1 /*
2  * Bit sliced AES using NEON instructions
3  *
4  * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <asm/neon.h>
12 #include <crypto/aes.h>
13 #include <crypto/cbc.h>
14 #include <crypto/internal/simd.h>
15 #include <crypto/internal/skcipher.h>
16 #include <crypto/xts.h>
17 #include <linux/module.h>
18 
19 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
20 MODULE_LICENSE("GPL v2");
21 
22 MODULE_ALIAS_CRYPTO("ecb(aes)");
23 MODULE_ALIAS_CRYPTO("cbc(aes)");
24 MODULE_ALIAS_CRYPTO("ctr(aes)");
25 MODULE_ALIAS_CRYPTO("xts(aes)");
26 
27 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
28 
29 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
30 				  int rounds, int blocks);
31 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
32 				  int rounds, int blocks);
33 
34 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
35 				  int rounds, int blocks, u8 iv[]);
36 
37 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
38 				  int rounds, int blocks, u8 ctr[], u8 final[]);
39 
40 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
41 				  int rounds, int blocks, u8 iv[]);
42 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
43 				  int rounds, int blocks, u8 iv[]);
44 
45 struct aesbs_ctx {
46 	int	rounds;
47 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE);
48 };
49 
50 struct aesbs_cbc_ctx {
51 	struct aesbs_ctx	key;
52 	struct crypto_cipher	*enc_tfm;
53 };
54 
55 struct aesbs_xts_ctx {
56 	struct aesbs_ctx	key;
57 	struct crypto_cipher	*tweak_tfm;
58 };
59 
60 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
61 			unsigned int key_len)
62 {
63 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
64 	struct crypto_aes_ctx rk;
65 	int err;
66 
67 	err = crypto_aes_expand_key(&rk, in_key, key_len);
68 	if (err)
69 		return err;
70 
71 	ctx->rounds = 6 + key_len / 4;
72 
73 	kernel_neon_begin();
74 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
75 	kernel_neon_end();
76 
77 	return 0;
78 }
79 
80 static int __ecb_crypt(struct skcipher_request *req,
81 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
82 				  int rounds, int blocks))
83 {
84 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
85 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
86 	struct skcipher_walk walk;
87 	int err;
88 
89 	err = skcipher_walk_virt(&walk, req, true);
90 
91 	kernel_neon_begin();
92 	while (walk.nbytes >= AES_BLOCK_SIZE) {
93 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
94 
95 		if (walk.nbytes < walk.total)
96 			blocks = round_down(blocks,
97 					    walk.stride / AES_BLOCK_SIZE);
98 
99 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
100 		   ctx->rounds, blocks);
101 		err = skcipher_walk_done(&walk,
102 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
103 	}
104 	kernel_neon_end();
105 
106 	return err;
107 }
108 
109 static int ecb_encrypt(struct skcipher_request *req)
110 {
111 	return __ecb_crypt(req, aesbs_ecb_encrypt);
112 }
113 
114 static int ecb_decrypt(struct skcipher_request *req)
115 {
116 	return __ecb_crypt(req, aesbs_ecb_decrypt);
117 }
118 
119 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
120 			    unsigned int key_len)
121 {
122 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
123 	struct crypto_aes_ctx rk;
124 	int err;
125 
126 	err = crypto_aes_expand_key(&rk, in_key, key_len);
127 	if (err)
128 		return err;
129 
130 	ctx->key.rounds = 6 + key_len / 4;
131 
132 	kernel_neon_begin();
133 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
134 	kernel_neon_end();
135 
136 	return crypto_cipher_setkey(ctx->enc_tfm, in_key, key_len);
137 }
138 
139 static void cbc_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
140 {
141 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
142 
143 	crypto_cipher_encrypt_one(ctx->enc_tfm, dst, src);
144 }
145 
146 static int cbc_encrypt(struct skcipher_request *req)
147 {
148 	return crypto_cbc_encrypt_walk(req, cbc_encrypt_one);
149 }
150 
151 static int cbc_decrypt(struct skcipher_request *req)
152 {
153 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
154 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
155 	struct skcipher_walk walk;
156 	int err;
157 
158 	err = skcipher_walk_virt(&walk, req, true);
159 
160 	kernel_neon_begin();
161 	while (walk.nbytes >= AES_BLOCK_SIZE) {
162 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
163 
164 		if (walk.nbytes < walk.total)
165 			blocks = round_down(blocks,
166 					    walk.stride / AES_BLOCK_SIZE);
167 
168 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
169 				  ctx->key.rk, ctx->key.rounds, blocks,
170 				  walk.iv);
171 		err = skcipher_walk_done(&walk,
172 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
173 	}
174 	kernel_neon_end();
175 
176 	return err;
177 }
178 
179 static int cbc_init(struct crypto_tfm *tfm)
180 {
181 	struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm);
182 
183 	ctx->enc_tfm = crypto_alloc_cipher("aes", 0, 0);
184 
185 	return PTR_ERR_OR_ZERO(ctx->enc_tfm);
186 }
187 
188 static void cbc_exit(struct crypto_tfm *tfm)
189 {
190 	struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm);
191 
192 	crypto_free_cipher(ctx->enc_tfm);
193 }
194 
195 static int ctr_encrypt(struct skcipher_request *req)
196 {
197 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
198 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
199 	struct skcipher_walk walk;
200 	u8 buf[AES_BLOCK_SIZE];
201 	int err;
202 
203 	err = skcipher_walk_virt(&walk, req, true);
204 
205 	kernel_neon_begin();
206 	while (walk.nbytes > 0) {
207 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
208 		u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
209 
210 		if (walk.nbytes < walk.total) {
211 			blocks = round_down(blocks,
212 					    walk.stride / AES_BLOCK_SIZE);
213 			final = NULL;
214 		}
215 
216 		aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
217 				  ctx->rk, ctx->rounds, blocks, walk.iv, final);
218 
219 		if (final) {
220 			u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
221 			u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
222 
223 			crypto_xor_cpy(dst, src, final,
224 				       walk.total % AES_BLOCK_SIZE);
225 
226 			err = skcipher_walk_done(&walk, 0);
227 			break;
228 		}
229 		err = skcipher_walk_done(&walk,
230 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
231 	}
232 	kernel_neon_end();
233 
234 	return err;
235 }
236 
237 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
238 			    unsigned int key_len)
239 {
240 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
241 	int err;
242 
243 	err = xts_verify_key(tfm, in_key, key_len);
244 	if (err)
245 		return err;
246 
247 	key_len /= 2;
248 	err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len);
249 	if (err)
250 		return err;
251 
252 	return aesbs_setkey(tfm, in_key, key_len);
253 }
254 
255 static int xts_init(struct crypto_tfm *tfm)
256 {
257 	struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm);
258 
259 	ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0);
260 
261 	return PTR_ERR_OR_ZERO(ctx->tweak_tfm);
262 }
263 
264 static void xts_exit(struct crypto_tfm *tfm)
265 {
266 	struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm);
267 
268 	crypto_free_cipher(ctx->tweak_tfm);
269 }
270 
271 static int __xts_crypt(struct skcipher_request *req,
272 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
273 				  int rounds, int blocks, u8 iv[]))
274 {
275 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
276 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
277 	struct skcipher_walk walk;
278 	int err;
279 
280 	err = skcipher_walk_virt(&walk, req, true);
281 	if (err)
282 		return err;
283 
284 	crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv);
285 
286 	kernel_neon_begin();
287 	while (walk.nbytes >= AES_BLOCK_SIZE) {
288 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
289 
290 		if (walk.nbytes < walk.total)
291 			blocks = round_down(blocks,
292 					    walk.stride / AES_BLOCK_SIZE);
293 
294 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
295 		   ctx->key.rounds, blocks, walk.iv);
296 		err = skcipher_walk_done(&walk,
297 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
298 	}
299 	kernel_neon_end();
300 
301 	return err;
302 }
303 
304 static int xts_encrypt(struct skcipher_request *req)
305 {
306 	return __xts_crypt(req, aesbs_xts_encrypt);
307 }
308 
309 static int xts_decrypt(struct skcipher_request *req)
310 {
311 	return __xts_crypt(req, aesbs_xts_decrypt);
312 }
313 
314 static struct skcipher_alg aes_algs[] = { {
315 	.base.cra_name		= "__ecb(aes)",
316 	.base.cra_driver_name	= "__ecb-aes-neonbs",
317 	.base.cra_priority	= 250,
318 	.base.cra_blocksize	= AES_BLOCK_SIZE,
319 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
320 	.base.cra_module	= THIS_MODULE,
321 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
322 
323 	.min_keysize		= AES_MIN_KEY_SIZE,
324 	.max_keysize		= AES_MAX_KEY_SIZE,
325 	.walksize		= 8 * AES_BLOCK_SIZE,
326 	.setkey			= aesbs_setkey,
327 	.encrypt		= ecb_encrypt,
328 	.decrypt		= ecb_decrypt,
329 }, {
330 	.base.cra_name		= "__cbc(aes)",
331 	.base.cra_driver_name	= "__cbc-aes-neonbs",
332 	.base.cra_priority	= 250,
333 	.base.cra_blocksize	= AES_BLOCK_SIZE,
334 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
335 	.base.cra_module	= THIS_MODULE,
336 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
337 	.base.cra_init		= cbc_init,
338 	.base.cra_exit		= cbc_exit,
339 
340 	.min_keysize		= AES_MIN_KEY_SIZE,
341 	.max_keysize		= AES_MAX_KEY_SIZE,
342 	.walksize		= 8 * AES_BLOCK_SIZE,
343 	.ivsize			= AES_BLOCK_SIZE,
344 	.setkey			= aesbs_cbc_setkey,
345 	.encrypt		= cbc_encrypt,
346 	.decrypt		= cbc_decrypt,
347 }, {
348 	.base.cra_name		= "__ctr(aes)",
349 	.base.cra_driver_name	= "__ctr-aes-neonbs",
350 	.base.cra_priority	= 250,
351 	.base.cra_blocksize	= 1,
352 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
353 	.base.cra_module	= THIS_MODULE,
354 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
355 
356 	.min_keysize		= AES_MIN_KEY_SIZE,
357 	.max_keysize		= AES_MAX_KEY_SIZE,
358 	.chunksize		= AES_BLOCK_SIZE,
359 	.walksize		= 8 * AES_BLOCK_SIZE,
360 	.ivsize			= AES_BLOCK_SIZE,
361 	.setkey			= aesbs_setkey,
362 	.encrypt		= ctr_encrypt,
363 	.decrypt		= ctr_encrypt,
364 }, {
365 	.base.cra_name		= "__xts(aes)",
366 	.base.cra_driver_name	= "__xts-aes-neonbs",
367 	.base.cra_priority	= 250,
368 	.base.cra_blocksize	= AES_BLOCK_SIZE,
369 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
370 	.base.cra_module	= THIS_MODULE,
371 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
372 	.base.cra_init		= xts_init,
373 	.base.cra_exit		= xts_exit,
374 
375 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
376 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
377 	.walksize		= 8 * AES_BLOCK_SIZE,
378 	.ivsize			= AES_BLOCK_SIZE,
379 	.setkey			= aesbs_xts_setkey,
380 	.encrypt		= xts_encrypt,
381 	.decrypt		= xts_decrypt,
382 } };
383 
384 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
385 
386 static void aes_exit(void)
387 {
388 	int i;
389 
390 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
391 		if (aes_simd_algs[i])
392 			simd_skcipher_free(aes_simd_algs[i]);
393 
394 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
395 }
396 
397 static int __init aes_init(void)
398 {
399 	struct simd_skcipher_alg *simd;
400 	const char *basename;
401 	const char *algname;
402 	const char *drvname;
403 	int err;
404 	int i;
405 
406 	if (!(elf_hwcap & HWCAP_NEON))
407 		return -ENODEV;
408 
409 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
410 	if (err)
411 		return err;
412 
413 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
414 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
415 			continue;
416 
417 		algname = aes_algs[i].base.cra_name + 2;
418 		drvname = aes_algs[i].base.cra_driver_name + 2;
419 		basename = aes_algs[i].base.cra_driver_name;
420 		simd = simd_skcipher_create_compat(algname, drvname, basename);
421 		err = PTR_ERR(simd);
422 		if (IS_ERR(simd))
423 			goto unregister_simds;
424 
425 		aes_simd_algs[i] = simd;
426 	}
427 	return 0;
428 
429 unregister_simds:
430 	aes_exit();
431 	return err;
432 }
433 
434 late_initcall(aes_init);
435 module_exit(aes_exit);
436