1 /* 2 * arch/arm/include/asm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #ifndef _ASMARM_CACHEFLUSH_H 11 #define _ASMARM_CACHEFLUSH_H 12 13 #include <linux/mm.h> 14 15 #include <asm/glue-cache.h> 16 #include <asm/shmparam.h> 17 #include <asm/cachetype.h> 18 #include <asm/outercache.h> 19 20 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 21 22 /* 23 * This flag is used to indicate that the page pointed to by a pte is clean 24 * and does not require cleaning before returning it to the user. 25 */ 26 #define PG_dcache_clean PG_arch_1 27 28 /* 29 * MM Cache Management 30 * =================== 31 * 32 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 33 * implement these methods. 34 * 35 * Start addresses are inclusive and end addresses are exclusive; 36 * start addresses should be rounded down, end addresses up. 37 * 38 * See Documentation/cachetlb.txt for more information. 39 * Please note that the implementation of these, and the required 40 * effects are cache-type (VIVT/VIPT/PIPT) specific. 41 * 42 * flush_icache_all() 43 * 44 * Unconditionally clean and invalidate the entire icache. 45 * Currently only needed for cache-v6.S and cache-v7.S, see 46 * __flush_icache_all for the generic implementation. 47 * 48 * flush_kern_all() 49 * 50 * Unconditionally clean and invalidate the entire cache. 51 * 52 * flush_kern_louis() 53 * 54 * Flush data cache levels up to the level of unification 55 * inner shareable and invalidate the I-cache. 56 * Only needed from v7 onwards, falls back to flush_cache_all() 57 * for all other processor versions. 58 * 59 * flush_user_all() 60 * 61 * Clean and invalidate all user space cache entries 62 * before a change of page tables. 63 * 64 * flush_user_range(start, end, flags) 65 * 66 * Clean and invalidate a range of cache entries in the 67 * specified address space before a change of page tables. 68 * - start - user start address (inclusive, page aligned) 69 * - end - user end address (exclusive, page aligned) 70 * - flags - vma->vm_flags field 71 * 72 * coherent_kern_range(start, end) 73 * 74 * Ensure coherency between the Icache and the Dcache in the 75 * region described by start, end. If you have non-snooping 76 * Harvard caches, you need to implement this function. 77 * - start - virtual start address 78 * - end - virtual end address 79 * 80 * coherent_user_range(start, end) 81 * 82 * Ensure coherency between the Icache and the Dcache in the 83 * region described by start, end. If you have non-snooping 84 * Harvard caches, you need to implement this function. 85 * - start - virtual start address 86 * - end - virtual end address 87 * 88 * flush_kern_dcache_area(kaddr, size) 89 * 90 * Ensure that the data held in page is written back. 91 * - kaddr - page address 92 * - size - region size 93 * 94 * DMA Cache Coherency 95 * =================== 96 * 97 * dma_flush_range(start, end) 98 * 99 * Clean and invalidate the specified virtual address range. 100 * - start - virtual start address 101 * - end - virtual end address 102 */ 103 104 struct cpu_cache_fns { 105 void (*flush_icache_all)(void); 106 void (*flush_kern_all)(void); 107 void (*flush_kern_louis)(void); 108 void (*flush_user_all)(void); 109 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 110 111 void (*coherent_kern_range)(unsigned long, unsigned long); 112 int (*coherent_user_range)(unsigned long, unsigned long); 113 void (*flush_kern_dcache_area)(void *, size_t); 114 115 void (*dma_map_area)(const void *, size_t, int); 116 void (*dma_unmap_area)(const void *, size_t, int); 117 118 void (*dma_flush_range)(const void *, const void *); 119 }; 120 121 /* 122 * Select the calling method 123 */ 124 #ifdef MULTI_CACHE 125 126 extern struct cpu_cache_fns cpu_cache; 127 128 #define __cpuc_flush_icache_all cpu_cache.flush_icache_all 129 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all 130 #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis 131 #define __cpuc_flush_user_all cpu_cache.flush_user_all 132 #define __cpuc_flush_user_range cpu_cache.flush_user_range 133 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 134 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range 135 #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area 136 137 /* 138 * These are private to the dma-mapping API. Do not use directly. 139 * Their sole purpose is to ensure that data held in the cache 140 * is visible to DMA, or data written by DMA to system memory is 141 * visible to the CPU. 142 */ 143 #define dmac_flush_range cpu_cache.dma_flush_range 144 145 #else 146 147 extern void __cpuc_flush_icache_all(void); 148 extern void __cpuc_flush_kern_all(void); 149 extern void __cpuc_flush_kern_louis(void); 150 extern void __cpuc_flush_user_all(void); 151 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 152 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 153 extern int __cpuc_coherent_user_range(unsigned long, unsigned long); 154 extern void __cpuc_flush_dcache_area(void *, size_t); 155 156 /* 157 * These are private to the dma-mapping API. Do not use directly. 158 * Their sole purpose is to ensure that data held in the cache 159 * is visible to DMA, or data written by DMA to system memory is 160 * visible to the CPU. 161 */ 162 extern void dmac_flush_range(const void *, const void *); 163 164 #endif 165 166 /* 167 * Copy user data from/to a page which is mapped into a different 168 * processes address space. Really, we want to allow our "user 169 * space" model to handle this. 170 */ 171 extern void copy_to_user_page(struct vm_area_struct *, struct page *, 172 unsigned long, void *, const void *, unsigned long); 173 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 174 do { \ 175 memcpy(dst, src, len); \ 176 } while (0) 177 178 /* 179 * Convert calls to our calling convention. 180 */ 181 182 /* Invalidate I-cache */ 183 #define __flush_icache_all_generic() \ 184 asm("mcr p15, 0, %0, c7, c5, 0" \ 185 : : "r" (0)); 186 187 /* Invalidate I-cache inner shareable */ 188 #define __flush_icache_all_v7_smp() \ 189 asm("mcr p15, 0, %0, c7, c1, 0" \ 190 : : "r" (0)); 191 192 /* 193 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7 194 * will fall through to use __flush_icache_all_generic. 195 */ 196 #if (defined(CONFIG_CPU_V7) && \ 197 (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \ 198 defined(CONFIG_SMP_ON_UP) 199 #define __flush_icache_preferred __cpuc_flush_icache_all 200 #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP) 201 #define __flush_icache_preferred __flush_icache_all_v7_smp 202 #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920) 203 #define __flush_icache_preferred __cpuc_flush_icache_all 204 #else 205 #define __flush_icache_preferred __flush_icache_all_generic 206 #endif 207 208 static inline void __flush_icache_all(void) 209 { 210 __flush_icache_preferred(); 211 dsb(ishst); 212 } 213 214 /* 215 * Flush caches up to Level of Unification Inner Shareable 216 */ 217 #define flush_cache_louis() __cpuc_flush_kern_louis() 218 219 #define flush_cache_all() __cpuc_flush_kern_all() 220 221 static inline void vivt_flush_cache_mm(struct mm_struct *mm) 222 { 223 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 224 __cpuc_flush_user_all(); 225 } 226 227 static inline void 228 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 229 { 230 struct mm_struct *mm = vma->vm_mm; 231 232 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 233 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 234 vma->vm_flags); 235 } 236 237 static inline void 238 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 239 { 240 struct mm_struct *mm = vma->vm_mm; 241 242 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) { 243 unsigned long addr = user_addr & PAGE_MASK; 244 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 245 } 246 } 247 248 #ifndef CONFIG_CPU_CACHE_VIPT 249 #define flush_cache_mm(mm) \ 250 vivt_flush_cache_mm(mm) 251 #define flush_cache_range(vma,start,end) \ 252 vivt_flush_cache_range(vma,start,end) 253 #define flush_cache_page(vma,addr,pfn) \ 254 vivt_flush_cache_page(vma,addr,pfn) 255 #else 256 extern void flush_cache_mm(struct mm_struct *mm); 257 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 258 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 259 #endif 260 261 #define flush_cache_dup_mm(mm) flush_cache_mm(mm) 262 263 /* 264 * flush_cache_user_range is used when we want to ensure that the 265 * Harvard caches are synchronised for the user space address range. 266 * This is used for the ARM private sys_cacheflush system call. 267 */ 268 #define flush_cache_user_range(s,e) __cpuc_coherent_user_range(s,e) 269 270 /* 271 * Perform necessary cache operations to ensure that data previously 272 * stored within this range of addresses can be executed by the CPU. 273 */ 274 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 275 276 /* 277 * Perform necessary cache operations to ensure that the TLB will 278 * see data written in the specified area. 279 */ 280 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 281 282 /* 283 * flush_dcache_page is used when the kernel has written to the page 284 * cache page at virtual address page->virtual. 285 * 286 * If this page isn't mapped (ie, page_mapping == NULL), or it might 287 * have userspace mappings, then we _must_ always clean + invalidate 288 * the dcache entries associated with the kernel mapping. 289 * 290 * Otherwise we can defer the operation, and clean the cache when we are 291 * about to change to user space. This is the same method as used on SPARC64. 292 * See update_mmu_cache for the user space part. 293 */ 294 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 295 extern void flush_dcache_page(struct page *); 296 297 static inline void flush_kernel_vmap_range(void *addr, int size) 298 { 299 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 300 __cpuc_flush_dcache_area(addr, (size_t)size); 301 } 302 static inline void invalidate_kernel_vmap_range(void *addr, int size) 303 { 304 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 305 __cpuc_flush_dcache_area(addr, (size_t)size); 306 } 307 308 #define ARCH_HAS_FLUSH_ANON_PAGE 309 static inline void flush_anon_page(struct vm_area_struct *vma, 310 struct page *page, unsigned long vmaddr) 311 { 312 extern void __flush_anon_page(struct vm_area_struct *vma, 313 struct page *, unsigned long); 314 if (PageAnon(page)) 315 __flush_anon_page(vma, page, vmaddr); 316 } 317 318 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 319 extern void flush_kernel_dcache_page(struct page *); 320 321 #define flush_dcache_mmap_lock(mapping) \ 322 spin_lock_irq(&(mapping)->tree_lock) 323 #define flush_dcache_mmap_unlock(mapping) \ 324 spin_unlock_irq(&(mapping)->tree_lock) 325 326 #define flush_icache_user_range(vma,page,addr,len) \ 327 flush_dcache_page(page) 328 329 /* 330 * We don't appear to need to do anything here. In fact, if we did, we'd 331 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 332 */ 333 #define flush_icache_page(vma,page) do { } while (0) 334 335 /* 336 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 337 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 338 * caches, since the direct-mappings of these pages may contain cached 339 * data, we need to do a full cache flush to ensure that writebacks 340 * don't corrupt data placed into these pages via the new mappings. 341 */ 342 static inline void flush_cache_vmap(unsigned long start, unsigned long end) 343 { 344 if (!cache_is_vipt_nonaliasing()) 345 flush_cache_all(); 346 else 347 /* 348 * set_pte_at() called from vmap_pte_range() does not 349 * have a DSB after cleaning the cache line. 350 */ 351 dsb(ishst); 352 } 353 354 static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 355 { 356 if (!cache_is_vipt_nonaliasing()) 357 flush_cache_all(); 358 } 359 360 /* 361 * Memory synchronization helpers for mixed cached vs non cached accesses. 362 * 363 * Some synchronization algorithms have to set states in memory with the 364 * cache enabled or disabled depending on the code path. It is crucial 365 * to always ensure proper cache maintenance to update main memory right 366 * away in that case. 367 * 368 * Any cached write must be followed by a cache clean operation. 369 * Any cached read must be preceded by a cache invalidate operation. 370 * Yet, in the read case, a cache flush i.e. atomic clean+invalidate 371 * operation is needed to avoid discarding possible concurrent writes to the 372 * accessed memory. 373 * 374 * Also, in order to prevent a cached writer from interfering with an 375 * adjacent non-cached writer, each state variable must be located to 376 * a separate cache line. 377 */ 378 379 /* 380 * This needs to be >= the max cache writeback size of all 381 * supported platforms included in the current kernel configuration. 382 * This is used to align state variables to their own cache lines. 383 */ 384 #define __CACHE_WRITEBACK_ORDER 6 /* guessed from existing platforms */ 385 #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER) 386 387 /* 388 * There is no __cpuc_clean_dcache_area but we use it anyway for 389 * code intent clarity, and alias it to __cpuc_flush_dcache_area. 390 */ 391 #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area 392 393 /* 394 * Ensure preceding writes to *p by this CPU are visible to 395 * subsequent reads by other CPUs: 396 */ 397 static inline void __sync_cache_range_w(volatile void *p, size_t size) 398 { 399 char *_p = (char *)p; 400 401 __cpuc_clean_dcache_area(_p, size); 402 outer_clean_range(__pa(_p), __pa(_p + size)); 403 } 404 405 /* 406 * Ensure preceding writes to *p by other CPUs are visible to 407 * subsequent reads by this CPU. We must be careful not to 408 * discard data simultaneously written by another CPU, hence the 409 * usage of flush rather than invalidate operations. 410 */ 411 static inline void __sync_cache_range_r(volatile void *p, size_t size) 412 { 413 char *_p = (char *)p; 414 415 #ifdef CONFIG_OUTER_CACHE 416 if (outer_cache.flush_range) { 417 /* 418 * Ensure dirty data migrated from other CPUs into our cache 419 * are cleaned out safely before the outer cache is cleaned: 420 */ 421 __cpuc_clean_dcache_area(_p, size); 422 423 /* Clean and invalidate stale data for *p from outer ... */ 424 outer_flush_range(__pa(_p), __pa(_p + size)); 425 } 426 #endif 427 428 /* ... and inner cache: */ 429 __cpuc_flush_dcache_area(_p, size); 430 } 431 432 #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr)) 433 #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr)) 434 435 /* 436 * Disabling cache access for one CPU in an ARMv7 SMP system is tricky. 437 * To do so we must: 438 * 439 * - Clear the SCTLR.C bit to prevent further cache allocations 440 * - Flush the desired level of cache 441 * - Clear the ACTLR "SMP" bit to disable local coherency 442 * 443 * ... and so without any intervening memory access in between those steps, 444 * not even to the stack. 445 * 446 * WARNING -- After this has been called: 447 * 448 * - No ldrex/strex (and similar) instructions must be used. 449 * - The CPU is obviously no longer coherent with the other CPUs. 450 * - This is unlikely to work as expected if Linux is running non-secure. 451 * 452 * Note: 453 * 454 * - This is known to apply to several ARMv7 processor implementations, 455 * however some exceptions may exist. Caveat emptor. 456 * 457 * - The clobber list is dictated by the call to v7_flush_dcache_*. 458 * fp is preserved to the stack explicitly prior disabling the cache 459 * since adding it to the clobber list is incompatible with having 460 * CONFIG_FRAME_POINTER=y. ip is saved as well if ever r12-clobbering 461 * trampoline are inserted by the linker and to keep sp 64-bit aligned. 462 */ 463 #define v7_exit_coherency_flush(level) \ 464 asm volatile( \ 465 ".arch armv7-a \n\t" \ 466 "stmfd sp!, {fp, ip} \n\t" \ 467 "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR \n\t" \ 468 "bic r0, r0, #"__stringify(CR_C)" \n\t" \ 469 "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR \n\t" \ 470 "isb \n\t" \ 471 "bl v7_flush_dcache_"__stringify(level)" \n\t" \ 472 "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR \n\t" \ 473 "bic r0, r0, #(1 << 6) @ disable local coherency \n\t" \ 474 "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR \n\t" \ 475 "isb \n\t" \ 476 "dsb \n\t" \ 477 "ldmfd sp!, {fp, ip}" \ 478 : : : "r0","r1","r2","r3","r4","r5","r6","r7", \ 479 "r9","r10","lr","memory" ) 480 481 #ifdef CONFIG_MMU 482 int set_memory_ro(unsigned long addr, int numpages); 483 int set_memory_rw(unsigned long addr, int numpages); 484 int set_memory_x(unsigned long addr, int numpages); 485 int set_memory_nx(unsigned long addr, int numpages); 486 #else 487 static inline int set_memory_ro(unsigned long addr, int numpages) { return 0; } 488 static inline int set_memory_rw(unsigned long addr, int numpages) { return 0; } 489 static inline int set_memory_x(unsigned long addr, int numpages) { return 0; } 490 static inline int set_memory_nx(unsigned long addr, int numpages) { return 0; } 491 #endif 492 493 #ifdef CONFIG_DEBUG_RODATA 494 void set_kernel_text_rw(void); 495 void set_kernel_text_ro(void); 496 #else 497 static inline void set_kernel_text_rw(void) { } 498 static inline void set_kernel_text_ro(void) { } 499 #endif 500 501 void flush_uprobe_xol_access(struct page *page, unsigned long uaddr, 502 void *kaddr, unsigned long len); 503 504 /** 505 * secure_flush_area - ensure coherency across the secure boundary 506 * @addr: virtual address 507 * @size: size of region 508 * 509 * Ensure that the specified area of memory is coherent across the secure 510 * boundary from the non-secure side. This is used when calling secure 511 * firmware where the secure firmware does not ensure coherency. 512 */ 513 static inline void secure_flush_area(const void *addr, size_t size) 514 { 515 phys_addr_t phys = __pa(addr); 516 517 __cpuc_flush_dcache_area((void *)addr, size); 518 outer_flush_range(phys, phys + size); 519 } 520 521 #endif 522