xref: /openbmc/linux/arch/arm/include/asm/bitops.h (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright 1995, Russell King.
3  * Various bits and pieces copyrights include:
4  *  Linus Torvalds (test_bit).
5  * Big endian support: Copyright 2001, Nicolas Pitre
6  *  reworked by rmk.
7  *
8  * bit 0 is the LSB of an "unsigned long" quantity.
9  *
10  * Please note that the code in this file should never be included
11  * from user space.  Many of these are not implemented in assembler
12  * since they would be too costly.  Also, they require privileged
13  * instructions (which are not available from user mode) to ensure
14  * that they are atomic.
15  */
16 
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
19 
20 #ifdef __KERNEL__
21 
22 #ifndef _LINUX_BITOPS_H
23 #error only <linux/bitops.h> can be included directly
24 #endif
25 
26 #include <linux/compiler.h>
27 #include <asm/system.h>
28 
29 #define smp_mb__before_clear_bit()	mb()
30 #define smp_mb__after_clear_bit()	mb()
31 
32 /*
33  * These functions are the basis of our bit ops.
34  *
35  * First, the atomic bitops. These use native endian.
36  */
37 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
38 {
39 	unsigned long flags;
40 	unsigned long mask = 1UL << (bit & 31);
41 
42 	p += bit >> 5;
43 
44 	raw_local_irq_save(flags);
45 	*p |= mask;
46 	raw_local_irq_restore(flags);
47 }
48 
49 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
50 {
51 	unsigned long flags;
52 	unsigned long mask = 1UL << (bit & 31);
53 
54 	p += bit >> 5;
55 
56 	raw_local_irq_save(flags);
57 	*p &= ~mask;
58 	raw_local_irq_restore(flags);
59 }
60 
61 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
62 {
63 	unsigned long flags;
64 	unsigned long mask = 1UL << (bit & 31);
65 
66 	p += bit >> 5;
67 
68 	raw_local_irq_save(flags);
69 	*p ^= mask;
70 	raw_local_irq_restore(flags);
71 }
72 
73 static inline int
74 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
75 {
76 	unsigned long flags;
77 	unsigned int res;
78 	unsigned long mask = 1UL << (bit & 31);
79 
80 	p += bit >> 5;
81 
82 	raw_local_irq_save(flags);
83 	res = *p;
84 	*p = res | mask;
85 	raw_local_irq_restore(flags);
86 
87 	return res & mask;
88 }
89 
90 static inline int
91 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
92 {
93 	unsigned long flags;
94 	unsigned int res;
95 	unsigned long mask = 1UL << (bit & 31);
96 
97 	p += bit >> 5;
98 
99 	raw_local_irq_save(flags);
100 	res = *p;
101 	*p = res & ~mask;
102 	raw_local_irq_restore(flags);
103 
104 	return res & mask;
105 }
106 
107 static inline int
108 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
109 {
110 	unsigned long flags;
111 	unsigned int res;
112 	unsigned long mask = 1UL << (bit & 31);
113 
114 	p += bit >> 5;
115 
116 	raw_local_irq_save(flags);
117 	res = *p;
118 	*p = res ^ mask;
119 	raw_local_irq_restore(flags);
120 
121 	return res & mask;
122 }
123 
124 #include <asm-generic/bitops/non-atomic.h>
125 
126 /*
127  *  A note about Endian-ness.
128  *  -------------------------
129  *
130  * When the ARM is put into big endian mode via CR15, the processor
131  * merely swaps the order of bytes within words, thus:
132  *
133  *          ------------ physical data bus bits -----------
134  *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
135  * little     byte 3       byte 2       byte 1      byte 0
136  * big        byte 0       byte 1       byte 2      byte 3
137  *
138  * This means that reading a 32-bit word at address 0 returns the same
139  * value irrespective of the endian mode bit.
140  *
141  * Peripheral devices should be connected with the data bus reversed in
142  * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
143  * available from http://www.arm.com/.
144  *
145  * The following assumes that the data bus connectivity for big endian
146  * mode has been followed.
147  *
148  * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
149  */
150 
151 /*
152  * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
153  */
154 extern void _set_bit_le(int nr, volatile unsigned long * p);
155 extern void _clear_bit_le(int nr, volatile unsigned long * p);
156 extern void _change_bit_le(int nr, volatile unsigned long * p);
157 extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
158 extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
159 extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
160 extern int _find_first_zero_bit_le(const void * p, unsigned size);
161 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
162 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
163 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
164 
165 /*
166  * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
167  */
168 extern void _set_bit_be(int nr, volatile unsigned long * p);
169 extern void _clear_bit_be(int nr, volatile unsigned long * p);
170 extern void _change_bit_be(int nr, volatile unsigned long * p);
171 extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
172 extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
173 extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
174 extern int _find_first_zero_bit_be(const void * p, unsigned size);
175 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
176 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
177 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
178 
179 #ifndef CONFIG_SMP
180 /*
181  * The __* form of bitops are non-atomic and may be reordered.
182  */
183 #define	ATOMIC_BITOP_LE(name,nr,p)		\
184 	(__builtin_constant_p(nr) ?		\
185 	 ____atomic_##name(nr, p) :		\
186 	 _##name##_le(nr,p))
187 
188 #define	ATOMIC_BITOP_BE(name,nr,p)		\
189 	(__builtin_constant_p(nr) ?		\
190 	 ____atomic_##name(nr, p) :		\
191 	 _##name##_be(nr,p))
192 #else
193 #define ATOMIC_BITOP_LE(name,nr,p)	_##name##_le(nr,p)
194 #define ATOMIC_BITOP_BE(name,nr,p)	_##name##_be(nr,p)
195 #endif
196 
197 #define NONATOMIC_BITOP(name,nr,p)		\
198 	(____nonatomic_##name(nr, p))
199 
200 #ifndef __ARMEB__
201 /*
202  * These are the little endian, atomic definitions.
203  */
204 #define set_bit(nr,p)			ATOMIC_BITOP_LE(set_bit,nr,p)
205 #define clear_bit(nr,p)			ATOMIC_BITOP_LE(clear_bit,nr,p)
206 #define change_bit(nr,p)		ATOMIC_BITOP_LE(change_bit,nr,p)
207 #define test_and_set_bit(nr,p)		ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
208 #define test_and_clear_bit(nr,p)	ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
209 #define test_and_change_bit(nr,p)	ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
210 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
211 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
212 #define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
213 #define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
214 
215 #define WORD_BITOFF_TO_LE(x)		((x))
216 
217 #else
218 
219 /*
220  * These are the big endian, atomic definitions.
221  */
222 #define set_bit(nr,p)			ATOMIC_BITOP_BE(set_bit,nr,p)
223 #define clear_bit(nr,p)			ATOMIC_BITOP_BE(clear_bit,nr,p)
224 #define change_bit(nr,p)		ATOMIC_BITOP_BE(change_bit,nr,p)
225 #define test_and_set_bit(nr,p)		ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
226 #define test_and_clear_bit(nr,p)	ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
227 #define test_and_change_bit(nr,p)	ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
228 #define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
229 #define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
230 #define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
231 #define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
232 
233 #define WORD_BITOFF_TO_LE(x)		((x) ^ 0x18)
234 
235 #endif
236 
237 #if __LINUX_ARM_ARCH__ < 5
238 
239 #include <asm-generic/bitops/ffz.h>
240 #include <asm-generic/bitops/__ffs.h>
241 #include <asm-generic/bitops/fls.h>
242 #include <asm-generic/bitops/ffs.h>
243 
244 #else
245 
246 static inline int constant_fls(int x)
247 {
248 	int r = 32;
249 
250 	if (!x)
251 		return 0;
252 	if (!(x & 0xffff0000u)) {
253 		x <<= 16;
254 		r -= 16;
255 	}
256 	if (!(x & 0xff000000u)) {
257 		x <<= 8;
258 		r -= 8;
259 	}
260 	if (!(x & 0xf0000000u)) {
261 		x <<= 4;
262 		r -= 4;
263 	}
264 	if (!(x & 0xc0000000u)) {
265 		x <<= 2;
266 		r -= 2;
267 	}
268 	if (!(x & 0x80000000u)) {
269 		x <<= 1;
270 		r -= 1;
271 	}
272 	return r;
273 }
274 
275 /*
276  * On ARMv5 and above those functions can be implemented around
277  * the clz instruction for much better code efficiency.
278  */
279 
280 #define __fls(x) \
281 	( __builtin_constant_p(x) ? constant_fls(x) : \
282 	  ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
283 
284 /* Implement fls() in C so that 64-bit args are suitably truncated */
285 static inline int fls(int x)
286 {
287 	return __fls(x);
288 }
289 
290 #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
291 #define __ffs(x) (ffs(x) - 1)
292 #define ffz(x) __ffs( ~(x) )
293 
294 #endif
295 
296 #include <asm-generic/bitops/fls64.h>
297 
298 #include <asm-generic/bitops/sched.h>
299 #include <asm-generic/bitops/hweight.h>
300 #include <asm-generic/bitops/lock.h>
301 
302 /*
303  * Ext2 is defined to use little-endian byte ordering.
304  * These do not need to be atomic.
305  */
306 #define ext2_set_bit(nr,p)			\
307 		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
308 #define ext2_set_bit_atomic(lock,nr,p)          \
309                 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
310 #define ext2_clear_bit(nr,p)			\
311 		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
312 #define ext2_clear_bit_atomic(lock,nr,p)        \
313                 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
314 #define ext2_test_bit(nr,p)			\
315 		test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
316 #define ext2_find_first_zero_bit(p,sz)		\
317 		_find_first_zero_bit_le(p,sz)
318 #define ext2_find_next_zero_bit(p,sz,off)	\
319 		_find_next_zero_bit_le(p,sz,off)
320 #define ext2_find_next_bit(p, sz, off) \
321 		_find_next_bit_le(p, sz, off)
322 
323 /*
324  * Minix is defined to use little-endian byte ordering.
325  * These do not need to be atomic.
326  */
327 #define minix_set_bit(nr,p)			\
328 		__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
329 #define minix_test_bit(nr,p)			\
330 		test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
331 #define minix_test_and_set_bit(nr,p)		\
332 		__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
333 #define minix_test_and_clear_bit(nr,p)		\
334 		__test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
335 #define minix_find_first_zero_bit(p,sz)		\
336 		_find_first_zero_bit_le(p,sz)
337 
338 #endif /* __KERNEL__ */
339 
340 #endif /* _ARM_BITOPS_H */
341