1 /* 2 * arch/arm/include/asm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #ifndef _ASMARM_CACHEFLUSH_H 11 #define _ASMARM_CACHEFLUSH_H 12 13 #include <linux/mm.h> 14 15 #include <asm/glue.h> 16 #include <asm/shmparam.h> 17 #include <asm/cachetype.h> 18 19 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21 /* 22 * Cache Model 23 * =========== 24 */ 25 #undef _CACHE 26 #undef MULTI_CACHE 27 28 #if defined(CONFIG_CPU_CACHE_V3) 29 # ifdef _CACHE 30 # define MULTI_CACHE 1 31 # else 32 # define _CACHE v3 33 # endif 34 #endif 35 36 #if defined(CONFIG_CPU_CACHE_V4) 37 # ifdef _CACHE 38 # define MULTI_CACHE 1 39 # else 40 # define _CACHE v4 41 # endif 42 #endif 43 44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 46 # define MULTI_CACHE 1 47 #endif 48 49 #if defined(CONFIG_CPU_FA526) 50 # ifdef _CACHE 51 # define MULTI_CACHE 1 52 # else 53 # define _CACHE fa 54 # endif 55 #endif 56 57 #if defined(CONFIG_CPU_ARM926T) 58 # ifdef _CACHE 59 # define MULTI_CACHE 1 60 # else 61 # define _CACHE arm926 62 # endif 63 #endif 64 65 #if defined(CONFIG_CPU_ARM940T) 66 # ifdef _CACHE 67 # define MULTI_CACHE 1 68 # else 69 # define _CACHE arm940 70 # endif 71 #endif 72 73 #if defined(CONFIG_CPU_ARM946E) 74 # ifdef _CACHE 75 # define MULTI_CACHE 1 76 # else 77 # define _CACHE arm946 78 # endif 79 #endif 80 81 #if defined(CONFIG_CPU_CACHE_V4WB) 82 # ifdef _CACHE 83 # define MULTI_CACHE 1 84 # else 85 # define _CACHE v4wb 86 # endif 87 #endif 88 89 #if defined(CONFIG_CPU_XSCALE) 90 # ifdef _CACHE 91 # define MULTI_CACHE 1 92 # else 93 # define _CACHE xscale 94 # endif 95 #endif 96 97 #if defined(CONFIG_CPU_XSC3) 98 # ifdef _CACHE 99 # define MULTI_CACHE 1 100 # else 101 # define _CACHE xsc3 102 # endif 103 #endif 104 105 #if defined(CONFIG_CPU_MOHAWK) 106 # ifdef _CACHE 107 # define MULTI_CACHE 1 108 # else 109 # define _CACHE mohawk 110 # endif 111 #endif 112 113 #if defined(CONFIG_CPU_FEROCEON) 114 # define MULTI_CACHE 1 115 #endif 116 117 #if defined(CONFIG_CPU_V6) 118 //# ifdef _CACHE 119 # define MULTI_CACHE 1 120 //# else 121 //# define _CACHE v6 122 //# endif 123 #endif 124 125 #if defined(CONFIG_CPU_V7) 126 //# ifdef _CACHE 127 # define MULTI_CACHE 1 128 //# else 129 //# define _CACHE v7 130 //# endif 131 #endif 132 133 #if !defined(_CACHE) && !defined(MULTI_CACHE) 134 #error Unknown cache maintainence model 135 #endif 136 137 /* 138 * This flag is used to indicate that the page pointed to by a pte 139 * is dirty and requires cleaning before returning it to the user. 140 */ 141 #define PG_dcache_dirty PG_arch_1 142 143 /* 144 * MM Cache Management 145 * =================== 146 * 147 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 148 * implement these methods. 149 * 150 * Start addresses are inclusive and end addresses are exclusive; 151 * start addresses should be rounded down, end addresses up. 152 * 153 * See Documentation/cachetlb.txt for more information. 154 * Please note that the implementation of these, and the required 155 * effects are cache-type (VIVT/VIPT/PIPT) specific. 156 * 157 * flush_cache_kern_all() 158 * 159 * Unconditionally clean and invalidate the entire cache. 160 * 161 * flush_cache_user_mm(mm) 162 * 163 * Clean and invalidate all user space cache entries 164 * before a change of page tables. 165 * 166 * flush_cache_user_range(start, end, flags) 167 * 168 * Clean and invalidate a range of cache entries in the 169 * specified address space before a change of page tables. 170 * - start - user start address (inclusive, page aligned) 171 * - end - user end address (exclusive, page aligned) 172 * - flags - vma->vm_flags field 173 * 174 * coherent_kern_range(start, end) 175 * 176 * Ensure coherency between the Icache and the Dcache in the 177 * region described by start, end. If you have non-snooping 178 * Harvard caches, you need to implement this function. 179 * - start - virtual start address 180 * - end - virtual end address 181 * 182 * DMA Cache Coherency 183 * =================== 184 * 185 * dma_inv_range(start, end) 186 * 187 * Invalidate (discard) the specified virtual address range. 188 * May not write back any entries. If 'start' or 'end' 189 * are not cache line aligned, those lines must be written 190 * back. 191 * - start - virtual start address 192 * - end - virtual end address 193 * 194 * dma_clean_range(start, end) 195 * 196 * Clean (write back) the specified virtual address range. 197 * - start - virtual start address 198 * - end - virtual end address 199 * 200 * dma_flush_range(start, end) 201 * 202 * Clean and invalidate the specified virtual address range. 203 * - start - virtual start address 204 * - end - virtual end address 205 */ 206 207 struct cpu_cache_fns { 208 void (*flush_kern_all)(void); 209 void (*flush_user_all)(void); 210 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 211 212 void (*coherent_kern_range)(unsigned long, unsigned long); 213 void (*coherent_user_range)(unsigned long, unsigned long); 214 void (*flush_kern_dcache_area)(void *, size_t); 215 216 void (*dma_inv_range)(const void *, const void *); 217 void (*dma_clean_range)(const void *, const void *); 218 void (*dma_flush_range)(const void *, const void *); 219 }; 220 221 struct outer_cache_fns { 222 void (*inv_range)(unsigned long, unsigned long); 223 void (*clean_range)(unsigned long, unsigned long); 224 void (*flush_range)(unsigned long, unsigned long); 225 }; 226 227 /* 228 * Select the calling method 229 */ 230 #ifdef MULTI_CACHE 231 232 extern struct cpu_cache_fns cpu_cache; 233 234 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all 235 #define __cpuc_flush_user_all cpu_cache.flush_user_all 236 #define __cpuc_flush_user_range cpu_cache.flush_user_range 237 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 238 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range 239 #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area 240 241 /* 242 * These are private to the dma-mapping API. Do not use directly. 243 * Their sole purpose is to ensure that data held in the cache 244 * is visible to DMA, or data written by DMA to system memory is 245 * visible to the CPU. 246 */ 247 #define dmac_inv_range cpu_cache.dma_inv_range 248 #define dmac_clean_range cpu_cache.dma_clean_range 249 #define dmac_flush_range cpu_cache.dma_flush_range 250 251 #else 252 253 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 254 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 255 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 256 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 257 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 258 #define __cpuc_flush_dcache_area __glue(_CACHE,_flush_kern_dcache_area) 259 260 extern void __cpuc_flush_kern_all(void); 261 extern void __cpuc_flush_user_all(void); 262 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 263 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 264 extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 265 extern void __cpuc_flush_dcache_area(void *, size_t); 266 267 /* 268 * These are private to the dma-mapping API. Do not use directly. 269 * Their sole purpose is to ensure that data held in the cache 270 * is visible to DMA, or data written by DMA to system memory is 271 * visible to the CPU. 272 */ 273 #define dmac_inv_range __glue(_CACHE,_dma_inv_range) 274 #define dmac_clean_range __glue(_CACHE,_dma_clean_range) 275 #define dmac_flush_range __glue(_CACHE,_dma_flush_range) 276 277 extern void dmac_inv_range(const void *, const void *); 278 extern void dmac_clean_range(const void *, const void *); 279 extern void dmac_flush_range(const void *, const void *); 280 281 #endif 282 283 #ifdef CONFIG_OUTER_CACHE 284 285 extern struct outer_cache_fns outer_cache; 286 287 static inline void outer_inv_range(unsigned long start, unsigned long end) 288 { 289 if (outer_cache.inv_range) 290 outer_cache.inv_range(start, end); 291 } 292 static inline void outer_clean_range(unsigned long start, unsigned long end) 293 { 294 if (outer_cache.clean_range) 295 outer_cache.clean_range(start, end); 296 } 297 static inline void outer_flush_range(unsigned long start, unsigned long end) 298 { 299 if (outer_cache.flush_range) 300 outer_cache.flush_range(start, end); 301 } 302 303 #else 304 305 static inline void outer_inv_range(unsigned long start, unsigned long end) 306 { } 307 static inline void outer_clean_range(unsigned long start, unsigned long end) 308 { } 309 static inline void outer_flush_range(unsigned long start, unsigned long end) 310 { } 311 312 #endif 313 314 /* 315 * Copy user data from/to a page which is mapped into a different 316 * processes address space. Really, we want to allow our "user 317 * space" model to handle this. 318 */ 319 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 320 do { \ 321 memcpy(dst, src, len); \ 322 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\ 323 } while (0) 324 325 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 326 do { \ 327 memcpy(dst, src, len); \ 328 } while (0) 329 330 /* 331 * Convert calls to our calling convention. 332 */ 333 #define flush_cache_all() __cpuc_flush_kern_all() 334 335 static inline void vivt_flush_cache_mm(struct mm_struct *mm) 336 { 337 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 338 __cpuc_flush_user_all(); 339 } 340 341 static inline void 342 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 343 { 344 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) 345 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 346 vma->vm_flags); 347 } 348 349 static inline void 350 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 351 { 352 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) { 353 unsigned long addr = user_addr & PAGE_MASK; 354 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 355 } 356 } 357 358 static inline void 359 vivt_flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 360 unsigned long uaddr, void *kaddr, 361 unsigned long len, int write) 362 { 363 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) { 364 unsigned long addr = (unsigned long)kaddr; 365 __cpuc_coherent_kern_range(addr, addr + len); 366 } 367 } 368 369 #ifndef CONFIG_CPU_CACHE_VIPT 370 #define flush_cache_mm(mm) \ 371 vivt_flush_cache_mm(mm) 372 #define flush_cache_range(vma,start,end) \ 373 vivt_flush_cache_range(vma,start,end) 374 #define flush_cache_page(vma,addr,pfn) \ 375 vivt_flush_cache_page(vma,addr,pfn) 376 #define flush_ptrace_access(vma,page,ua,ka,len,write) \ 377 vivt_flush_ptrace_access(vma,page,ua,ka,len,write) 378 #else 379 extern void flush_cache_mm(struct mm_struct *mm); 380 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 381 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 382 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 383 unsigned long uaddr, void *kaddr, 384 unsigned long len, int write); 385 #endif 386 387 #define flush_cache_dup_mm(mm) flush_cache_mm(mm) 388 389 /* 390 * flush_cache_user_range is used when we want to ensure that the 391 * Harvard caches are synchronised for the user space address range. 392 * This is used for the ARM private sys_cacheflush system call. 393 */ 394 #define flush_cache_user_range(vma,start,end) \ 395 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 396 397 /* 398 * Perform necessary cache operations to ensure that data previously 399 * stored within this range of addresses can be executed by the CPU. 400 */ 401 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 402 403 /* 404 * Perform necessary cache operations to ensure that the TLB will 405 * see data written in the specified area. 406 */ 407 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 408 409 /* 410 * flush_dcache_page is used when the kernel has written to the page 411 * cache page at virtual address page->virtual. 412 * 413 * If this page isn't mapped (ie, page_mapping == NULL), or it might 414 * have userspace mappings, then we _must_ always clean + invalidate 415 * the dcache entries associated with the kernel mapping. 416 * 417 * Otherwise we can defer the operation, and clean the cache when we are 418 * about to change to user space. This is the same method as used on SPARC64. 419 * See update_mmu_cache for the user space part. 420 */ 421 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 422 extern void flush_dcache_page(struct page *); 423 424 static inline void __flush_icache_all(void) 425 { 426 #ifdef CONFIG_ARM_ERRATA_411920 427 extern void v6_icache_inval_all(void); 428 v6_icache_inval_all(); 429 #else 430 asm("mcr p15, 0, %0, c7, c5, 0 @ invalidate I-cache\n" 431 : 432 : "r" (0)); 433 #endif 434 } 435 436 #define ARCH_HAS_FLUSH_ANON_PAGE 437 static inline void flush_anon_page(struct vm_area_struct *vma, 438 struct page *page, unsigned long vmaddr) 439 { 440 extern void __flush_anon_page(struct vm_area_struct *vma, 441 struct page *, unsigned long); 442 if (PageAnon(page)) 443 __flush_anon_page(vma, page, vmaddr); 444 } 445 446 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 447 static inline void flush_kernel_dcache_page(struct page *page) 448 { 449 /* highmem pages are always flushed upon kunmap already */ 450 if ((cache_is_vivt() || cache_is_vipt_aliasing()) && !PageHighMem(page)) 451 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 452 } 453 454 #define flush_dcache_mmap_lock(mapping) \ 455 spin_lock_irq(&(mapping)->tree_lock) 456 #define flush_dcache_mmap_unlock(mapping) \ 457 spin_unlock_irq(&(mapping)->tree_lock) 458 459 #define flush_icache_user_range(vma,page,addr,len) \ 460 flush_dcache_page(page) 461 462 /* 463 * We don't appear to need to do anything here. In fact, if we did, we'd 464 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 465 */ 466 #define flush_icache_page(vma,page) do { } while (0) 467 468 /* 469 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 470 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 471 * caches, since the direct-mappings of these pages may contain cached 472 * data, we need to do a full cache flush to ensure that writebacks 473 * don't corrupt data placed into these pages via the new mappings. 474 */ 475 static inline void flush_cache_vmap(unsigned long start, unsigned long end) 476 { 477 if (!cache_is_vipt_nonaliasing()) 478 flush_cache_all(); 479 else 480 /* 481 * set_pte_at() called from vmap_pte_range() does not 482 * have a DSB after cleaning the cache line. 483 */ 484 dsb(); 485 } 486 487 static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 488 { 489 if (!cache_is_vipt_nonaliasing()) 490 flush_cache_all(); 491 } 492 493 #endif 494