush_icache_preferred(); 215 dsb(ishst); 216 } 217 218 /* 219 * Flush caches up to Level of Unification Inner Shareable 220 */ 221 #define flush_cache_louis() __cpuc_flush_kern_louis() 222 223 #define flush_cache_all() __cpuc_flush_kern_all() 224 225 static inline void vivt_flush_cache_mm(struct mm_struct *mm) 226 { 227 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 228 __cpuc_flush_user_all(); 229 } 230 231 static inline void 232 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 233 { 234 struct mm_struct *mm = vma->vm_mm; 235 236 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 237 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 238 vma->vm_flags); 239 } 240 241 static inline void 242 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 243 { 244 struct mm_struct *mm = vma->vm_mm; 245 246 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) { 247 unsigned long addr = user_addr & PAGE_MASK; 248 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 249 } 250 } 251 252 #ifndef CONFIG_CPU_CACHE_VIPT 253 #define flush_cache_mm(mm) \ 254 vivt_flush_cache_mm(mm) 255 #define flush_cache_range(vma,start,end) \ 256 vivt_flush_cache_range(vma,start,end) 257 #define flush_cache_page(vma,addr,pfn) \ 258 vivt_flush_cache_page(vma,addr,pfn) 259 #else 260 extern void flush_cache_mm(struct mm_struct *mm); 261 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 262 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 263 #endif 264 265 #define flush_cache_dup_mm(mm) flush_cache_mm(mm) 266 267 /* 268 * flush_cache_user_range is used when we want to ensure that the 269 * Harvard caches are synchronised for the user space address range. 270 * This is used for the ARM private sys_cacheflush system call. 271 */ 272 #define flush_cache_user_range(s,e) __cpuc_coherent_user_range(s,e) 273 274 /* 275 * Perform necessary cache operations to ensure that data previously 276 * stored within this range of addresses can be executed by the CPU. 277 */ 278 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 279 280 /* 281 * Perform necessary cache operations to ensure that the TLB will 282 * see data written in the specified area. 283 */ 284 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 285 286 /* 287 * flush_dcache_page is used when the kernel has written to the page 288 * cache page at virtual address page->virtual. 289 * 290 * If this page isn't mapped (ie, page_mapping == NULL), or it might 291 * have userspace mappings, then we _must_ always clean + invalidate 292 * the dcache entries associated with the kernel mapping. 293 * 294 * Otherwise we can defer the operation, and clean the cache when we are 295 * about to change to user space. This is the same method as used on SPARC64. 296 * See update_mmu_cache for the user space part. 297 */ 298 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 299 extern void flush_dcache_page(struct page *); 300 301 static inline void flush_kernel_vmap_range(void *addr, int size) 302 { 303 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 304 __cpuc_flush_dcache_area(addr, (size_t)size); 305 } 306 static inline void invalidate_kernel_vmap_range(void *addr, int size) 307 { 308 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 309 __cpuc_flush_dcache_area(addr, (size_t)size); 310 } 311 312 #define ARCH_HAS_FLUSH_ANON_PAGE 313 static inline void flush_anon_page(struct vm_area_struct *vma, 314 struct page *page, unsigned long vmaddr) 315 { 316 extern void __flush_anon_page(struct vm_area_struct *vma, 317 struct page *, unsigned long); 318 if (PageAnon(page)) 319 __flush_anon_page(vma, page, vmaddr); 320 } 321 322 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 323 extern void flush_kernel_dcache_page(struct page *); 324 325 #define flush_dcache_mmap_lock(mapping) \ 326 spin_lock_irq(&(mapping)->tree_lock) 327 #define flush_dcache_mmap_unlock(mapping) \ 328 spin_unlock_irq(&(mapping)->tree_lock) 329 330 #define flush_icache_user_range(vma,page,addr,len) \ 331 flush_dcache_page(page) 332 333 /* 334 * We don't appear to need to do anything here. In fact, if we did, we'd 335 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 336 */ 337 #define flush_icache_page(vma,page) do { } while (0) 338 339 /* 340 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 341 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 342 * caches, since the direct-mappings of these pages may contain cached 343 * data, we need to do a full cache flush to ensure that writebacks 344 * don't corrupt data placed into these pages via the new mappings. 345 */ 346 static inline void flush_cache_vmap(unsigned long start, unsigned long end) 347 { 348 if (!cache_is_vipt_nonaliasing()) 349 flush_cache_all(); 350 else 351 /* 352 * set_pte_at() called from vmap_pte_range() does not 353 * have a DSB after cleaning the cache line. 354 */ 355 dsb(ishst); 356 } 357 358 static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 359 { 360 if (!cache_is_vipt_nonaliasing()) 361 flush_cache_all(); 362 } 363 364 /* 365 * Memory synchronization helpers for mixed cached vs non cached accesses. 366 * 367 * Some synchronization algorithms have to set states in memory with the 368 * cache enabled or disabled depending on the code path. It is crucial 369 * to always ensure proper cache maintenance to update main memory right 370 * away in that case. 371 * 372 * Any cached write must be followed by a cache clean operation. 373 * Any cached read must be preceded by a cache invalidate operation. 374 * Yet, in the read case, a cache flush i.e. atomic clean+invalidate 375 * operation is needed to avoid discarding possible concurrent writes to the 376 * accessed memory. 377 * 378 * Also, in order to prevent a cached writer from interfering with an 379 * adjacent non-cached writer, each state variable must be located to 380 * a separate cache line. 381 */ 382 383 /* 384 * This needs to be >= the max cache writeback size of all 385 * supported platforms included in the current kernel configuration. 386 * This is used to align state variables to their own cache lines. 387 */ 388 #define __CACHE_WRITEBACK_ORDER 6 /* guessed from existing platforms */ 389 #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER) 390 391 /* 392 * There is no __cpuc_clean_dcache_area but we use it anyway for 393 * code intent clarity, and alias it to __cpuc_flush_dcache_area. 394 */ 395 #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area 396 397 /* 398 * Ensure preceding writes to *p by this CPU are visible to 399 * subsequent reads by other CPUs: 400 */ 401 static inline void __sync_cache_range_w(volatile void *p, size_t size) 402 { 403 char *_p = (char *)p; 404 405 __cpuc_clean_dcache_area(_p, size); 406 outer_clean_range(__pa(_p), __pa(_p + size)); 407 } 408 409 /* 410 * Ensure preceding writes to *p by other CPUs are visible to 411 * subsequent reads by this CPU. We must be careful not to 412 * discard data simultaneously written by another CPU, hence the 413 * usage of flush rather than invalidate operations. 414 */ 415 static inline void __sync_cache_range_r(volatile void *p, size_t size) 416 { 417 char *_p = (char *)p; 418 419 #ifdef CONFIG_OUTER_CACHE 420 if (outer_cache.flush_range) { 421 /* 422 * Ensure dirty data migrated from other CPUs into our cache 423 * are cleaned out safely before the outer cache is cleaned: 424 */ 425 __cpuc_clean_dcache_area(_p, size); 426 427 /* Clean and invalidate stale data for *p from outer ... */ 428 outer_flush_range(__pa(_p), __pa(_p + size)); 429 } 430 #endif 431 432 /* ... and inner cache: */ 433 __cpuc_flush_dcache_area(_p, size); 434 } 435 436 #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr)) 437 #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr)) 438 439 /* 440 * Disabling cache access for one CPU in an ARMv7 SMP system is tricky. 441 * To do so we must: 442 * 443 * - Clear the SCTLR.C bit to prevent further cache allocations 444 * - Flush the desired level of cache 445 * - Clear the ACTLR "SMP" bit to disable local coherency 446 * 447 * ... and so without any intervening memory access in between those steps, 448 * not even to the stack. 449 * 450 * WARNING -- After this has been called: 451 * 452 * - No ldrex/strex (and similar) instructions must be used. 453 * - The CPU is obviously no longer coherent with the other CPUs. 454 * - This is unlikely to work as expected if Linux is running non-secure. 455 * 456 * Note: 457 * 458 * - This is known to apply to several ARMv7 processor implementations, 459 * however some exceptions may exist. Caveat emptor. 460 * 461 * - The clobber list is dictated by the call to v7_flush_dcache_*. 462 * fp is preserved to the stack explicitly prior disabling the cache 463 * since adding it to the clobber list is incompatible with having 464 * CONFIG_FRAME_POINTER=y. ip is saved as well if ever r12-clobbering 465 * trampoline are inserted by the linker and to keep sp 64-bit aligned. 466 */ 467 #define v7_exit_coherency_flush(level) \ 468 asm volatile( \ 469 ".arch armv7-a \n\t" \ 470 "stmfd sp!, {fp, ip} \n\t" \ 471 "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR \n\t" \ 472 "bic r0, r0, #"__stringify(CR_C)" \n\t" \ 473 "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR \n\t" \ 474 "isb \n\t" \ 475 "bl v7_flush_dcache_"__stringify(level)" \n\t" \ 476 "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR \n\t" \ 477 "bic r0, r0, #(1 << 6) @ disable local coherency \n\t" \ 478 "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR \n\t" \ 479 "isb \n\t" \ 480 "dsb \n\t" \ 481 "ldmfd sp!, {fp, ip}" \ 482 : : : "r0","r1","r2","r3","r4","r5","r6","r7", \ 483 "r9","r10","lr","memory" ) 484 485 #ifdef CONFIG_MMU 486 int set_memory_ro(unsigned long addr, int numpages); 487 int set_memory_rw(unsigned long addr, int numpages); 488 int set_memory_x(unsigned long addr, int numpages); 489 int set_memory_nx(unsigned long addr, int numpages); 490 #else 491 static inline int set_memory_ro(unsigned long addr, int numpages) { return 0; } 492 static inline int set_memory_rw(unsigned long addr, int numpages) { return 0; } 493 static inline int set_memory_x(unsigned long addr, int numpages) { return 0; } 494 static inline int set_memory_nx(unsigned long addr, int numpages) { return 0; } 495 #endif 496 497 #ifdef CONFIG_DEBUG_RODATA 498 void mark_rodata_ro(void); 499 void set_kernel_text_rw(void); 500 void set_kernel_text_ro(void); 501 #else 502 static inline void set_kernel_text_rw(void) { } 503 static inline void set_kernel_text_ro(void) { } 504 #endif 505 506 void flush_uprobe_xol_access(struct page *page, unsigned long uaddr, 507 void *kaddr, unsigned long len); 508 509 #endif 510