1 /* 2 * arch/arm/include/asm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #ifndef _ASMARM_CACHEFLUSH_H 11 #define _ASMARM_CACHEFLUSH_H 12 13 #include <linux/mm.h> 14 15 #include <asm/glue-cache.h> 16 #include <asm/shmparam.h> 17 #include <asm/cachetype.h> 18 #include <asm/outercache.h> 19 20 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 21 22 /* 23 * This flag is used to indicate that the page pointed to by a pte is clean 24 * and does not require cleaning before returning it to the user. 25 */ 26 #define PG_dcache_clean PG_arch_1 27 28 /* 29 * MM Cache Management 30 * =================== 31 * 32 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 33 * implement these methods. 34 * 35 * Start addresses are inclusive and end addresses are exclusive; 36 * start addresses should be rounded down, end addresses up. 37 * 38 * See Documentation/cachetlb.txt for more information. 39 * Please note that the implementation of these, and the required 40 * effects are cache-type (VIVT/VIPT/PIPT) specific. 41 * 42 * flush_icache_all() 43 * 44 * Unconditionally clean and invalidate the entire icache. 45 * Currently only needed for cache-v6.S and cache-v7.S, see 46 * __flush_icache_all for the generic implementation. 47 * 48 * flush_kern_all() 49 * 50 * Unconditionally clean and invalidate the entire cache. 51 * 52 * flush_user_all() 53 * 54 * Clean and invalidate all user space cache entries 55 * before a change of page tables. 56 * 57 * flush_user_range(start, end, flags) 58 * 59 * Clean and invalidate a range of cache entries in the 60 * specified address space before a change of page tables. 61 * - start - user start address (inclusive, page aligned) 62 * - end - user end address (exclusive, page aligned) 63 * - flags - vma->vm_flags field 64 * 65 * coherent_kern_range(start, end) 66 * 67 * Ensure coherency between the Icache and the Dcache in the 68 * region described by start, end. If you have non-snooping 69 * Harvard caches, you need to implement this function. 70 * - start - virtual start address 71 * - end - virtual end address 72 * 73 * coherent_user_range(start, end) 74 * 75 * Ensure coherency between the Icache and the Dcache in the 76 * region described by start, end. If you have non-snooping 77 * Harvard caches, you need to implement this function. 78 * - start - virtual start address 79 * - end - virtual end address 80 * 81 * flush_kern_dcache_area(kaddr, size) 82 * 83 * Ensure that the data held in page is written back. 84 * - kaddr - page address 85 * - size - region size 86 * 87 * DMA Cache Coherency 88 * =================== 89 * 90 * dma_flush_range(start, end) 91 * 92 * Clean and invalidate the specified virtual address range. 93 * - start - virtual start address 94 * - end - virtual end address 95 */ 96 97 struct cpu_cache_fns { 98 void (*flush_icache_all)(void); 99 void (*flush_kern_all)(void); 100 void (*flush_user_all)(void); 101 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 102 103 void (*coherent_kern_range)(unsigned long, unsigned long); 104 int (*coherent_user_range)(unsigned long, unsigned long); 105 void (*flush_kern_dcache_area)(void *, size_t); 106 107 void (*dma_map_area)(const void *, size_t, int); 108 void (*dma_unmap_area)(const void *, size_t, int); 109 110 void (*dma_flush_range)(const void *, const void *); 111 }; 112 113 /* 114 * Select the calling method 115 */ 116 #ifdef MULTI_CACHE 117 118 extern struct cpu_cache_fns cpu_cache; 119 120 #define __cpuc_flush_icache_all cpu_cache.flush_icache_all 121 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all 122 #define __cpuc_flush_user_all cpu_cache.flush_user_all 123 #define __cpuc_flush_user_range cpu_cache.flush_user_range 124 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 125 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range 126 #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area 127 128 /* 129 * These are private to the dma-mapping API. Do not use directly. 130 * Their sole purpose is to ensure that data held in the cache 131 * is visible to DMA, or data written by DMA to system memory is 132 * visible to the CPU. 133 */ 134 #define dmac_map_area cpu_cache.dma_map_area 135 #define dmac_unmap_area cpu_cache.dma_unmap_area 136 #define dmac_flush_range cpu_cache.dma_flush_range 137 138 #else 139 140 extern void __cpuc_flush_icache_all(void); 141 extern void __cpuc_flush_kern_all(void); 142 extern void __cpuc_flush_user_all(void); 143 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 144 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 145 extern int __cpuc_coherent_user_range(unsigned long, unsigned long); 146 extern void __cpuc_flush_dcache_area(void *, size_t); 147 148 /* 149 * These are private to the dma-mapping API. Do not use directly. 150 * Their sole purpose is to ensure that data held in the cache 151 * is visible to DMA, or data written by DMA to system memory is 152 * visible to the CPU. 153 */ 154 extern void dmac_map_area(const void *, size_t, int); 155 extern void dmac_unmap_area(const void *, size_t, int); 156 extern void dmac_flush_range(const void *, const void *); 157 158 #endif 159 160 /* 161 * Copy user data from/to a page which is mapped into a different 162 * processes address space. Really, we want to allow our "user 163 * space" model to handle this. 164 */ 165 extern void copy_to_user_page(struct vm_area_struct *, struct page *, 166 unsigned long, void *, const void *, unsigned long); 167 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 168 do { \ 169 memcpy(dst, src, len); \ 170 } while (0) 171 172 /* 173 * Convert calls to our calling convention. 174 */ 175 176 /* Invalidate I-cache */ 177 #define __flush_icache_all_generic() \ 178 asm("mcr p15, 0, %0, c7, c5, 0" \ 179 : : "r" (0)); 180 181 /* Invalidate I-cache inner shareable */ 182 #define __flush_icache_all_v7_smp() \ 183 asm("mcr p15, 0, %0, c7, c1, 0" \ 184 : : "r" (0)); 185 186 /* 187 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7 188 * will fall through to use __flush_icache_all_generic. 189 */ 190 #if (defined(CONFIG_CPU_V7) && \ 191 (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \ 192 defined(CONFIG_SMP_ON_UP) 193 #define __flush_icache_preferred __cpuc_flush_icache_all 194 #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP) 195 #define __flush_icache_preferred __flush_icache_all_v7_smp 196 #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920) 197 #define __flush_icache_preferred __cpuc_flush_icache_all 198 #else 199 #define __flush_icache_preferred __flush_icache_all_generic 200 #endif 201 202 static inline void __flush_icache_all(void) 203 { 204 __flush_icache_preferred(); 205 } 206 207 #define flush_cache_all() __cpuc_flush_kern_all() 208 209 static inline void vivt_flush_cache_mm(struct mm_struct *mm) 210 { 211 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 212 __cpuc_flush_user_all(); 213 } 214 215 static inline void 216 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 217 { 218 struct mm_struct *mm = vma->vm_mm; 219 220 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) 221 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 222 vma->vm_flags); 223 } 224 225 static inline void 226 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 227 { 228 struct mm_struct *mm = vma->vm_mm; 229 230 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) { 231 unsigned long addr = user_addr & PAGE_MASK; 232 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 233 } 234 } 235 236 #ifndef CONFIG_CPU_CACHE_VIPT 237 #define flush_cache_mm(mm) \ 238 vivt_flush_cache_mm(mm) 239 #define flush_cache_range(vma,start,end) \ 240 vivt_flush_cache_range(vma,start,end) 241 #define flush_cache_page(vma,addr,pfn) \ 242 vivt_flush_cache_page(vma,addr,pfn) 243 #else 244 extern void flush_cache_mm(struct mm_struct *mm); 245 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 246 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 247 #endif 248 249 #define flush_cache_dup_mm(mm) flush_cache_mm(mm) 250 251 /* 252 * flush_cache_user_range is used when we want to ensure that the 253 * Harvard caches are synchronised for the user space address range. 254 * This is used for the ARM private sys_cacheflush system call. 255 */ 256 #define flush_cache_user_range(start,end) \ 257 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 258 259 /* 260 * Perform necessary cache operations to ensure that data previously 261 * stored within this range of addresses can be executed by the CPU. 262 */ 263 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 264 265 /* 266 * Perform necessary cache operations to ensure that the TLB will 267 * see data written in the specified area. 268 */ 269 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 270 271 /* 272 * flush_dcache_page is used when the kernel has written to the page 273 * cache page at virtual address page->virtual. 274 * 275 * If this page isn't mapped (ie, page_mapping == NULL), or it might 276 * have userspace mappings, then we _must_ always clean + invalidate 277 * the dcache entries associated with the kernel mapping. 278 * 279 * Otherwise we can defer the operation, and clean the cache when we are 280 * about to change to user space. This is the same method as used on SPARC64. 281 * See update_mmu_cache for the user space part. 282 */ 283 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 284 extern void flush_dcache_page(struct page *); 285 286 static inline void flush_kernel_vmap_range(void *addr, int size) 287 { 288 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 289 __cpuc_flush_dcache_area(addr, (size_t)size); 290 } 291 static inline void invalidate_kernel_vmap_range(void *addr, int size) 292 { 293 if ((cache_is_vivt() || cache_is_vipt_aliasing())) 294 __cpuc_flush_dcache_area(addr, (size_t)size); 295 } 296 297 #define ARCH_HAS_FLUSH_ANON_PAGE 298 static inline void flush_anon_page(struct vm_area_struct *vma, 299 struct page *page, unsigned long vmaddr) 300 { 301 extern void __flush_anon_page(struct vm_area_struct *vma, 302 struct page *, unsigned long); 303 if (PageAnon(page)) 304 __flush_anon_page(vma, page, vmaddr); 305 } 306 307 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE 308 static inline void flush_kernel_dcache_page(struct page *page) 309 { 310 } 311 312 #define flush_dcache_mmap_lock(mapping) \ 313 spin_lock_irq(&(mapping)->tree_lock) 314 #define flush_dcache_mmap_unlock(mapping) \ 315 spin_unlock_irq(&(mapping)->tree_lock) 316 317 #define flush_icache_user_range(vma,page,addr,len) \ 318 flush_dcache_page(page) 319 320 /* 321 * We don't appear to need to do anything here. In fact, if we did, we'd 322 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 323 */ 324 #define flush_icache_page(vma,page) do { } while (0) 325 326 /* 327 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 328 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 329 * caches, since the direct-mappings of these pages may contain cached 330 * data, we need to do a full cache flush to ensure that writebacks 331 * don't corrupt data placed into these pages via the new mappings. 332 */ 333 static inline void flush_cache_vmap(unsigned long start, unsigned long end) 334 { 335 if (!cache_is_vipt_nonaliasing()) 336 flush_cache_all(); 337 else 338 /* 339 * set_pte_at() called from vmap_pte_range() does not 340 * have a DSB after cleaning the cache line. 341 */ 342 dsb(); 343 } 344 345 static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 346 { 347 if (!cache_is_vipt_nonaliasing()) 348 flush_cache_all(); 349 } 350 351 #endif 352