xref: /openbmc/linux/arch/arm/include/asm/cacheflush.h (revision 15e47304)
1 /*
2  *  arch/arm/include/asm/cacheflush.h
3  *
4  *  Copyright (C) 1999-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
12 
13 #include <linux/mm.h>
14 
15 #include <asm/glue-cache.h>
16 #include <asm/shmparam.h>
17 #include <asm/cachetype.h>
18 #include <asm/outercache.h>
19 
20 #define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
21 
22 /*
23  * This flag is used to indicate that the page pointed to by a pte is clean
24  * and does not require cleaning before returning it to the user.
25  */
26 #define PG_dcache_clean PG_arch_1
27 
28 /*
29  *	MM Cache Management
30  *	===================
31  *
32  *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
33  *	implement these methods.
34  *
35  *	Start addresses are inclusive and end addresses are exclusive;
36  *	start addresses should be rounded down, end addresses up.
37  *
38  *	See Documentation/cachetlb.txt for more information.
39  *	Please note that the implementation of these, and the required
40  *	effects are cache-type (VIVT/VIPT/PIPT) specific.
41  *
42  *	flush_icache_all()
43  *
44  *		Unconditionally clean and invalidate the entire icache.
45  *		Currently only needed for cache-v6.S and cache-v7.S, see
46  *		__flush_icache_all for the generic implementation.
47  *
48  *	flush_kern_all()
49  *
50  *		Unconditionally clean and invalidate the entire cache.
51  *
52  *	flush_user_all()
53  *
54  *		Clean and invalidate all user space cache entries
55  *		before a change of page tables.
56  *
57  *	flush_user_range(start, end, flags)
58  *
59  *		Clean and invalidate a range of cache entries in the
60  *		specified address space before a change of page tables.
61  *		- start - user start address (inclusive, page aligned)
62  *		- end   - user end address   (exclusive, page aligned)
63  *		- flags - vma->vm_flags field
64  *
65  *	coherent_kern_range(start, end)
66  *
67  *		Ensure coherency between the Icache and the Dcache in the
68  *		region described by start, end.  If you have non-snooping
69  *		Harvard caches, you need to implement this function.
70  *		- start  - virtual start address
71  *		- end    - virtual end address
72  *
73  *	coherent_user_range(start, end)
74  *
75  *		Ensure coherency between the Icache and the Dcache in the
76  *		region described by start, end.  If you have non-snooping
77  *		Harvard caches, you need to implement this function.
78  *		- start  - virtual start address
79  *		- end    - virtual end address
80  *
81  *	flush_kern_dcache_area(kaddr, size)
82  *
83  *		Ensure that the data held in page is written back.
84  *		- kaddr  - page address
85  *		- size   - region size
86  *
87  *	DMA Cache Coherency
88  *	===================
89  *
90  *	dma_flush_range(start, end)
91  *
92  *		Clean and invalidate the specified virtual address range.
93  *		- start  - virtual start address
94  *		- end    - virtual end address
95  */
96 
97 struct cpu_cache_fns {
98 	void (*flush_icache_all)(void);
99 	void (*flush_kern_all)(void);
100 	void (*flush_user_all)(void);
101 	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
102 
103 	void (*coherent_kern_range)(unsigned long, unsigned long);
104 	int  (*coherent_user_range)(unsigned long, unsigned long);
105 	void (*flush_kern_dcache_area)(void *, size_t);
106 
107 	void (*dma_map_area)(const void *, size_t, int);
108 	void (*dma_unmap_area)(const void *, size_t, int);
109 
110 	void (*dma_flush_range)(const void *, const void *);
111 };
112 
113 /*
114  * Select the calling method
115  */
116 #ifdef MULTI_CACHE
117 
118 extern struct cpu_cache_fns cpu_cache;
119 
120 #define __cpuc_flush_icache_all		cpu_cache.flush_icache_all
121 #define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
122 #define __cpuc_flush_user_all		cpu_cache.flush_user_all
123 #define __cpuc_flush_user_range		cpu_cache.flush_user_range
124 #define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
125 #define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
126 #define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area
127 
128 /*
129  * These are private to the dma-mapping API.  Do not use directly.
130  * Their sole purpose is to ensure that data held in the cache
131  * is visible to DMA, or data written by DMA to system memory is
132  * visible to the CPU.
133  */
134 #define dmac_map_area			cpu_cache.dma_map_area
135 #define dmac_unmap_area			cpu_cache.dma_unmap_area
136 #define dmac_flush_range		cpu_cache.dma_flush_range
137 
138 #else
139 
140 extern void __cpuc_flush_icache_all(void);
141 extern void __cpuc_flush_kern_all(void);
142 extern void __cpuc_flush_user_all(void);
143 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
144 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
145 extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
146 extern void __cpuc_flush_dcache_area(void *, size_t);
147 
148 /*
149  * These are private to the dma-mapping API.  Do not use directly.
150  * Their sole purpose is to ensure that data held in the cache
151  * is visible to DMA, or data written by DMA to system memory is
152  * visible to the CPU.
153  */
154 extern void dmac_map_area(const void *, size_t, int);
155 extern void dmac_unmap_area(const void *, size_t, int);
156 extern void dmac_flush_range(const void *, const void *);
157 
158 #endif
159 
160 /*
161  * Copy user data from/to a page which is mapped into a different
162  * processes address space.  Really, we want to allow our "user
163  * space" model to handle this.
164  */
165 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
166 	unsigned long, void *, const void *, unsigned long);
167 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
168 	do {							\
169 		memcpy(dst, src, len);				\
170 	} while (0)
171 
172 /*
173  * Convert calls to our calling convention.
174  */
175 
176 /* Invalidate I-cache */
177 #define __flush_icache_all_generic()					\
178 	asm("mcr	p15, 0, %0, c7, c5, 0"				\
179 	    : : "r" (0));
180 
181 /* Invalidate I-cache inner shareable */
182 #define __flush_icache_all_v7_smp()					\
183 	asm("mcr	p15, 0, %0, c7, c1, 0"				\
184 	    : : "r" (0));
185 
186 /*
187  * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
188  * will fall through to use __flush_icache_all_generic.
189  */
190 #if (defined(CONFIG_CPU_V7) && \
191      (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
192 	defined(CONFIG_SMP_ON_UP)
193 #define __flush_icache_preferred	__cpuc_flush_icache_all
194 #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
195 #define __flush_icache_preferred	__flush_icache_all_v7_smp
196 #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
197 #define __flush_icache_preferred	__cpuc_flush_icache_all
198 #else
199 #define __flush_icache_preferred	__flush_icache_all_generic
200 #endif
201 
202 static inline void __flush_icache_all(void)
203 {
204 	__flush_icache_preferred();
205 }
206 
207 #define flush_cache_all()		__cpuc_flush_kern_all()
208 
209 static inline void vivt_flush_cache_mm(struct mm_struct *mm)
210 {
211 	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
212 		__cpuc_flush_user_all();
213 }
214 
215 static inline void
216 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
217 {
218 	struct mm_struct *mm = vma->vm_mm;
219 
220 	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
221 		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
222 					vma->vm_flags);
223 }
224 
225 static inline void
226 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
227 {
228 	struct mm_struct *mm = vma->vm_mm;
229 
230 	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
231 		unsigned long addr = user_addr & PAGE_MASK;
232 		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
233 	}
234 }
235 
236 #ifndef CONFIG_CPU_CACHE_VIPT
237 #define flush_cache_mm(mm) \
238 		vivt_flush_cache_mm(mm)
239 #define flush_cache_range(vma,start,end) \
240 		vivt_flush_cache_range(vma,start,end)
241 #define flush_cache_page(vma,addr,pfn) \
242 		vivt_flush_cache_page(vma,addr,pfn)
243 #else
244 extern void flush_cache_mm(struct mm_struct *mm);
245 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
246 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
247 #endif
248 
249 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
250 
251 /*
252  * flush_cache_user_range is used when we want to ensure that the
253  * Harvard caches are synchronised for the user space address range.
254  * This is used for the ARM private sys_cacheflush system call.
255  */
256 #define flush_cache_user_range(start,end) \
257 	__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
258 
259 /*
260  * Perform necessary cache operations to ensure that data previously
261  * stored within this range of addresses can be executed by the CPU.
262  */
263 #define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
264 
265 /*
266  * Perform necessary cache operations to ensure that the TLB will
267  * see data written in the specified area.
268  */
269 #define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
270 
271 /*
272  * flush_dcache_page is used when the kernel has written to the page
273  * cache page at virtual address page->virtual.
274  *
275  * If this page isn't mapped (ie, page_mapping == NULL), or it might
276  * have userspace mappings, then we _must_ always clean + invalidate
277  * the dcache entries associated with the kernel mapping.
278  *
279  * Otherwise we can defer the operation, and clean the cache when we are
280  * about to change to user space.  This is the same method as used on SPARC64.
281  * See update_mmu_cache for the user space part.
282  */
283 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
284 extern void flush_dcache_page(struct page *);
285 
286 static inline void flush_kernel_vmap_range(void *addr, int size)
287 {
288 	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
289 	  __cpuc_flush_dcache_area(addr, (size_t)size);
290 }
291 static inline void invalidate_kernel_vmap_range(void *addr, int size)
292 {
293 	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
294 	  __cpuc_flush_dcache_area(addr, (size_t)size);
295 }
296 
297 #define ARCH_HAS_FLUSH_ANON_PAGE
298 static inline void flush_anon_page(struct vm_area_struct *vma,
299 			 struct page *page, unsigned long vmaddr)
300 {
301 	extern void __flush_anon_page(struct vm_area_struct *vma,
302 				struct page *, unsigned long);
303 	if (PageAnon(page))
304 		__flush_anon_page(vma, page, vmaddr);
305 }
306 
307 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
308 static inline void flush_kernel_dcache_page(struct page *page)
309 {
310 }
311 
312 #define flush_dcache_mmap_lock(mapping) \
313 	spin_lock_irq(&(mapping)->tree_lock)
314 #define flush_dcache_mmap_unlock(mapping) \
315 	spin_unlock_irq(&(mapping)->tree_lock)
316 
317 #define flush_icache_user_range(vma,page,addr,len) \
318 	flush_dcache_page(page)
319 
320 /*
321  * We don't appear to need to do anything here.  In fact, if we did, we'd
322  * duplicate cache flushing elsewhere performed by flush_dcache_page().
323  */
324 #define flush_icache_page(vma,page)	do { } while (0)
325 
326 /*
327  * flush_cache_vmap() is used when creating mappings (eg, via vmap,
328  * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
329  * caches, since the direct-mappings of these pages may contain cached
330  * data, we need to do a full cache flush to ensure that writebacks
331  * don't corrupt data placed into these pages via the new mappings.
332  */
333 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
334 {
335 	if (!cache_is_vipt_nonaliasing())
336 		flush_cache_all();
337 	else
338 		/*
339 		 * set_pte_at() called from vmap_pte_range() does not
340 		 * have a DSB after cleaning the cache line.
341 		 */
342 		dsb();
343 }
344 
345 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
346 {
347 	if (!cache_is_vipt_nonaliasing())
348 		flush_cache_all();
349 }
350 
351 #endif
352