xref: /openbmc/linux/arch/arm/include/asm/cacheflush.h (revision 7b6d864b)
1 /*
2  *  arch/arm/include/asm/cacheflush.h
3  *
4  *  Copyright (C) 1999-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
12 
13 #include <linux/mm.h>
14 
15 #include <asm/glue-cache.h>
16 #include <asm/shmparam.h>
17 #include <asm/cachetype.h>
18 #include <asm/outercache.h>
19 
20 #define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
21 
22 /*
23  * This flag is used to indicate that the page pointed to by a pte is clean
24  * and does not require cleaning before returning it to the user.
25  */
26 #define PG_dcache_clean PG_arch_1
27 
28 /*
29  *	MM Cache Management
30  *	===================
31  *
32  *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
33  *	implement these methods.
34  *
35  *	Start addresses are inclusive and end addresses are exclusive;
36  *	start addresses should be rounded down, end addresses up.
37  *
38  *	See Documentation/cachetlb.txt for more information.
39  *	Please note that the implementation of these, and the required
40  *	effects are cache-type (VIVT/VIPT/PIPT) specific.
41  *
42  *	flush_icache_all()
43  *
44  *		Unconditionally clean and invalidate the entire icache.
45  *		Currently only needed for cache-v6.S and cache-v7.S, see
46  *		__flush_icache_all for the generic implementation.
47  *
48  *	flush_kern_all()
49  *
50  *		Unconditionally clean and invalidate the entire cache.
51  *
52  *     flush_kern_louis()
53  *
54  *             Flush data cache levels up to the level of unification
55  *             inner shareable and invalidate the I-cache.
56  *             Only needed from v7 onwards, falls back to flush_cache_all()
57  *             for all other processor versions.
58  *
59  *	flush_user_all()
60  *
61  *		Clean and invalidate all user space cache entries
62  *		before a change of page tables.
63  *
64  *	flush_user_range(start, end, flags)
65  *
66  *		Clean and invalidate a range of cache entries in the
67  *		specified address space before a change of page tables.
68  *		- start - user start address (inclusive, page aligned)
69  *		- end   - user end address   (exclusive, page aligned)
70  *		- flags - vma->vm_flags field
71  *
72  *	coherent_kern_range(start, end)
73  *
74  *		Ensure coherency between the Icache and the Dcache in the
75  *		region described by start, end.  If you have non-snooping
76  *		Harvard caches, you need to implement this function.
77  *		- start  - virtual start address
78  *		- end    - virtual end address
79  *
80  *	coherent_user_range(start, end)
81  *
82  *		Ensure coherency between the Icache and the Dcache in the
83  *		region described by start, end.  If you have non-snooping
84  *		Harvard caches, you need to implement this function.
85  *		- start  - virtual start address
86  *		- end    - virtual end address
87  *
88  *	flush_kern_dcache_area(kaddr, size)
89  *
90  *		Ensure that the data held in page is written back.
91  *		- kaddr  - page address
92  *		- size   - region size
93  *
94  *	DMA Cache Coherency
95  *	===================
96  *
97  *	dma_flush_range(start, end)
98  *
99  *		Clean and invalidate the specified virtual address range.
100  *		- start  - virtual start address
101  *		- end    - virtual end address
102  */
103 
104 struct cpu_cache_fns {
105 	void (*flush_icache_all)(void);
106 	void (*flush_kern_all)(void);
107 	void (*flush_kern_louis)(void);
108 	void (*flush_user_all)(void);
109 	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
110 
111 	void (*coherent_kern_range)(unsigned long, unsigned long);
112 	int  (*coherent_user_range)(unsigned long, unsigned long);
113 	void (*flush_kern_dcache_area)(void *, size_t);
114 
115 	void (*dma_map_area)(const void *, size_t, int);
116 	void (*dma_unmap_area)(const void *, size_t, int);
117 
118 	void (*dma_flush_range)(const void *, const void *);
119 };
120 
121 /*
122  * Select the calling method
123  */
124 #ifdef MULTI_CACHE
125 
126 extern struct cpu_cache_fns cpu_cache;
127 
128 #define __cpuc_flush_icache_all		cpu_cache.flush_icache_all
129 #define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
130 #define __cpuc_flush_kern_louis		cpu_cache.flush_kern_louis
131 #define __cpuc_flush_user_all		cpu_cache.flush_user_all
132 #define __cpuc_flush_user_range		cpu_cache.flush_user_range
133 #define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
134 #define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
135 #define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area
136 
137 /*
138  * These are private to the dma-mapping API.  Do not use directly.
139  * Their sole purpose is to ensure that data held in the cache
140  * is visible to DMA, or data written by DMA to system memory is
141  * visible to the CPU.
142  */
143 #define dmac_map_area			cpu_cache.dma_map_area
144 #define dmac_unmap_area			cpu_cache.dma_unmap_area
145 #define dmac_flush_range		cpu_cache.dma_flush_range
146 
147 #else
148 
149 extern void __cpuc_flush_icache_all(void);
150 extern void __cpuc_flush_kern_all(void);
151 extern void __cpuc_flush_kern_louis(void);
152 extern void __cpuc_flush_user_all(void);
153 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
154 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
155 extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
156 extern void __cpuc_flush_dcache_area(void *, size_t);
157 
158 /*
159  * These are private to the dma-mapping API.  Do not use directly.
160  * Their sole purpose is to ensure that data held in the cache
161  * is visible to DMA, or data written by DMA to system memory is
162  * visible to the CPU.
163  */
164 extern void dmac_map_area(const void *, size_t, int);
165 extern void dmac_unmap_area(const void *, size_t, int);
166 extern void dmac_flush_range(const void *, const void *);
167 
168 #endif
169 
170 /*
171  * Copy user data from/to a page which is mapped into a different
172  * processes address space.  Really, we want to allow our "user
173  * space" model to handle this.
174  */
175 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
176 	unsigned long, void *, const void *, unsigned long);
177 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
178 	do {							\
179 		memcpy(dst, src, len);				\
180 	} while (0)
181 
182 /*
183  * Convert calls to our calling convention.
184  */
185 
186 /* Invalidate I-cache */
187 #define __flush_icache_all_generic()					\
188 	asm("mcr	p15, 0, %0, c7, c5, 0"				\
189 	    : : "r" (0));
190 
191 /* Invalidate I-cache inner shareable */
192 #define __flush_icache_all_v7_smp()					\
193 	asm("mcr	p15, 0, %0, c7, c1, 0"				\
194 	    : : "r" (0));
195 
196 /*
197  * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
198  * will fall through to use __flush_icache_all_generic.
199  */
200 #if (defined(CONFIG_CPU_V7) && \
201      (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
202 	defined(CONFIG_SMP_ON_UP)
203 #define __flush_icache_preferred	__cpuc_flush_icache_all
204 #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
205 #define __flush_icache_preferred	__flush_icache_all_v7_smp
206 #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
207 #define __flush_icache_preferred	__cpuc_flush_icache_all
208 #else
209 #define __flush_icache_preferred	__flush_icache_all_generic
210 #endif
211 
212 static inline void __flush_icache_all(void)
213 {
214 	__flush_icache_preferred();
215 }
216 
217 /*
218  * Flush caches up to Level of Unification Inner Shareable
219  */
220 #define flush_cache_louis()		__cpuc_flush_kern_louis()
221 
222 #define flush_cache_all()		__cpuc_flush_kern_all()
223 
224 static inline void vivt_flush_cache_mm(struct mm_struct *mm)
225 {
226 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
227 		__cpuc_flush_user_all();
228 }
229 
230 static inline void
231 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
232 {
233 	struct mm_struct *mm = vma->vm_mm;
234 
235 	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
236 		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
237 					vma->vm_flags);
238 }
239 
240 static inline void
241 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
242 {
243 	struct mm_struct *mm = vma->vm_mm;
244 
245 	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
246 		unsigned long addr = user_addr & PAGE_MASK;
247 		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
248 	}
249 }
250 
251 #ifndef CONFIG_CPU_CACHE_VIPT
252 #define flush_cache_mm(mm) \
253 		vivt_flush_cache_mm(mm)
254 #define flush_cache_range(vma,start,end) \
255 		vivt_flush_cache_range(vma,start,end)
256 #define flush_cache_page(vma,addr,pfn) \
257 		vivt_flush_cache_page(vma,addr,pfn)
258 #else
259 extern void flush_cache_mm(struct mm_struct *mm);
260 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
261 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
262 #endif
263 
264 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
265 
266 /*
267  * flush_cache_user_range is used when we want to ensure that the
268  * Harvard caches are synchronised for the user space address range.
269  * This is used for the ARM private sys_cacheflush system call.
270  */
271 #define flush_cache_user_range(start,end) \
272 	__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
273 
274 /*
275  * Perform necessary cache operations to ensure that data previously
276  * stored within this range of addresses can be executed by the CPU.
277  */
278 #define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
279 
280 /*
281  * Perform necessary cache operations to ensure that the TLB will
282  * see data written in the specified area.
283  */
284 #define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
285 
286 /*
287  * flush_dcache_page is used when the kernel has written to the page
288  * cache page at virtual address page->virtual.
289  *
290  * If this page isn't mapped (ie, page_mapping == NULL), or it might
291  * have userspace mappings, then we _must_ always clean + invalidate
292  * the dcache entries associated with the kernel mapping.
293  *
294  * Otherwise we can defer the operation, and clean the cache when we are
295  * about to change to user space.  This is the same method as used on SPARC64.
296  * See update_mmu_cache for the user space part.
297  */
298 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
299 extern void flush_dcache_page(struct page *);
300 
301 static inline void flush_kernel_vmap_range(void *addr, int size)
302 {
303 	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
304 	  __cpuc_flush_dcache_area(addr, (size_t)size);
305 }
306 static inline void invalidate_kernel_vmap_range(void *addr, int size)
307 {
308 	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
309 	  __cpuc_flush_dcache_area(addr, (size_t)size);
310 }
311 
312 #define ARCH_HAS_FLUSH_ANON_PAGE
313 static inline void flush_anon_page(struct vm_area_struct *vma,
314 			 struct page *page, unsigned long vmaddr)
315 {
316 	extern void __flush_anon_page(struct vm_area_struct *vma,
317 				struct page *, unsigned long);
318 	if (PageAnon(page))
319 		__flush_anon_page(vma, page, vmaddr);
320 }
321 
322 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
323 extern void flush_kernel_dcache_page(struct page *);
324 
325 #define flush_dcache_mmap_lock(mapping) \
326 	spin_lock_irq(&(mapping)->tree_lock)
327 #define flush_dcache_mmap_unlock(mapping) \
328 	spin_unlock_irq(&(mapping)->tree_lock)
329 
330 #define flush_icache_user_range(vma,page,addr,len) \
331 	flush_dcache_page(page)
332 
333 /*
334  * We don't appear to need to do anything here.  In fact, if we did, we'd
335  * duplicate cache flushing elsewhere performed by flush_dcache_page().
336  */
337 #define flush_icache_page(vma,page)	do { } while (0)
338 
339 /*
340  * flush_cache_vmap() is used when creating mappings (eg, via vmap,
341  * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
342  * caches, since the direct-mappings of these pages may contain cached
343  * data, we need to do a full cache flush to ensure that writebacks
344  * don't corrupt data placed into these pages via the new mappings.
345  */
346 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
347 {
348 	if (!cache_is_vipt_nonaliasing())
349 		flush_cache_all();
350 	else
351 		/*
352 		 * set_pte_at() called from vmap_pte_range() does not
353 		 * have a DSB after cleaning the cache line.
354 		 */
355 		dsb();
356 }
357 
358 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
359 {
360 	if (!cache_is_vipt_nonaliasing())
361 		flush_cache_all();
362 }
363 
364 /*
365  * Memory synchronization helpers for mixed cached vs non cached accesses.
366  *
367  * Some synchronization algorithms have to set states in memory with the
368  * cache enabled or disabled depending on the code path.  It is crucial
369  * to always ensure proper cache maintenance to update main memory right
370  * away in that case.
371  *
372  * Any cached write must be followed by a cache clean operation.
373  * Any cached read must be preceded by a cache invalidate operation.
374  * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
375  * operation is needed to avoid discarding possible concurrent writes to the
376  * accessed memory.
377  *
378  * Also, in order to prevent a cached writer from interfering with an
379  * adjacent non-cached writer, each state variable must be located to
380  * a separate cache line.
381  */
382 
383 /*
384  * This needs to be >= the max cache writeback size of all
385  * supported platforms included in the current kernel configuration.
386  * This is used to align state variables to their own cache lines.
387  */
388 #define __CACHE_WRITEBACK_ORDER 6  /* guessed from existing platforms */
389 #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
390 
391 /*
392  * There is no __cpuc_clean_dcache_area but we use it anyway for
393  * code intent clarity, and alias it to __cpuc_flush_dcache_area.
394  */
395 #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
396 
397 /*
398  * Ensure preceding writes to *p by this CPU are visible to
399  * subsequent reads by other CPUs:
400  */
401 static inline void __sync_cache_range_w(volatile void *p, size_t size)
402 {
403 	char *_p = (char *)p;
404 
405 	__cpuc_clean_dcache_area(_p, size);
406 	outer_clean_range(__pa(_p), __pa(_p + size));
407 }
408 
409 /*
410  * Ensure preceding writes to *p by other CPUs are visible to
411  * subsequent reads by this CPU.  We must be careful not to
412  * discard data simultaneously written by another CPU, hence the
413  * usage of flush rather than invalidate operations.
414  */
415 static inline void __sync_cache_range_r(volatile void *p, size_t size)
416 {
417 	char *_p = (char *)p;
418 
419 #ifdef CONFIG_OUTER_CACHE
420 	if (outer_cache.flush_range) {
421 		/*
422 		 * Ensure dirty data migrated from other CPUs into our cache
423 		 * are cleaned out safely before the outer cache is cleaned:
424 		 */
425 		__cpuc_clean_dcache_area(_p, size);
426 
427 		/* Clean and invalidate stale data for *p from outer ... */
428 		outer_flush_range(__pa(_p), __pa(_p + size));
429 	}
430 #endif
431 
432 	/* ... and inner cache: */
433 	__cpuc_flush_dcache_area(_p, size);
434 }
435 
436 #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
437 #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
438 
439 #endif
440