1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Bit sliced AES using NEON instructions
4  *
5  * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/ctr.h>
12 #include <crypto/internal/cipher.h>
13 #include <crypto/internal/simd.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <crypto/xts.h>
17 #include <linux/module.h>
18 
19 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
20 MODULE_LICENSE("GPL v2");
21 
22 MODULE_ALIAS_CRYPTO("ecb(aes)");
23 MODULE_ALIAS_CRYPTO("cbc(aes)-all");
24 MODULE_ALIAS_CRYPTO("ctr(aes)");
25 MODULE_ALIAS_CRYPTO("xts(aes)");
26 
27 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
28 
29 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
30 
31 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
32 				  int rounds, int blocks);
33 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 				  int rounds, int blocks);
35 
36 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
37 				  int rounds, int blocks, u8 iv[]);
38 
39 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 				  int rounds, int blocks, u8 ctr[]);
41 
42 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
43 				  int rounds, int blocks, u8 iv[], int);
44 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
45 				  int rounds, int blocks, u8 iv[], int);
46 
47 struct aesbs_ctx {
48 	int	rounds;
49 	u8	rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE);
50 };
51 
52 struct aesbs_cbc_ctx {
53 	struct aesbs_ctx	key;
54 	struct crypto_skcipher	*enc_tfm;
55 };
56 
57 struct aesbs_xts_ctx {
58 	struct aesbs_ctx	key;
59 	struct crypto_cipher	*cts_tfm;
60 	struct crypto_cipher	*tweak_tfm;
61 };
62 
63 struct aesbs_ctr_ctx {
64 	struct aesbs_ctx	key;		/* must be first member */
65 	struct crypto_aes_ctx	fallback;
66 };
67 
aesbs_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)68 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
69 			unsigned int key_len)
70 {
71 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
72 	struct crypto_aes_ctx rk;
73 	int err;
74 
75 	err = aes_expandkey(&rk, in_key, key_len);
76 	if (err)
77 		return err;
78 
79 	ctx->rounds = 6 + key_len / 4;
80 
81 	kernel_neon_begin();
82 	aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
83 	kernel_neon_end();
84 
85 	return 0;
86 }
87 
__ecb_crypt(struct skcipher_request * req,void (* fn)(u8 out[],u8 const in[],u8 const rk[],int rounds,int blocks))88 static int __ecb_crypt(struct skcipher_request *req,
89 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
90 				  int rounds, int blocks))
91 {
92 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
93 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
94 	struct skcipher_walk walk;
95 	int err;
96 
97 	err = skcipher_walk_virt(&walk, req, false);
98 
99 	while (walk.nbytes >= AES_BLOCK_SIZE) {
100 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
101 
102 		if (walk.nbytes < walk.total)
103 			blocks = round_down(blocks,
104 					    walk.stride / AES_BLOCK_SIZE);
105 
106 		kernel_neon_begin();
107 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
108 		   ctx->rounds, blocks);
109 		kernel_neon_end();
110 		err = skcipher_walk_done(&walk,
111 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
112 	}
113 
114 	return err;
115 }
116 
ecb_encrypt(struct skcipher_request * req)117 static int ecb_encrypt(struct skcipher_request *req)
118 {
119 	return __ecb_crypt(req, aesbs_ecb_encrypt);
120 }
121 
ecb_decrypt(struct skcipher_request * req)122 static int ecb_decrypt(struct skcipher_request *req)
123 {
124 	return __ecb_crypt(req, aesbs_ecb_decrypt);
125 }
126 
aesbs_cbc_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)127 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
128 			    unsigned int key_len)
129 {
130 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
131 	struct crypto_aes_ctx rk;
132 	int err;
133 
134 	err = aes_expandkey(&rk, in_key, key_len);
135 	if (err)
136 		return err;
137 
138 	ctx->key.rounds = 6 + key_len / 4;
139 
140 	kernel_neon_begin();
141 	aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
142 	kernel_neon_end();
143 	memzero_explicit(&rk, sizeof(rk));
144 
145 	return crypto_skcipher_setkey(ctx->enc_tfm, in_key, key_len);
146 }
147 
cbc_encrypt(struct skcipher_request * req)148 static int cbc_encrypt(struct skcipher_request *req)
149 {
150 	struct skcipher_request *subreq = skcipher_request_ctx(req);
151 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
152 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
153 
154 	skcipher_request_set_tfm(subreq, ctx->enc_tfm);
155 	skcipher_request_set_callback(subreq,
156 				      skcipher_request_flags(req),
157 				      NULL, NULL);
158 	skcipher_request_set_crypt(subreq, req->src, req->dst,
159 				   req->cryptlen, req->iv);
160 
161 	return crypto_skcipher_encrypt(subreq);
162 }
163 
cbc_decrypt(struct skcipher_request * req)164 static int cbc_decrypt(struct skcipher_request *req)
165 {
166 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
167 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
168 	struct skcipher_walk walk;
169 	int err;
170 
171 	err = skcipher_walk_virt(&walk, req, false);
172 
173 	while (walk.nbytes >= AES_BLOCK_SIZE) {
174 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
175 
176 		if (walk.nbytes < walk.total)
177 			blocks = round_down(blocks,
178 					    walk.stride / AES_BLOCK_SIZE);
179 
180 		kernel_neon_begin();
181 		aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
182 				  ctx->key.rk, ctx->key.rounds, blocks,
183 				  walk.iv);
184 		kernel_neon_end();
185 		err = skcipher_walk_done(&walk,
186 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
187 	}
188 
189 	return err;
190 }
191 
cbc_init(struct crypto_skcipher * tfm)192 static int cbc_init(struct crypto_skcipher *tfm)
193 {
194 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
195 	unsigned int reqsize;
196 
197 	ctx->enc_tfm = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC |
198 					     CRYPTO_ALG_NEED_FALLBACK);
199 	if (IS_ERR(ctx->enc_tfm))
200 		return PTR_ERR(ctx->enc_tfm);
201 
202 	reqsize = sizeof(struct skcipher_request);
203 	reqsize += crypto_skcipher_reqsize(ctx->enc_tfm);
204 	crypto_skcipher_set_reqsize(tfm, reqsize);
205 
206 	return 0;
207 }
208 
cbc_exit(struct crypto_skcipher * tfm)209 static void cbc_exit(struct crypto_skcipher *tfm)
210 {
211 	struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
212 
213 	crypto_free_skcipher(ctx->enc_tfm);
214 }
215 
aesbs_ctr_setkey_sync(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)216 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
217 				 unsigned int key_len)
218 {
219 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
220 	int err;
221 
222 	err = aes_expandkey(&ctx->fallback, in_key, key_len);
223 	if (err)
224 		return err;
225 
226 	ctx->key.rounds = 6 + key_len / 4;
227 
228 	kernel_neon_begin();
229 	aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
230 	kernel_neon_end();
231 
232 	return 0;
233 }
234 
ctr_encrypt(struct skcipher_request * req)235 static int ctr_encrypt(struct skcipher_request *req)
236 {
237 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
238 	struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
239 	struct skcipher_walk walk;
240 	u8 buf[AES_BLOCK_SIZE];
241 	int err;
242 
243 	err = skcipher_walk_virt(&walk, req, false);
244 
245 	while (walk.nbytes > 0) {
246 		const u8 *src = walk.src.virt.addr;
247 		u8 *dst = walk.dst.virt.addr;
248 		int bytes = walk.nbytes;
249 
250 		if (unlikely(bytes < AES_BLOCK_SIZE))
251 			src = dst = memcpy(buf + sizeof(buf) - bytes,
252 					   src, bytes);
253 		else if (walk.nbytes < walk.total)
254 			bytes &= ~(8 * AES_BLOCK_SIZE - 1);
255 
256 		kernel_neon_begin();
257 		aesbs_ctr_encrypt(dst, src, ctx->rk, ctx->rounds, bytes, walk.iv);
258 		kernel_neon_end();
259 
260 		if (unlikely(bytes < AES_BLOCK_SIZE))
261 			memcpy(walk.dst.virt.addr,
262 			       buf + sizeof(buf) - bytes, bytes);
263 
264 		err = skcipher_walk_done(&walk, walk.nbytes - bytes);
265 	}
266 
267 	return err;
268 }
269 
ctr_encrypt_one(struct crypto_skcipher * tfm,const u8 * src,u8 * dst)270 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
271 {
272 	struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
273 	unsigned long flags;
274 
275 	/*
276 	 * Temporarily disable interrupts to avoid races where
277 	 * cachelines are evicted when the CPU is interrupted
278 	 * to do something else.
279 	 */
280 	local_irq_save(flags);
281 	aes_encrypt(&ctx->fallback, dst, src);
282 	local_irq_restore(flags);
283 }
284 
ctr_encrypt_sync(struct skcipher_request * req)285 static int ctr_encrypt_sync(struct skcipher_request *req)
286 {
287 	if (!crypto_simd_usable())
288 		return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
289 
290 	return ctr_encrypt(req);
291 }
292 
aesbs_xts_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)293 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
294 			    unsigned int key_len)
295 {
296 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
297 	int err;
298 
299 	err = xts_verify_key(tfm, in_key, key_len);
300 	if (err)
301 		return err;
302 
303 	key_len /= 2;
304 	err = crypto_cipher_setkey(ctx->cts_tfm, in_key, key_len);
305 	if (err)
306 		return err;
307 	err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len);
308 	if (err)
309 		return err;
310 
311 	return aesbs_setkey(tfm, in_key, key_len);
312 }
313 
xts_init(struct crypto_skcipher * tfm)314 static int xts_init(struct crypto_skcipher *tfm)
315 {
316 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
317 
318 	ctx->cts_tfm = crypto_alloc_cipher("aes", 0, 0);
319 	if (IS_ERR(ctx->cts_tfm))
320 		return PTR_ERR(ctx->cts_tfm);
321 
322 	ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0);
323 	if (IS_ERR(ctx->tweak_tfm))
324 		crypto_free_cipher(ctx->cts_tfm);
325 
326 	return PTR_ERR_OR_ZERO(ctx->tweak_tfm);
327 }
328 
xts_exit(struct crypto_skcipher * tfm)329 static void xts_exit(struct crypto_skcipher *tfm)
330 {
331 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
332 
333 	crypto_free_cipher(ctx->tweak_tfm);
334 	crypto_free_cipher(ctx->cts_tfm);
335 }
336 
__xts_crypt(struct skcipher_request * req,bool encrypt,void (* fn)(u8 out[],u8 const in[],u8 const rk[],int rounds,int blocks,u8 iv[],int))337 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
338 		       void (*fn)(u8 out[], u8 const in[], u8 const rk[],
339 				  int rounds, int blocks, u8 iv[], int))
340 {
341 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
342 	struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
343 	int tail = req->cryptlen % AES_BLOCK_SIZE;
344 	struct skcipher_request subreq;
345 	u8 buf[2 * AES_BLOCK_SIZE];
346 	struct skcipher_walk walk;
347 	int err;
348 
349 	if (req->cryptlen < AES_BLOCK_SIZE)
350 		return -EINVAL;
351 
352 	if (unlikely(tail)) {
353 		skcipher_request_set_tfm(&subreq, tfm);
354 		skcipher_request_set_callback(&subreq,
355 					      skcipher_request_flags(req),
356 					      NULL, NULL);
357 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
358 					   req->cryptlen - tail, req->iv);
359 		req = &subreq;
360 	}
361 
362 	err = skcipher_walk_virt(&walk, req, true);
363 	if (err)
364 		return err;
365 
366 	crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv);
367 
368 	while (walk.nbytes >= AES_BLOCK_SIZE) {
369 		unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
370 		int reorder_last_tweak = !encrypt && tail > 0;
371 
372 		if (walk.nbytes < walk.total) {
373 			blocks = round_down(blocks,
374 					    walk.stride / AES_BLOCK_SIZE);
375 			reorder_last_tweak = 0;
376 		}
377 
378 		kernel_neon_begin();
379 		fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
380 		   ctx->key.rounds, blocks, walk.iv, reorder_last_tweak);
381 		kernel_neon_end();
382 		err = skcipher_walk_done(&walk,
383 					 walk.nbytes - blocks * AES_BLOCK_SIZE);
384 	}
385 
386 	if (err || likely(!tail))
387 		return err;
388 
389 	/* handle ciphertext stealing */
390 	scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
391 				 AES_BLOCK_SIZE, 0);
392 	memcpy(buf + AES_BLOCK_SIZE, buf, tail);
393 	scatterwalk_map_and_copy(buf, req->src, req->cryptlen, tail, 0);
394 
395 	crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
396 
397 	if (encrypt)
398 		crypto_cipher_encrypt_one(ctx->cts_tfm, buf, buf);
399 	else
400 		crypto_cipher_decrypt_one(ctx->cts_tfm, buf, buf);
401 
402 	crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
403 
404 	scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
405 				 AES_BLOCK_SIZE + tail, 1);
406 	return 0;
407 }
408 
xts_encrypt(struct skcipher_request * req)409 static int xts_encrypt(struct skcipher_request *req)
410 {
411 	return __xts_crypt(req, true, aesbs_xts_encrypt);
412 }
413 
xts_decrypt(struct skcipher_request * req)414 static int xts_decrypt(struct skcipher_request *req)
415 {
416 	return __xts_crypt(req, false, aesbs_xts_decrypt);
417 }
418 
419 static struct skcipher_alg aes_algs[] = { {
420 	.base.cra_name		= "__ecb(aes)",
421 	.base.cra_driver_name	= "__ecb-aes-neonbs",
422 	.base.cra_priority	= 250,
423 	.base.cra_blocksize	= AES_BLOCK_SIZE,
424 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
425 	.base.cra_module	= THIS_MODULE,
426 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
427 
428 	.min_keysize		= AES_MIN_KEY_SIZE,
429 	.max_keysize		= AES_MAX_KEY_SIZE,
430 	.walksize		= 8 * AES_BLOCK_SIZE,
431 	.setkey			= aesbs_setkey,
432 	.encrypt		= ecb_encrypt,
433 	.decrypt		= ecb_decrypt,
434 }, {
435 	.base.cra_name		= "__cbc(aes)",
436 	.base.cra_driver_name	= "__cbc-aes-neonbs",
437 	.base.cra_priority	= 250,
438 	.base.cra_blocksize	= AES_BLOCK_SIZE,
439 	.base.cra_ctxsize	= sizeof(struct aesbs_cbc_ctx),
440 	.base.cra_module	= THIS_MODULE,
441 	.base.cra_flags		= CRYPTO_ALG_INTERNAL |
442 				  CRYPTO_ALG_NEED_FALLBACK,
443 
444 	.min_keysize		= AES_MIN_KEY_SIZE,
445 	.max_keysize		= AES_MAX_KEY_SIZE,
446 	.walksize		= 8 * AES_BLOCK_SIZE,
447 	.ivsize			= AES_BLOCK_SIZE,
448 	.setkey			= aesbs_cbc_setkey,
449 	.encrypt		= cbc_encrypt,
450 	.decrypt		= cbc_decrypt,
451 	.init			= cbc_init,
452 	.exit			= cbc_exit,
453 }, {
454 	.base.cra_name		= "__ctr(aes)",
455 	.base.cra_driver_name	= "__ctr-aes-neonbs",
456 	.base.cra_priority	= 250,
457 	.base.cra_blocksize	= 1,
458 	.base.cra_ctxsize	= sizeof(struct aesbs_ctx),
459 	.base.cra_module	= THIS_MODULE,
460 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
461 
462 	.min_keysize		= AES_MIN_KEY_SIZE,
463 	.max_keysize		= AES_MAX_KEY_SIZE,
464 	.chunksize		= AES_BLOCK_SIZE,
465 	.walksize		= 8 * AES_BLOCK_SIZE,
466 	.ivsize			= AES_BLOCK_SIZE,
467 	.setkey			= aesbs_setkey,
468 	.encrypt		= ctr_encrypt,
469 	.decrypt		= ctr_encrypt,
470 }, {
471 	.base.cra_name		= "ctr(aes)",
472 	.base.cra_driver_name	= "ctr-aes-neonbs-sync",
473 	.base.cra_priority	= 250 - 1,
474 	.base.cra_blocksize	= 1,
475 	.base.cra_ctxsize	= sizeof(struct aesbs_ctr_ctx),
476 	.base.cra_module	= THIS_MODULE,
477 
478 	.min_keysize		= AES_MIN_KEY_SIZE,
479 	.max_keysize		= AES_MAX_KEY_SIZE,
480 	.chunksize		= AES_BLOCK_SIZE,
481 	.walksize		= 8 * AES_BLOCK_SIZE,
482 	.ivsize			= AES_BLOCK_SIZE,
483 	.setkey			= aesbs_ctr_setkey_sync,
484 	.encrypt		= ctr_encrypt_sync,
485 	.decrypt		= ctr_encrypt_sync,
486 }, {
487 	.base.cra_name		= "__xts(aes)",
488 	.base.cra_driver_name	= "__xts-aes-neonbs",
489 	.base.cra_priority	= 250,
490 	.base.cra_blocksize	= AES_BLOCK_SIZE,
491 	.base.cra_ctxsize	= sizeof(struct aesbs_xts_ctx),
492 	.base.cra_module	= THIS_MODULE,
493 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,
494 
495 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
496 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
497 	.walksize		= 8 * AES_BLOCK_SIZE,
498 	.ivsize			= AES_BLOCK_SIZE,
499 	.setkey			= aesbs_xts_setkey,
500 	.encrypt		= xts_encrypt,
501 	.decrypt		= xts_decrypt,
502 	.init			= xts_init,
503 	.exit			= xts_exit,
504 } };
505 
506 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
507 
aes_exit(void)508 static void aes_exit(void)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
513 		if (aes_simd_algs[i])
514 			simd_skcipher_free(aes_simd_algs[i]);
515 
516 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
517 }
518 
aes_init(void)519 static int __init aes_init(void)
520 {
521 	struct simd_skcipher_alg *simd;
522 	const char *basename;
523 	const char *algname;
524 	const char *drvname;
525 	int err;
526 	int i;
527 
528 	if (!(elf_hwcap & HWCAP_NEON))
529 		return -ENODEV;
530 
531 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
532 	if (err)
533 		return err;
534 
535 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
536 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
537 			continue;
538 
539 		algname = aes_algs[i].base.cra_name + 2;
540 		drvname = aes_algs[i].base.cra_driver_name + 2;
541 		basename = aes_algs[i].base.cra_driver_name;
542 		simd = simd_skcipher_create_compat(aes_algs + i, algname, drvname, basename);
543 		err = PTR_ERR(simd);
544 		if (IS_ERR(simd))
545 			goto unregister_simds;
546 
547 		aes_simd_algs[i] = simd;
548 	}
549 	return 0;
550 
551 unregister_simds:
552 	aes_exit();
553 	return err;
554 }
555 
556 late_initcall(aes_init);
557 module_exit(aes_exit);
558