xref: /openbmc/linux/arch/arm/crypto/aes-neonbs-glue.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bit sliced AES using NEON instructions
4  *
5  * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/simd.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/scatterwalk.h>
15 #include <crypto/xts.h>
16 #include <linux/module.h>
17 
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20 
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25 
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27 
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 				  int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 				  int rounds, int blocks);
32 
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 				  int rounds, int blocks, u8 iv[]);
35 
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 				  int rounds, int blocks, u8 ctr[], u8 final[]);
38 
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 				  int rounds, int blocks, u8 iv[], int);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 				  int rounds, int blocks, u8 iv[], int);
43 
44 struct aesbs_ctx {
45 	int	rounds;
46 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE);
47 };
48 
49 struct aesbs_cbc_ctx {
50 	struct aesbs_ctx	key;
51 	struct crypto_skcipher	*enc_tfm;
52 };
53 
54 struct aesbs_xts_ctx {
55 	struct aesbs_ctx	key;
56 	struct crypto_cipher	*cts_tfm;
57 	struct crypto_cipher	*tweak_tfm;
58 };
59 
60 struct aesbs_ctr_ctx {
61 	struct aesbs_ctx	key;		/* must be first member */
62 	struct crypto_aes_ctx	fallback;
63 };
64 
65 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
66 			unsigned int key_len)
67 {
68 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
69 	struct crypto_aes_ctx rk;
70 	int err;
71 
72 	err = aes_expandkey(&rk, in_key, key_len);
73 	if (err)
74 		return err;
75 
76 	ctx->rounds = 6 + key_len / 4;
77 
78 	kernel_neon_begin();
79 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
80 	kernel_neon_end();
81 
82 	return 0;
83 }
84 
85 static int __ecb_crypt(struct skcipher_request *req,
86 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
87 				  int rounds, int blocks))
88 {
89 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
90 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
91 	struct skcipher_walk walk;
92 	int err;
93 
94 	err = skcipher_walk_virt(&walk, req, false);
95 
96 	while (walk.nbytes >= AES_BLOCK_SIZE) {
97 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
98 
99 		if (walk.nbytes < walk.total)
100 			blocks = round_down(blocks,
101 					    walk.stride / AES_BLOCK_SIZE);
102 
103 		kernel_neon_begin();
104 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
105 		   ctx->rounds, blocks);
106 		kernel_neon_end();
107 		err = skcipher_walk_done(&walk,
108 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
109 	}
110 
111 	return err;
112 }
113 
114 static int ecb_encrypt(struct skcipher_request *req)
115 {
116 	return __ecb_crypt(req, aesbs_ecb_encrypt);
117 }
118 
119 static int ecb_decrypt(struct skcipher_request *req)
120 {
121 	return __ecb_crypt(req, aesbs_ecb_decrypt);
122 }
123 
124 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
125 			    unsigned int key_len)
126 {
127 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
128 	struct crypto_aes_ctx rk;
129 	int err;
130 
131 	err = aes_expandkey(&rk, in_key, key_len);
132 	if (err)
133 		return err;
134 
135 	ctx->key.rounds = 6 + key_len / 4;
136 
137 	kernel_neon_begin();
138 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
139 	kernel_neon_end();
140 	memzero_explicit(&rk, sizeof(rk));
141 
142 	return crypto_skcipher_setkey(ctx->enc_tfm, in_key, key_len);
143 }
144 
145 static int cbc_encrypt(struct skcipher_request *req)
146 {
147 	struct skcipher_request *subreq = skcipher_request_ctx(req);
148 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
149 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
150 
151 	skcipher_request_set_tfm(subreq, ctx->enc_tfm);
152 	skcipher_request_set_callback(subreq,
153 				      skcipher_request_flags(req),
154 				      NULL, NULL);
155 	skcipher_request_set_crypt(subreq, req->src, req->dst,
156 				   req->cryptlen, req->iv);
157 
158 	return crypto_skcipher_encrypt(subreq);
159 }
160 
161 static int cbc_decrypt(struct skcipher_request *req)
162 {
163 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
164 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
165 	struct skcipher_walk walk;
166 	int err;
167 
168 	err = skcipher_walk_virt(&walk, req, false);
169 
170 	while (walk.nbytes >= AES_BLOCK_SIZE) {
171 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
172 
173 		if (walk.nbytes < walk.total)
174 			blocks = round_down(blocks,
175 					    walk.stride / AES_BLOCK_SIZE);
176 
177 		kernel_neon_begin();
178 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
179 				  ctx->key.rk, ctx->key.rounds, blocks,
180 				  walk.iv);
181 		kernel_neon_end();
182 		err = skcipher_walk_done(&walk,
183 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
184 	}
185 
186 	return err;
187 }
188 
189 static int cbc_init(struct crypto_skcipher *tfm)
190 {
191 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
192 	unsigned int reqsize;
193 
194 	ctx->enc_tfm = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
195 	if (IS_ERR(ctx->enc_tfm))
196 		return PTR_ERR(ctx->enc_tfm);
197 
198 	reqsize = sizeof(struct skcipher_request);
199 	reqsize += crypto_skcipher_reqsize(ctx->enc_tfm);
200 	crypto_skcipher_set_reqsize(tfm, reqsize);
201 
202 	return 0;
203 }
204 
205 static void cbc_exit(struct crypto_skcipher *tfm)
206 {
207 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
208 
209 	crypto_free_skcipher(ctx->enc_tfm);
210 }
211 
212 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
213 				 unsigned int key_len)
214 {
215 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
216 	int err;
217 
218 	err = aes_expandkey(&ctx->fallback, in_key, key_len);
219 	if (err)
220 		return err;
221 
222 	ctx->key.rounds = 6 + key_len / 4;
223 
224 	kernel_neon_begin();
225 	aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
226 	kernel_neon_end();
227 
228 	return 0;
229 }
230 
231 static int ctr_encrypt(struct skcipher_request *req)
232 {
233 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
234 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
235 	struct skcipher_walk walk;
236 	u8 buf[AES_BLOCK_SIZE];
237 	int err;
238 
239 	err = skcipher_walk_virt(&walk, req, false);
240 
241 	while (walk.nbytes > 0) {
242 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
243 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
244 
245 		if (walk.nbytes < walk.total) {
246 			blocks = round_down(blocks,
247 					    walk.stride / AES_BLOCK_SIZE);
248 			final = NULL;
249 		}
250 
251 		kernel_neon_begin();
252 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
253 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
254 		kernel_neon_end();
255 
256 		if (final) {
257 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
258 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
259 
260 			crypto_xor_cpy(dst, src, final,
261 				       walk.total % AES_BLOCK_SIZE);
262 
263 			err = skcipher_walk_done(&walk, 0);
264 			break;
265 		}
266 		err = skcipher_walk_done(&walk,
267 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
268 	}
269 
270 	return err;
271 }
272 
273 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
274 {
275 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
276 	unsigned long flags;
277 
278 	/*
279 	 * Temporarily disable interrupts to avoid races where
280 	 * cachelines are evicted when the CPU is interrupted
281 	 * to do something else.
282 	 */
283 	local_irq_save(flags);
284 	aes_encrypt(&ctx->fallback, dst, src);
285 	local_irq_restore(flags);
286 }
287 
288 static int ctr_encrypt_sync(struct skcipher_request *req)
289 {
290 	if (!crypto_simd_usable())
291 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
292 
293 	return ctr_encrypt(req);
294 }
295 
296 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
297 			    unsigned int key_len)
298 {
299 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
300 	int err;
301 
302 	err = xts_verify_key(tfm, in_key, key_len);
303 	if (err)
304 		return err;
305 
306 	key_len /= 2;
307 	err = crypto_cipher_setkey(ctx->cts_tfm, in_key, key_len);
308 	if (err)
309 		return err;
310 	err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len);
311 	if (err)
312 		return err;
313 
314 	return aesbs_setkey(tfm, in_key, key_len);
315 }
316 
317 static int xts_init(struct crypto_skcipher *tfm)
318 {
319 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
320 
321 	ctx->cts_tfm = crypto_alloc_cipher("aes", 0, 0);
322 	if (IS_ERR(ctx->cts_tfm))
323 		return PTR_ERR(ctx->cts_tfm);
324 
325 	ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0);
326 	if (IS_ERR(ctx->tweak_tfm))
327 		crypto_free_cipher(ctx->cts_tfm);
328 
329 	return PTR_ERR_OR_ZERO(ctx->tweak_tfm);
330 }
331 
332 static void xts_exit(struct crypto_skcipher *tfm)
333 {
334 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
335 
336 	crypto_free_cipher(ctx->tweak_tfm);
337 	crypto_free_cipher(ctx->cts_tfm);
338 }
339 
340 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
341 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
342 				  int rounds, int blocks, u8 iv[], int))
343 {
344 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
345 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
346 	int tail = req->cryptlen % AES_BLOCK_SIZE;
347 	struct skcipher_request subreq;
348 	u8 buf[2 * AES_BLOCK_SIZE];
349 	struct skcipher_walk walk;
350 	int err;
351 
352 	if (req->cryptlen < AES_BLOCK_SIZE)
353 		return -EINVAL;
354 
355 	if (unlikely(tail)) {
356 		skcipher_request_set_tfm(&subreq, tfm);
357 		skcipher_request_set_callback(&subreq,
358 					      skcipher_request_flags(req),
359 					      NULL, NULL);
360 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
361 					   req->cryptlen - tail, req->iv);
362 		req = &subreq;
363 	}
364 
365 	err = skcipher_walk_virt(&walk, req, true);
366 	if (err)
367 		return err;
368 
369 	crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv);
370 
371 	while (walk.nbytes >= AES_BLOCK_SIZE) {
372 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
373 		int reorder_last_tweak = !encrypt && tail > 0;
374 
375 		if (walk.nbytes < walk.total) {
376 			blocks = round_down(blocks,
377 					    walk.stride / AES_BLOCK_SIZE);
378 			reorder_last_tweak = 0;
379 		}
380 
381 		kernel_neon_begin();
382 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
383 		   ctx->key.rounds, blocks, walk.iv, reorder_last_tweak);
384 		kernel_neon_end();
385 		err = skcipher_walk_done(&walk,
386 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
387 	}
388 
389 	if (err || likely(!tail))
390 		return err;
391 
392 	/* handle ciphertext stealing */
393 	scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
394 				 AES_BLOCK_SIZE, 0);
395 	memcpy(buf + AES_BLOCK_SIZE, buf, tail);
396 	scatterwalk_map_and_copy(buf, req->src, req->cryptlen, tail, 0);
397 
398 	crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
399 
400 	if (encrypt)
401 		crypto_cipher_encrypt_one(ctx->cts_tfm, buf, buf);
402 	else
403 		crypto_cipher_decrypt_one(ctx->cts_tfm, buf, buf);
404 
405 	crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
406 
407 	scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
408 				 AES_BLOCK_SIZE + tail, 1);
409 	return 0;
410 }
411 
412 static int xts_encrypt(struct skcipher_request *req)
413 {
414 	return __xts_crypt(req, true, aesbs_xts_encrypt);
415 }
416 
417 static int xts_decrypt(struct skcipher_request *req)
418 {
419 	return __xts_crypt(req, false, aesbs_xts_decrypt);
420 }
421 
422 static struct skcipher_alg aes_algs[] = { {
423 	.base.cra_name		= "__ecb(aes)",
424 	.base.cra_driver_name	= "__ecb-aes-neonbs",
425 	.base.cra_priority	= 250,
426 	.base.cra_blocksize	= AES_BLOCK_SIZE,
427 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
428 	.base.cra_module	= THIS_MODULE,
429 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
430 
431 	.min_keysize		= AES_MIN_KEY_SIZE,
432 	.max_keysize		= AES_MAX_KEY_SIZE,
433 	.walksize		= 8 * AES_BLOCK_SIZE,
434 	.setkey			= aesbs_setkey,
435 	.encrypt		= ecb_encrypt,
436 	.decrypt		= ecb_decrypt,
437 }, {
438 	.base.cra_name		= "__cbc(aes)",
439 	.base.cra_driver_name	= "__cbc-aes-neonbs",
440 	.base.cra_priority	= 250,
441 	.base.cra_blocksize	= AES_BLOCK_SIZE,
442 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
443 	.base.cra_module	= THIS_MODULE,
444 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
445 
446 	.min_keysize		= AES_MIN_KEY_SIZE,
447 	.max_keysize		= AES_MAX_KEY_SIZE,
448 	.walksize		= 8 * AES_BLOCK_SIZE,
449 	.ivsize			= AES_BLOCK_SIZE,
450 	.setkey			= aesbs_cbc_setkey,
451 	.encrypt		= cbc_encrypt,
452 	.decrypt		= cbc_decrypt,
453 	.init			= cbc_init,
454 	.exit			= cbc_exit,
455 }, {
456 	.base.cra_name		= "__ctr(aes)",
457 	.base.cra_driver_name	= "__ctr-aes-neonbs",
458 	.base.cra_priority	= 250,
459 	.base.cra_blocksize	= 1,
460 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
461 	.base.cra_module	= THIS_MODULE,
462 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
463 
464 	.min_keysize		= AES_MIN_KEY_SIZE,
465 	.max_keysize		= AES_MAX_KEY_SIZE,
466 	.chunksize		= AES_BLOCK_SIZE,
467 	.walksize		= 8 * AES_BLOCK_SIZE,
468 	.ivsize			= AES_BLOCK_SIZE,
469 	.setkey			= aesbs_setkey,
470 	.encrypt		= ctr_encrypt,
471 	.decrypt		= ctr_encrypt,
472 }, {
473 	.base.cra_name		= "ctr(aes)",
474 	.base.cra_driver_name	= "ctr-aes-neonbs-sync",
475 	.base.cra_priority	= 250 - 1,
476 	.base.cra_blocksize	= 1,
477 	.base.cra_ctxsize	= sizeof(struct aesbs_ctr_ctx),
478 	.base.cra_module	= THIS_MODULE,
479 
480 	.min_keysize		= AES_MIN_KEY_SIZE,
481 	.max_keysize		= AES_MAX_KEY_SIZE,
482 	.chunksize		= AES_BLOCK_SIZE,
483 	.walksize		= 8 * AES_BLOCK_SIZE,
484 	.ivsize			= AES_BLOCK_SIZE,
485 	.setkey			= aesbs_ctr_setkey_sync,
486 	.encrypt		= ctr_encrypt_sync,
487 	.decrypt		= ctr_encrypt_sync,
488 }, {
489 	.base.cra_name		= "__xts(aes)",
490 	.base.cra_driver_name	= "__xts-aes-neonbs",
491 	.base.cra_priority	= 250,
492 	.base.cra_blocksize	= AES_BLOCK_SIZE,
493 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
494 	.base.cra_module	= THIS_MODULE,
495 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
496 
497 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
498 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
499 	.walksize		= 8 * AES_BLOCK_SIZE,
500 	.ivsize			= AES_BLOCK_SIZE,
501 	.setkey			= aesbs_xts_setkey,
502 	.encrypt		= xts_encrypt,
503 	.decrypt		= xts_decrypt,
504 	.init			= xts_init,
505 	.exit			= xts_exit,
506 } };
507 
508 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
509 
510 static void aes_exit(void)
511 {
512 	int i;
513 
514 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
515 		if (aes_simd_algs[i])
516 			simd_skcipher_free(aes_simd_algs[i]);
517 
518 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
519 }
520 
521 static int __init aes_init(void)
522 {
523 	struct simd_skcipher_alg *simd;
524 	const char *basename;
525 	const char *algname;
526 	const char *drvname;
527 	int err;
528 	int i;
529 
530 	if (!(elf_hwcap & HWCAP_NEON))
531 		return -ENODEV;
532 
533 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
534 	if (err)
535 		return err;
536 
537 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
538 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
539 			continue;
540 
541 		algname = aes_algs[i].base.cra_name + 2;
542 		drvname = aes_algs[i].base.cra_driver_name + 2;
543 		basename = aes_algs[i].base.cra_driver_name;
544 		simd = simd_skcipher_create_compat(algname, drvname, basename);
545 		err = PTR_ERR(simd);
546 		if (IS_ERR(simd))
547 			goto unregister_simds;
548 
549 		aes_simd_algs[i] = simd;
550 	}
551 	return 0;
552 
553 unregister_simds:
554 	aes_exit();
555 	return err;
556 }
557 
558 late_initcall(aes_init);
559 module_exit(aes_exit);
560