1//
2// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
3//
4// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
5// Copyright (C) 2019 Google LLC <ebiggers@google.com>
6//
7// This program is free software; you can redistribute it and/or modify
8// it under the terms of the GNU General Public License version 2 as
9// published by the Free Software Foundation.
10//
11
12// Derived from the x86 version:
13//
14// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
15//
16// Copyright (c) 2013, Intel Corporation
17//
18// Authors:
19//     Erdinc Ozturk <erdinc.ozturk@intel.com>
20//     Vinodh Gopal <vinodh.gopal@intel.com>
21//     James Guilford <james.guilford@intel.com>
22//     Tim Chen <tim.c.chen@linux.intel.com>
23//
24// This software is available to you under a choice of one of two
25// licenses.  You may choose to be licensed under the terms of the GNU
26// General Public License (GPL) Version 2, available from the file
27// COPYING in the main directory of this source tree, or the
28// OpenIB.org BSD license below:
29//
30// Redistribution and use in source and binary forms, with or without
31// modification, are permitted provided that the following conditions are
32// met:
33//
34// * Redistributions of source code must retain the above copyright
35//   notice, this list of conditions and the following disclaimer.
36//
37// * Redistributions in binary form must reproduce the above copyright
38//   notice, this list of conditions and the following disclaimer in the
39//   documentation and/or other materials provided with the
40//   distribution.
41//
42// * Neither the name of the Intel Corporation nor the names of its
43//   contributors may be used to endorse or promote products derived from
44//   this software without specific prior written permission.
45//
46//
47// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
48// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
50// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
51// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
52// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
54// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
55// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
56// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
57// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58//
59//       Reference paper titled "Fast CRC Computation for Generic
60//	Polynomials Using PCLMULQDQ Instruction"
61//       URL: http://www.intel.com/content/dam/www/public/us/en/documents
62//  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
63//
64
65#include <linux/linkage.h>
66#include <asm/assembler.h>
67
68#ifdef CONFIG_CPU_ENDIAN_BE8
69#define CPU_LE(code...)
70#else
71#define CPU_LE(code...)		code
72#endif
73
74	.text
75	.arch		armv7-a
76	.fpu		crypto-neon-fp-armv8
77
78	init_crc	.req	r0
79	buf		.req	r1
80	len		.req	r2
81
82	fold_consts_ptr	.req	ip
83
84	q0l		.req	d0
85	q0h		.req	d1
86	q1l		.req	d2
87	q1h		.req	d3
88	q2l		.req	d4
89	q2h		.req	d5
90	q3l		.req	d6
91	q3h		.req	d7
92	q4l		.req	d8
93	q4h		.req	d9
94	q5l		.req	d10
95	q5h		.req	d11
96	q6l		.req	d12
97	q6h		.req	d13
98	q7l		.req	d14
99	q7h		.req	d15
100	q8l		.req	d16
101	q8h		.req	d17
102	q9l		.req	d18
103	q9h		.req	d19
104	q10l		.req	d20
105	q10h		.req	d21
106	q11l		.req	d22
107	q11h		.req	d23
108	q12l		.req	d24
109	q12h		.req	d25
110
111	FOLD_CONSTS	.req	q10
112	FOLD_CONST_L	.req	q10l
113	FOLD_CONST_H	.req	q10h
114
115	// Fold reg1, reg2 into the next 32 data bytes, storing the result back
116	// into reg1, reg2.
117	.macro		fold_32_bytes, reg1, reg2
118	vld1.64		{q11-q12}, [buf]!
119
120	vmull.p64	q8, \reg1\()h, FOLD_CONST_H
121	vmull.p64	\reg1, \reg1\()l, FOLD_CONST_L
122	vmull.p64	q9, \reg2\()h, FOLD_CONST_H
123	vmull.p64	\reg2, \reg2\()l, FOLD_CONST_L
124
125CPU_LE(	vrev64.8	q11, q11	)
126CPU_LE(	vrev64.8	q12, q12	)
127	vswp		q11l, q11h
128	vswp		q12l, q12h
129
130	veor.8		\reg1, \reg1, q8
131	veor.8		\reg2, \reg2, q9
132	veor.8		\reg1, \reg1, q11
133	veor.8		\reg2, \reg2, q12
134	.endm
135
136	// Fold src_reg into dst_reg, optionally loading the next fold constants
137	.macro		fold_16_bytes, src_reg, dst_reg, load_next_consts
138	vmull.p64	q8, \src_reg\()l, FOLD_CONST_L
139	vmull.p64	\src_reg, \src_reg\()h, FOLD_CONST_H
140	.ifnb		\load_next_consts
141	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
142	.endif
143	veor.8		\dst_reg, \dst_reg, q8
144	veor.8		\dst_reg, \dst_reg, \src_reg
145	.endm
146
147	.macro		__adrl, out, sym
148	movw		\out, #:lower16:\sym
149	movt		\out, #:upper16:\sym
150	.endm
151
152//
153// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
154//
155// Assumes len >= 16.
156//
157ENTRY(crc_t10dif_pmull)
158
159	// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
160	cmp		len, #256
161	blt		.Lless_than_256_bytes
162
163	__adrl		fold_consts_ptr, .Lfold_across_128_bytes_consts
164
165	// Load the first 128 data bytes.  Byte swapping is necessary to make
166	// the bit order match the polynomial coefficient order.
167	vld1.64		{q0-q1}, [buf]!
168	vld1.64		{q2-q3}, [buf]!
169	vld1.64		{q4-q5}, [buf]!
170	vld1.64		{q6-q7}, [buf]!
171CPU_LE(	vrev64.8	q0, q0	)
172CPU_LE(	vrev64.8	q1, q1	)
173CPU_LE(	vrev64.8	q2, q2	)
174CPU_LE(	vrev64.8	q3, q3	)
175CPU_LE(	vrev64.8	q4, q4	)
176CPU_LE(	vrev64.8	q5, q5	)
177CPU_LE(	vrev64.8	q6, q6	)
178CPU_LE(	vrev64.8	q7, q7	)
179	vswp		q0l, q0h
180	vswp		q1l, q1h
181	vswp		q2l, q2h
182	vswp		q3l, q3h
183	vswp		q4l, q4h
184	vswp		q5l, q5h
185	vswp		q6l, q6h
186	vswp		q7l, q7h
187
188	// XOR the first 16 data *bits* with the initial CRC value.
189	vmov.i8		q8h, #0
190	vmov.u16	q8h[3], init_crc
191	veor		q0h, q0h, q8h
192
193	// Load the constants for folding across 128 bytes.
194	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
195
196	// Subtract 128 for the 128 data bytes just consumed.  Subtract another
197	// 128 to simplify the termination condition of the following loop.
198	sub		len, len, #256
199
200	// While >= 128 data bytes remain (not counting q0-q7), fold the 128
201	// bytes q0-q7 into them, storing the result back into q0-q7.
202.Lfold_128_bytes_loop:
203	fold_32_bytes	q0, q1
204	fold_32_bytes	q2, q3
205	fold_32_bytes	q4, q5
206	fold_32_bytes	q6, q7
207	subs		len, len, #128
208	bge		.Lfold_128_bytes_loop
209
210	// Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
211
212	// Fold across 64 bytes.
213	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
214	fold_16_bytes	q0, q4
215	fold_16_bytes	q1, q5
216	fold_16_bytes	q2, q6
217	fold_16_bytes	q3, q7, 1
218	// Fold across 32 bytes.
219	fold_16_bytes	q4, q6
220	fold_16_bytes	q5, q7, 1
221	// Fold across 16 bytes.
222	fold_16_bytes	q6, q7
223
224	// Add 128 to get the correct number of data bytes remaining in 0...127
225	// (not counting q7), following the previous extra subtraction by 128.
226	// Then subtract 16 to simplify the termination condition of the
227	// following loop.
228	adds		len, len, #(128-16)
229
230	// While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
231	// into them, storing the result back into q7.
232	blt		.Lfold_16_bytes_loop_done
233.Lfold_16_bytes_loop:
234	vmull.p64	q8, q7l, FOLD_CONST_L
235	vmull.p64	q7, q7h, FOLD_CONST_H
236	veor.8		q7, q7, q8
237	vld1.64		{q0}, [buf]!
238CPU_LE(	vrev64.8	q0, q0	)
239	vswp		q0l, q0h
240	veor.8		q7, q7, q0
241	subs		len, len, #16
242	bge		.Lfold_16_bytes_loop
243
244.Lfold_16_bytes_loop_done:
245	// Add 16 to get the correct number of data bytes remaining in 0...15
246	// (not counting q7), following the previous extra subtraction by 16.
247	adds		len, len, #16
248	beq		.Lreduce_final_16_bytes
249
250.Lhandle_partial_segment:
251	// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
252	// 16 bytes are in q7 and the rest are the remaining data in 'buf'.  To
253	// do this without needing a fold constant for each possible 'len',
254	// redivide the bytes into a first chunk of 'len' bytes and a second
255	// chunk of 16 bytes, then fold the first chunk into the second.
256
257	// q0 = last 16 original data bytes
258	add		buf, buf, len
259	sub		buf, buf, #16
260	vld1.64		{q0}, [buf]
261CPU_LE(	vrev64.8	q0, q0	)
262	vswp		q0l, q0h
263
264	// q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
265	__adrl		r3, .Lbyteshift_table + 16
266	sub		r3, r3, len
267	vld1.8		{q2}, [r3]
268	vtbl.8		q1l, {q7l-q7h}, q2l
269	vtbl.8		q1h, {q7l-q7h}, q2h
270
271	// q3 = first chunk: q7 right-shifted by '16-len' bytes.
272	vmov.i8		q3, #0x80
273	veor.8		q2, q2, q3
274	vtbl.8		q3l, {q7l-q7h}, q2l
275	vtbl.8		q3h, {q7l-q7h}, q2h
276
277	// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
278	vshr.s8		q2, q2, #7
279
280	// q2 = second chunk: 'len' bytes from q0 (low-order bytes),
281	// then '16-len' bytes from q1 (high-order bytes).
282	vbsl.8		q2, q1, q0
283
284	// Fold the first chunk into the second chunk, storing the result in q7.
285	vmull.p64	q0, q3l, FOLD_CONST_L
286	vmull.p64	q7, q3h, FOLD_CONST_H
287	veor.8		q7, q7, q0
288	veor.8		q7, q7, q2
289
290.Lreduce_final_16_bytes:
291	// Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
292
293	// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
294	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
295
296	// Fold the high 64 bits into the low 64 bits, while also multiplying by
297	// x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
298	// whose low 48 bits are 0.
299	vmull.p64	q0, q7h, FOLD_CONST_H	// high bits * x^48 * (x^80 mod G(x))
300	veor.8		q0h, q0h, q7l		// + low bits * x^64
301
302	// Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
303	// value congruent to x^64 * M(x) and whose low 48 bits are 0.
304	vmov.i8		q1, #0
305	vmov		s4, s3			// extract high 32 bits
306	vmov		s3, s5			// zero high 32 bits
307	vmull.p64	q1, q1l, FOLD_CONST_L	// high 32 bits * x^48 * (x^48 mod G(x))
308	veor.8		q0, q0, q1		// + low bits
309
310	// Load G(x) and floor(x^48 / G(x)).
311	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]
312
313	// Use Barrett reduction to compute the final CRC value.
314	vmull.p64	q1, q0h, FOLD_CONST_H	// high 32 bits * floor(x^48 / G(x))
315	vshr.u64	q1l, q1l, #32		// /= x^32
316	vmull.p64	q1, q1l, FOLD_CONST_L	// *= G(x)
317	vshr.u64	q0l, q0l, #48
318	veor.8		q0l, q0l, q1l		// + low 16 nonzero bits
319	// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
320
321	vmov.u16	r0, q0l[0]
322	bx		lr
323
324.Lless_than_256_bytes:
325	// Checksumming a buffer of length 16...255 bytes
326
327	__adrl		fold_consts_ptr, .Lfold_across_16_bytes_consts
328
329	// Load the first 16 data bytes.
330	vld1.64		{q7}, [buf]!
331CPU_LE(	vrev64.8	q7, q7	)
332	vswp		q7l, q7h
333
334	// XOR the first 16 data *bits* with the initial CRC value.
335	vmov.i8		q0h, #0
336	vmov.u16	q0h[3], init_crc
337	veor.8		q7h, q7h, q0h
338
339	// Load the fold-across-16-bytes constants.
340	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
341
342	cmp		len, #16
343	beq		.Lreduce_final_16_bytes		// len == 16
344	subs		len, len, #32
345	addlt		len, len, #16
346	blt		.Lhandle_partial_segment	// 17 <= len <= 31
347	b		.Lfold_16_bytes_loop		// 32 <= len <= 255
348ENDPROC(crc_t10dif_pmull)
349
350	.section	".rodata", "a"
351	.align		4
352
353// Fold constants precomputed from the polynomial 0x18bb7
354// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
355.Lfold_across_128_bytes_consts:
356	.quad		0x0000000000006123	// x^(8*128)	mod G(x)
357	.quad		0x0000000000002295	// x^(8*128+64)	mod G(x)
358// .Lfold_across_64_bytes_consts:
359	.quad		0x0000000000001069	// x^(4*128)	mod G(x)
360	.quad		0x000000000000dd31	// x^(4*128+64)	mod G(x)
361// .Lfold_across_32_bytes_consts:
362	.quad		0x000000000000857d	// x^(2*128)	mod G(x)
363	.quad		0x0000000000007acc	// x^(2*128+64)	mod G(x)
364.Lfold_across_16_bytes_consts:
365	.quad		0x000000000000a010	// x^(1*128)	mod G(x)
366	.quad		0x0000000000001faa	// x^(1*128+64)	mod G(x)
367// .Lfinal_fold_consts:
368	.quad		0x1368000000000000	// x^48 * (x^48 mod G(x))
369	.quad		0x2d56000000000000	// x^48 * (x^80 mod G(x))
370// .Lbarrett_reduction_consts:
371	.quad		0x0000000000018bb7	// G(x)
372	.quad		0x00000001f65a57f8	// floor(x^48 / G(x))
373
374// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
375// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
376// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
377.Lbyteshift_table:
378	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
379	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
380	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
381	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0
382